Programming Concepts and Methods

M. Broy & C.B. Jones {Editors)

Elsevier Science Publishers B.V. (North-Holiand) 53
© IFIP, 1990

On the refinement of non-deterministic recursive routines by trans-
formations

Rudolf Berghammer

Fakultit fiir Informatik, Universitit der Bundeswehr Miinchen
Wemer-Heisenberg-Weg 39, D-8014 Neubiberg, Fed. Rep. Germany

Herbert Ehler and Bemhard Mdller

Institut fiir Informatik, Technische Universitit Miinchen
Postfach 2024 20, ArcisstraBe 21, D-8000 Miinchen, Fed. Rep. Germany

In this paper we prove a theorem which can be seen as an analogue of Park’s well-
known theorem in terms of the erratic refinement relation (viz. McCarthy's descen-
dant order). Based on this theorem we demonstrate that the common method of
program development by unfold/fold can also be applied in the case of a language
with erratic non-determinism and a transformation notion which allows reducing
non-determinacy. The proof of the corresponding transformation rule is given in
such a way that it is largely independent of particular language features. Rather we
give a number of simple requirements on the language which are sufficient to
ensure that the analogue of Park’s theorem holds.

1. Introduction

Experience has shown that the traditional way of programming is not appropriate for coping
with the complex task of writing efficient and correct programs. As a consequence, efforts have
been made to replace it by formal programming methods. One of the proposed methods is pro-
gram development by transformations (see [Feather 87] or [Bauer et al. 89] for a survey). In
this approach, the construction of a program is done incrementally by successive applications
of semantics-preserving rules.

Within transformational programming the unfold/fold-method (se¢ [Burstall Darlington 77]) is
frequently used, e.g., for transforming a non-recursive specification into a first (terminating)
recursive solution. In the case of deterministic programs its correctness follows from the sim-
ple fact that the semantics of the specification is a fixed point of the functional corresponding to
the recursive solution. However, for methodological reasons, the programming language under
consideration should also contain non-determinism in order to enable simple specifications of
"naturally” ambiguous tasks and to allow the postponing of design decisions. Furthermore,
non-determinism is important in connection with parallelism, since certain parallel constructs
can transformationally be reduced to non-deterministic sequential constructs (cf. [Broy 80]). If

54

transformations are only allowed between programs having the same set of possible outcomes,
the above correctness argument holds for non-deterministic programs, too. (This approach is
e.g., taken in [Furbach 83].) However, it may fail if a transformation notion is used that also
allows the reduction of non-determinacy. (If one transformation step strictly reduces non-
determinacy, then the semantics of the specification need rot be a fixed point of the functional
corresponding to the recursive solution.) Nevertheless, the unfold/fold-method remains correct
provided some very "natural” conditions are fulfilled. This is shown in the paper.

In the literature, one finds three different kinds of non-determinism, viz. angelic, demonic, and
erratic non-determinism. Angelic non-determinism corresponds to a "prophetic” choice during
computation: Possible termination is equivalent to guaranteed termination. It is useful in those
cases where only partial correctness issues are of primary concern. The demonic non-determi-
nism is underlying Dijkstra’s wp-calculus. Here possible non-termination is equivalent to gua-
ranteed non-termination. It serves as the basis for refinement calculi at the procedural level, see
[Back 88)], [Morgan et al. 88], and [Morris 87]. Finally, the erratic non-determinism (also
called choice non-determinism) arbitrarily chooses any of the possible computation sequences,
be it terminating or non-terminating.

Neither angelic nor demonic non-determinism is problematic wrt. refinements, since in these
cases the respective refinement relation coincides with (the converse of) the respective approxi-
mation relation. However, in the case of erratic non-determinism, the refinement and approxi-
mation relations are quite different so that, for instance, the correctness of unfold/fold needs a
separate proof. The following two very simple examples should informally explain the prob-
lem.

In the deterministic case the situation is as follows. Given a specification of a routine F with
body E, denoted by F(x) < E, an unfold/fold development is a sequence of equivalence
transformations which typically establishes that F satisfies a fixed point equation F(x) = A,
where F and x may occurin A. Then it is known (e.g., from Park’s theorem, cf. [Park 69])
that under a certain termination condition the original specification is equivalent to the recur-
sive routine given by A. Let’s consider a concrete example. Assume a sort "nat" for natural
numbers and the specification F(x) <= x *x of functionality nat—nat. Then

F(x) = x*x
= if x=0then 0
else (x—D*(x-D+x+x—1fi
if x=0then 0
else F(x—1)+x+x—~1fi

is a sequence of equivalence transformations which shows that F(x) <= x*x is equivalent to
the following recursive routine:

F(x) < if x=0then 0
else F(x—1)+x+x—1fi

55

(The transformations show that the function defined by F(x) ¢= x*x is a fixed point of the
functional of the recursion; termination implies that this functional has exactly one fixed point.)

Now in the non-deterministic case we would like to have a similar transformation technique.
Again, given a specification F(x) < E, a transformational development now establishes a
refinement relation (denoted by »p), i.e., F(x) »p A, where again F and x typically occur in
A. From this we would like to conclude that the original specification is refined by the recur-
sive routine given by the declaration F(x) < A. Let’s again consider a concrete example.
Assume that the specification F(x) <= some y : y<x of functionality nat—nat is given (the
meaning of the some-construct is obvious) and let

F(x) = somey:y<x
»p if x <2 then x
else x [somey:y<x-2fi
= ifx<2thenx
else x| F(x-2)fi

be a sequence of refinement steps. (The symbol [denotes the finite erratic choice operator,
see [Bauer et al. 85]). Then we would like to conclude that F(x) <= some y : y<x can be
refined into

F(x) «= if x <2 then x
else x [l F(x-2) fi

under certain conditions.

Therefore, we prove a theorem that can be seen as an analogue of Park’s well-known theorem
in terms of the erratic refinement relation (viz. McCarthy’s descendant order). Based on this
theorem we formulate and prove correct a transformation rule enabling the unfold/fold
refinement in the erratic case. The proof is given in such a way that it is largely independent of
particular language features such as the parameter-passing mechanism (call-time-choice vs.
run-time-choice and call-by-value vs. call-by-name) or the presence or absence of unbounded
non-determinacy. Rather we give a number of simple requirements on the language in the form
of algebraic laws or order relations which are sufficient to ensure that the theorem holds.

2. Totally and partially correct refinements

We model non-deterministic routines by functions that assign to a given input value a ser of
possible output values. The possibility of an aborting or non-terminating computation is indi-
cated by including the pseudo-value L in this set. Let therefore N be an arbitrary set of
"proper” values. Then we set N':=NuU (L] (where L ¢ N). By P(NY) we denote the set of
all non-empty subsets of N'; these may be considered as sets of possible outcomes of a func-
tion application. Non-deterministic routines are then modeled by functions with range P(NY).

56

We can now define our correctness notion for program wransformations. Consider functions f,
g with the same argument domain and values in the same result domain PNY). We extend set
union and set intersection pointwise to functions by defining (fug)(x) = f(x) U g(x) and
(fng)x) == f(x) N g(x). Now, we call f a descendant of g (cf. [McCarthy 63]) and write
f <p g, if every possible outcome of f is also one of g, ie,if fU g=g Note that the des-
cendant relation <p is a partial order.

If we consider g as the specification and f as an implementation, f<p g states that the imple-
mentation produces only values allowed by the specification. For this reason, we call f a fo-
tally correct refinement of g if f<p g.

A more liberal relation is the following: Define for a function g with values in a domain
P(NY) the L-extension gt by ghi=guQ, where Q) = {1} forall x from the argument
domain. Then gl behaves as g except that it always has the possibility of abortion or non-
termination. We call f a partially correct refinement of g and write f<p g, if £<pgh,
ie., if whenever f chooses a terminating computation, the outcome is allowed by the
specification g. If f and g arc determinate, ie., |f(x)] = |g(x)| =1 forall x in the argu-
ment domain, then we have f<p g if and only if f(x)={L} or f(x)= g(x) forall x.

Some useful properties of L-extension and partially correct refinement are the following:
2.1 Lemma a) The L-extension is a closure operator wrt. the descendant relation, i.c.:
() f<pft (2 fspg = flygt (3 fti=rt

b) The relation <p is a pre-order, i.e., it is reflexive and transitive.
c) The associated equivalence is equality of L-extensions, i.e.:

f<peagsh o fr=gh

Proof: a) is straightforward.

b) Reflexivity follows from (1). For transitivity assume f<p g and g <ph. By (2) and (3) we
obtain g!<phtt=ht Now f <p h follows from the transitivity of the relation <p,.

©) First, we show the direction "=". By (2) and (3), from f<pg and g<pf we get fl<y gt
and gt <p L. Now antisymmetry of the descendant relation shows the desired result. The
other direction follows from (1) as f<pfi=g and g<pgt=f+]

Note that this proof works for arbitrary closure operators.

To establish the connection between partial and total correctness, we need some further
definitions. For X e P(NL) we set DEF[X] if L is not containedin X. Then, for f and g
having the same argument domain and a result domain P(NL), we define f S<pgp g if
DEF[£(x)] implies DEF[g(x)] for all x from the argument domain, ie., if gnQ <p fN .
Note that the definedness relation <pgr is also a pre-order.

57

2.2 Lemma Total correctness is partial correctness plus preservation of definedness. Le.:
f<pg & ((<pg)A(g<per)

Proof: The direction "=>" can be shown as follows: By (1} we get <p g <p g+ ie. f<pg.
Suppose now DEF[g(x)]. By f(x) g(x), from DEF[g(x)] it follows that DEF[f(x)], which
shows the second assertion.

To prove "<=", suppose y € f(x). If y=_1, then L e g(x) follows from g <pgef by contra-
position. If y#.1, then y e gl(x) is equivalentto y € g(x).

If one considers also functions that may yield the empty set of values, one has
f<pprg & gNQ<HINQ

Then Lemma 2.2 can be restated as
f<pg & fUQH U AENQS N Q).

Our main goal now is to show that the unfold/fold-method leads to a partially correct refine-
ment; by the previous lemma then one only needs to supply a termination argument to establish
total correctness.

3. Fixed point semantics of recursion

We assume the reader to be familiar with the following notions: Complete partial order
(briefly: cpo), flat domain, domain of monotonic (continuous) functions, and direct (smash)
product of cpo’s. Details can be found in [Loeckx Sieber 84] and in [Schmidt 86], for example.
The cpo of the monotonic (continuous) functions from a cpo D to a cpo W is denoted by
(D — W) (respectively by [D — W]). In both cases the least element is the function Q
mapping every element from D onto the least element L of W. By) we denote the least
fixed point of a monotonic function f. The direct product of cpo’s D; is denoted by TID;. If
the D; are flat domains, then ®D; is their smash product (cf. [de Roever 72]).

To cover the casc of non-determinacy, we have to define an approximation order for sets of
values; the appropriate relation is the Egli-Milner order tpm (cf. [Plotkin 76]) on P(D),
where D = N1, the set of proper and improper result values (cf. Section 2), is ordered as a flat
domain. The Egli-Milner order is given by:

XSen Y i (XS YU (L)) A (DEFX] = X=Y).

The pair (P(D), =gy is called the erratic power domain over the flat domain D. The Plot-
kin power domain is the subdomain consisting of the sets X that satisfy L e X if X isin-
finite. We set f <py g if and only if f(x) =gy g(x) for all elements x of the argument
domain. Note also that

58

fpg o e
Allowing again functions with empty result set, one has
f<pmg @ Fppafigsp D),
where \ is the pointwise extension of set difference to functions.

Next we recall the principle of computational induction that allows proofs of properties of least
fixed points. Assume two recursive routines F and G of the same functionality. Further-
more, let © and o be the functionals induced by the bodies of F and G, respectively. To
prove that both routines have the same semantics, one must show D(lL,, “ol’ where the predi-
cate ¢ is defined by ®(f,g) :< (f=g). The predicate @ is continuous, ‘ i.e., whenever it
holds for every element of a chain, it holds for the least upper bound of the chain, too. Hence,
computational induction may be applied for proving (U, 1) to be true.

Suppose function domains D; and D,, monoronic functionals 1;€ (D; — D)), 1<i<2, anda
continuous predicate @ on D;xD,. Then computational induction is described by the follo-
wing inference rule:

d(Q, Q)
V fe Dy, ge Dy : ®f,g) = D(1,(0), ()

Dljr i)

Now, assume a non-deterministic language with erratic non-determinism and a transformation,
notion which also allows reducing the set of possible outcomes within a transformation step.
To prove that a step from F to G is allowed, a variant of & can be used in which the identity
relation = is replaced by the descendant relaticn <p,.

To establish its correctness, we first note that, defining the union fu g of two functions £ and
g by (fu g)(x) :==1(x) U g(x), we have that f <5 g if and only if fug=g. Moreover, it is
well-known (cf. [Plotkin 76]) that set union is continuous wrt. the Egli-Milner order. Hence,
we obtain immediately:

3.1 Theorem Let the predicate & on (D; = P(W)) x (D, — P(W,)) be defined by
@(f.g) = (00 <p p22),
where p; € [(D; & PCW)) — (D — P(W))], 1<£i<2. Then @ is continuous. [|

Assume that the functional p, of Theorem 3.1 is constant, i.e., that there exists a monotonic
function gj € (D — P(W)) such that py{g)=g, forall ge (D, —» P(W,)}. Then p, is trivi-
ally <gj-continuous. Furthermore, we may interpret @ as a predicate on (D) = P(W,)), asit

*) Admissible, ¢f. [Loeckx Sicber 84].

59

depends only on the first argument. With this instantiation we have:

3.2 Corollary Let gge (D — P(W)) and p € [(D; » P(W))) = (D = P(W))l. Then the
predicate @ on (D; — P(W})) given by &(f) :e (p(f) <p go) is continuous, |

4. A formulation of Park’s theorem in terms of the descendant relation

Assume a <-monotonic functional T on the cpo (D; = W)) and f e (D — W,). As already
mentioned, in the case of deterministic programs the correctness of the unfold/fold-method is
based on the simple implication

) wH)=f = p <f

together with a termination condition. The corresponding statement (0 is a <py-monotonic
functional on (D, — P(W5)) and g is from (D; — P(W,)))

(5) o@<pg = BeSpEg

does not hold this way but in a slightly weaker form. This (Theorem 4.4 below) can be seen as
an equivalent of Park’s theorem (which is (4) with the order relation < instead of the identity
relation = within the premise) in terms of the descendant order and the L-extension. We
prepare the proof by some technical lemmas. The proofs of the following facts are rather trivial
and, therefore, omitted.

4.1 Lemma Assume two functions f, g € (D — P(W)). Then:

(6) f<pmyg = f<pg (N eyt a
Using these properties, we now obtain:
4.2Lemma Let f,ge (D — P(W)). Then f<gy g and g<pf imply fi=g"

Proof: From (6) and the first assumption we get f <p g. From the second assumption, formula
(1), and the transitivity of the relation <p we obuain g <p f. Now Lemma 2.1 ¢) shows the
desired result. - |

The next preparatory result deals with the replacement of functions by their l-extensions
within function applications.

4.3 Lemma Let T be a <gy-monotonic and <p-monotonic functional on (D — P(W)) and
fe (D — P(W)). Then (fHt=1(f"

Proof: First, we get f+ <pm f from (7); <gp-monotonicity of T shows 1(f 4 Sgym (). On
the other hand, due to formula (1) we have f <, f1 and the <-monotonicity, thus, implies
of) <p 1(f 4. Finally, Lemma 4.2 yields the desired equation.]

60

After these preparations we are now able to prove the main theorem of this section, viz. the
announced equivalent of Park’s theorem in terms of the descendant order and the .L-extension.
The proof of the following theorem is an adaptation of the proof given in [Berghammer 907.
(That proof establishes the corrcc*t‘ncss of the unfold/fold-method for the erratic non-determinis-
tic programming language CIP-L).)

4.4 Theorem Let T be a <g-monotonic and <p-monotonic functional on (D — P(W)) and
fe (@ — P(W)). If ©(f) is a totally correct refinement of f, then the least fixed point of T is
a partially correct refinement of f. Le.:

) <pf = |,L=.<_pf

Proof: We choose the continuous predicate @ on the function domain (D — P{W)) in Corol-
lary 3.2 tobe @(g) ;= (g <p .

Induction base: Trivial, as Q(x)= {1} cf1(x) forall xe D.

Induction step: From the equation T(f1)' = 1)’ (Lemma 4.3) and the assumption f) <p f
we obtain in connection with (2) of Lemma 2.1 as a first result t(f-)1=1(fy* <p f+. Now we
use the induction hypothesis &(g), viz. the property g<pf L, By monotonicity of T wrt. the
descendant relation <, we get (g) <p Tf-). Thus, (1) of Lemma 2.1 implies ©(g) <p tfH"
as a second result.

Finally, the combination of both results just proven yields the relation 1(g) <p f1, which is
exactly the desired result ®(t(g)). |

Theorem 4.4 in combination with Lemma 2.2 now immediately gives the following result.

4.5 Corollary Let T and f be as in Theorem 4.4. If (f) is a totally correct refinement of £
and the least fixed point of T is at least as defined as f, then the least fixed point of T is a
totally correct refinement of f. Le.:

() <p) A € <ppr i} = 1L SHE |

Let the function f of Theorem 4.4 be the semantics of a specification and the functional t© of
the same theorem be obtained by the interpretation of its recursive refinement. Furthermore,
assume that during the derivation process the set of possible outcomes may have been reduced.
Then the conclusion of the theorem expresses that every defined result of the recursion is a
result of the specification, too, but for some inputs it may happen that the recursion diverges al-
though the specification yields only defined results. Hence, like in the case of (deterministic)
unfold/fold for a correctness of (non-deterministic) refinement also a supplementary termina-
tion proof is needed. This is formally expressed by the second part of the premise of the corol-
lary: Whenever the specification yields defined values only, its recursive refinement has to ter-
minate.

For a formal description of the language CIP-L ses the language report [Bauer et al. 85].

61

5. Non-deterministic refinement of routines: Formulation as a rule

Translating Theorem 4.4 (Corollary 4.5, respectively) into programming language notation,
monotonicity of the functional T wrt. the descendant order corresponds to the so-called substi-
tuton-property, saying: If a sub-expression A, of an expression E; can be refined into an
expression A, and the expression E; is obtained from E; by replacing A; by A,, thena
refinement of E; into E, is also correct. The substitution-property plays an essential role as it
shows that "local” application of correct refinements also is "globally” correct.

In the sequel, we define the syntax of a simple non-deterministic applicative programming
language PL. Then we show that the functionals induced by the bodies of the routines of PL
fulfill the properties of Theorem 4.4 (Corollary 4.5, respectively) if certain simple postulates
about their semantics hold.

For simplicity, a program in PL consists of an expression or of exactly one declaration of an
applicative routine, followed by a semicolon and an expression. Expressions are built up by the

. use of variables, constants, base-function symbols, routine identifiers, function application, con-
ditional, and finite or comprehensive choice. Qur approach can easily be extended to the case
of several declarations and/or of systems of mutually recursive routines using an environment
and multi-argument functionals in the description of the semantics.

The grammar of the programming language PL is specified by:

prog = expr |

toutine-id (var,..., var) < expr; expr
expr = var |

const |

base-fun (expr,..., expr) |
routine-id (expr,...,expr) |

if expr then expr else expr fi |
expr] expr |

SoIne var : expr

Note that the inclusion of the some-construct may lead to unbounded non-determinacy.

It will be assumed that each variable and each constant is assigned a sort and each base-func-
tion symbol and routine identifier is assigned a functionality. Thus, we can define the sort of an
expression in the usual way. If F{v) < E; A is a program and m,..mj—n is the functionality
of F, it is understood that v = VsV Is 2 list of pairwise distinct variables v;, 1<i<j, each
my is the sort of v;, and n is the sort of E. Furthermore, it is supposed that the body E of
the routine F can only contain the v; as variables and F as routine identifier and that the
“result expression” A of the program contains at most F as routine identifier and arbitrary
variables. In programs without a routine declaration no routine identifiers may occur. M
over, the expressions following "if" as well as “"some var ;" are assumed to be offsort
"boolean"; the then and the else branches of the conditional as well as the alternatives

62

choice operator [l are assumed to be of equal sorts.

Rather than giving a specific semantics to PL, we only state some postulates about the seman-
tics which are actually needed in the sequel. These postulates are very natural and do not res-
trict the possible semantics of PL. much.

Let v= v,....,vj denote a list of pairwise distinct variables. Then EXP{, denotes the expres-
sions of sort n which contain at most vy,...,v as variables and F as routine identifier. Furth-
ermore, we assume for every base-sort m a flat domain D, and for every tuple-sort
(my,...my) acpo Dy ,, Wwhich is built up from the cpo’s Dy, in a certain (unspecified)
manner. The following table shows possible choices for Dy, ., appropriate for various para-

meter passing mechanisms:

D

my...my

call-by-value call-by-name

call-time-choice ®D,, IID,,
run-time-choice P(@®D,) nepo,)

See e.g., [Hennessy Ashcroft 76], [Hennessy 80], and [Bauer et al. 85]. Moreover, we abbrevi-
ate function domains like (D, — P(D,)) by Dy sn.

As an example for the difference between the four parameter passing mechanism consider the
rontine declaration F(x,y) ¢<= x+x. Then the call F(Ol1,0) is equivalent o 002 with call-
time-choice and to 0102 with run-time-choice The call F(0error) is equivalent to error
with call-by-value and to 0 with call-by-name, where error is an expression with L as only
possible value.

Postulate 1: Let m be a (tuple) sort, F be a routine identifier of functionality m—n, and v
be a (list of) variable(s} of (tuple) sort p. We postulate the semantics of the language to be
given by a family of mappings

L1:EXPR, = Oy =Dy

This means that [] is supposed to yield <gy-monotonic functionals on Sgy-monotonic func-
tions for all expressions.

Postulate 2: Next we explain the purpose of the various arguments of the semantic function
ILI¢.).) in terms of the equation

[FW)IH) = £(x),
where v is alist of variables vy,....v; and x is a tuple (xl,...,xj).

Note that this postulate is only due to the specific form chosen for the semantic function and not
of any deep importance. It simply says that a free routine identifier and free variables in an
expression are valuated by the second and the third arguments of the semantic function

63

[.1()(). For a concrete semantics, Postulate 2 should be an immediate consequence of the
semantics of routine application and of variables. E.g., in the case of a call-by-name/run-
time-choice semantics it is shown by the following chain of equations:

[FE@WIOE) = £(0v, IO), LI) = f(xy,....x)) = f(x)

Postulate 3: Let the routine identifier F be of functionality m—n and let v be a list of vari-
ables of sort m. Consider a (possibly recursive) declaration F(v) < E with Ee EXPE,. We
have, by Postulate 1, [E] € (D,_,, = D). Thus, according to [Markowsky 76]) the least
fixed point gy wrt. the order <py; exists. We postulate for the semantics of that declaration

IF(v) <= El = gz,
i.e., aleast fixed point semantics of recursion.

Postulate 4: Next, we require the semantics of a program F(v) <= E; A 10 be compositional,
i.e., we postulate the equation

[E(v) < E; Al = [AI(IF(v) < EI).

Postulate 5: In the case of program transformation a very fundamental and natural requirement
on the semantics is, as already explained above, the substitution property. Hence, we postulate
for every expression E the functional [E] to be monotonic wrt. the descendant order <p,.

Next, we introduce the notion of a transformation rule over the programming language PL.
Correctness of a rule is defined such that the transition from programs (program parts) to less
ambiguous ones is allowed. In order to formalize transformation rules, we need some attributes
and relations on expressions, routines, and programs formalizing properties like "the expression

E yields only defined values” or "the expression (routine, program) P; is less ambiguous than -

the expression (routine, program) P,". See also [Broy Partsch Pepper Wirsing 80] and [Bauer
et al. 85]. The following definition transfers the descendant order onto the syntactic level.

5.1 Definition a) For two expressions E,, E; € EXP§,, where m—n is the functionality of
the routine identifier F, we define:

E| «pE; 1 Vfe Dy, [E1) <p [EI()

b) For two routine declarations F(v) <= E; and G(w) < E,, where the routine identifiers F
and G have the same functionality, we define:

Fv) <E; «p G(w) <= E; & [F(v) = El £, [G(w) < E,]

c) Assume two programs F(v) <= E;; A; and G(w) <= E;; Ay, where A, € EXPE, and
A, € EXPg, for somelist z of variables. Then we define:

64

F(v) <=Ep; A; «p Gw) <=Ep; A; 1 [F) =B Al [Gw) <=Ex Al m

Let P; and P, be two expressions (routines, programs). If Py «p P; and Pp «p Py, then Py
and P, are said to be equivalent. We denote this by P; =P,. Now, we may define:

5.2 Definition A fransformation rule over the language PL is an inference rule of the form

>condition, < ... >condition, <

>input< » >output<

where n20, » € {=,»p), »p is the converse of «p, the output template >output< and the
input template >input<. are both expressions (routines, programs) over the language PL, and
the applicability conditions >condition;<, 1 €i<n, are formulas over PL built up by attributes
and relations over the language PL such as »p and =. The rule is said to be correct, if >out-
put< and >input< have the same sort (functionality) and if the validity of the conditions
>condition;<, 1 £i<n, implies the validity of the relation >input< » >output<. _ [|

In order to improve the readability of the rules presented in the rest of the paper, we omit condi-
tions such as "the expression E is of sort m” and state only the "semantic” applicability con-
ditions explicitly. (In [Partsch 85], conditions of the first kind are called syntactic constraints.)

5.3 Example We transfer the definedness predicate DEF onto the syntactic level and define an
expression B of PL to be defined (denoted as DEFINED[B]) if it contains no routine
identifier and if DEF{[BI{Q)(x)] holds for every element x # L (which is the same as
DEF[I[BI(f)(x)] for every f and every x # 1). The following transformation rule COND is
correct for any reasonable semantics of the conditional. It may be used for introducing or re-
moving a conditional.

' DEFINEDI[B]

E=ifBthenEelse Efi |

If we want to formulate Corollary 4.5 as a transformation rule we also need to transfer the
definedness relation <ppr onto the syntactic level.

5.4 Definition For two routines F(v) <= E,; and G(w) <E,, where F and G have the same
functionality, we define:

F(v) <= E; «pgr G(W) = By 1 [F(v} ¢= Bl <pgr [G(w) = E]l u

After these preliminaries we are now able to formalize the refinement of non-deterministic rou-
tines as a transformation rule over PL. Note that in the following theorem the result expression
A of the program F(v) < E; A of the first applicability condition can only contain the vari-
ablesin v due to the form F(v) & A of the output template.

65
5.5 Theorem If the programming language PL satisfies Postulate 1 through Postulate 5, then
the following inference rule, called REFINE, is a correct transformation rule.

F(v) <=E;F(v) »p F(v)<=E A
FW)«<=E «pgg Fiv) = A

F(v) =E »p FV)<=A
Proof: First, we obtain [AT(yep) <p Kgeg from the first applicability condition as follows:

Fv) «E F(v) »p F(v)«<=E; A

< [F(v) «E; Al < [F(v) < E; F(W)1 by definition of »p
< [AI(IF{) < El) 2p [FOI(IF(v) <= ED) by Postulate 4
< [ADGyep <p TFWI(gep by Postulate 3
< [AT(gep <p KEn by Postulate 2

As a second result we get Pggp Spep Hpag from the second applicability condition, since:

F@) «<E “DEF F(V) =A
< [F(v) <= E] <pgr [F(v) < Al by definition of «pgp
< My <prr KAl by Postulate 3

Finally, the functional [AJ] is <gp-monetonic and <p-monotonic due to Postulate 1 and Postu-
late 5, and the least fixed point (g is a Spy-monotonic function due to Postulate 1. Hence,
the assumptions of Corollary 4.5 hold. It shows ppay Sp . Now, we get the desired result:

F(v)«<E »p Fv)=A
& [F(v) & Al <p [F(v) < E] by definition of »p
< Hpap Sp HE] by Postulate 3 [|

5.6 Remarks a) The rule REFINE expresses, like in the deterministic case, that refinement
consists of two steps, viz. the derivation {or verification) of a recursion relation and a subse-
quent proof that termination is preserved.

b) The first applicability condition of REFINE may be shown by a transformation of the pro-
gram F(v) < E; F(v) into the program F(v) < E; A. Here frequently the unfold/fold-method
is used. Its first step is an unfolding-step and replaces the routine call F(v) by the body E of
F. A corresponding rule UNFOLD reads:

Fv)«<E;F(v) = Fv) < EE

It is correct for the programming language PL provided Postulate 1 through Postulate 5 hold.
The proof essentially consists of the following equations:

[F(v) < E; ED = [EI(uep = kg = TFO)I(gep) = [F(V) <= E; FWI

66

Note that the actual argument expression in the call of F must consist of variables only.

Recursion is introduced by folding-steps. Every folding-step interprets a subexpression of an
expression as an instance of the body of F and replaces it by a call of F. A formalization of
folding as a rule FOLD depends on the specific language semantics. E.g., in the case of a strict
call-by-value semantics we have the following rule which, in general, reduces non-determinacy
{.[.«=.] denotes the substitution operator and A is an expresswn which contains exactly w as
variable):

DEFINED[K]

F(v) &= E; A[E[Kev]ew] »p F(v) < E; A[F(K)—w]

This means: If A contains a subexpression which equals the body E of F in which the
expression K is substituted for the variable, then this subexpression can be replaced by a call
of F with argument K. The condition DEFINED[K] is sufficient in strict call-by-value
semantics: Non-definedness of K would imply that F(K) is also non-defined, whereas it may
happen that the expression E[K¢v] still is defined viz.,, if E is not strict wrt. v. This shows,
that in the transformation rule FOLD the condition DEFINED[K] may be replaced by the con-
dition of E being strict wrt. v. ||

6. Application: A rule for deriving tail-recursions

As an application of the general rule REFINE we now show the correctness of an analogue of
the Hoare-Dijkstra-Gries way of constructing loop programs from specifications. To this end,
we start from the specification

some x : R(x,v),

where R is a Boolean base function and v is a sequence Vi....¥j of input parameters. We
want to derive a program G(y,v) < ...; G(E,v), where G is a tail-recursive routine imple-
menting this specification. To obtain this, we introduce (cf. [Gries 81]) besides the starting
expression E an invariant P and a termination condition B (both given as Boolean base
functions) such that

(8) DEFINEDIE,B(y,v),P(y,v)] (9) DET[B(y,v),P(y,v)]

(where the predicate DET states that an expression is determinate, ic., yields exactIy one
value) and

(10) PEwv)=true (1) P(y,v)AB(y.v) = Py,v) AB(y.V) AR(Y,V)
as well as an incrementation function F satisfying

(12) P(y,v)A-B(y,v) = P(y,v) A=B(y,v) APF(y,v),v).

67

Note that (11) and (12) are equational formulations of the requirement that P(y,v) A B(y,v)
implies R(y,v) and P(y,v) A =B(y,v) implies P(F(y,v),v). For the further development we
assume a constant error with [Jerror] = Q and abbreviate, for Boolean expressions Q and
arbitrary expressions A, the conditional if Q then A else error fi by Q- A (cf. [Moller 89]).
Q is called an assertion for A. The following three transformation rules ASSERT;, 1<i<3,
hold under any reasonable interpretation of the conditional.

a) ASSERT, states that an assertion which is equivalent to true may be eliminated:

Q = true

QA=A

b) If Q is a defined and determinate assertion for a conditional, the defined and determinate
condition of which is C, then the assertions A; and A, may be inserted into the then-case
and the else-case, respectively, provided QAC implies A; and QA—C implies A,. Formal-
ized as a rule ASSERT, this fact reads:

DEFINED[C,Q]
DET(C.Q]
QAC = QACAA;
QA-C = QAa-CaAA,

Qo ifCthenE, else E; fi = Qrif Cthen A > E, else A, E; fi

c) Finally, the rule ASSERT; expresses a property of comprehensive choice, viz. that under the
assertion R{y,v) the choice some x : R(x,v) can berefinedtc y:

R{y.v)t-somex:R(x,v) »p R(yV) >y

In the sequel we use a slight generalization of the rule UNFOLD to the case of an argument
expression not consisting of variables only.

Let Dy abbreviate the declaration F(v) < E. We want to replace a call F(A) by the body E
of F in which the actual parameter A is substituted for the formal parameter v. The correct-
ness of this depends on the particular parameter passing mechanism. A corresponding rule
UNFSUB (unfolding and substitution) reads

CU[A]

Dg: F(A) =Dg E[A¢<V]

where sufficient conditions CU[A] are the following:

68

CU[A] call-by-value call-by-name
call-time-choice DEF_DET[A] DET[A]
tun-time-choice DEFINED[A] true’

Here DET[A] means that A is determinate; DEF_DET[A] means that A is defined and de-
terminate. Note that the conditions again could be weakened using strictness properties of E.
Furthermore, in the case of call-by-value and call-time-choice, the condition DEFINED[A]
suffices for Dg; E[A<v] »p D; F(A) to hold.

We alsc use the obvious fact that a routine declaration can be inserted in front of an expression
containing no routine identifier. Then condition (10) and UNFSUB show the following impli-
cation

(13) CU[E! = somex:R{x,v)= Dypecs G(E, V),

where Dy, abbreviates the declaration G(y,v) <= P(y,v) > some x : R(x,v). We calculate (the
implicitly used substitution property is a consequence of Postulate 5):

Dypecs
Gly.w)
Dspec;
P(y,v) > some x : R(x,v) by UNFOLD
Dgpecs :
P(y,v) &> if B(y,v) then some x : R(x,v)

else some x ; R(x,v) fi by (8}, COND

Dspec;
P(y,v) > if B(y,v) then R(y,v) t= some x : R(x,v)

else P(F(y,v),v) >some x : R(x,v) fi by (11), (12), ASSERT,

»pDeecs
P(y.,v) & if B(y,v) then R(y,v) > y
else P(F(y,v),v) >some x : R(x,v) fi by ASSERT,

»p Dspec;
" P(yv)eif B(y,v) then R(y,v) > y
else G(F(y,v),v)fi by FOLD
= Dspec;
P(y,v) > if B(y,v) then R(y,v) > y
else tue o G(F(y,v),v) fi by ASSERT,
= Dspec;
P(y,v) > if B(y.v) then y
else G(F(y,v),v) fi by (11), ASSERT,

Hence, we have derived a tail-recursion for G, verifying the first applicability condition of the
transformation rule REFINE. Let therefore D, abbreviate the declaration

69

G(y,v) =P(y,v) > if B(y,v) theny
else G(F(y.v).v) fi,

ie., the tail-recursive solution of the original specification. Then we have the implication

Dspec «“pEF Drec = Dspec »p DIEC by REFINE
= Dy GEV) »p Dys GEV) by Postulate 4
< some x : R(x,v) »p Dy GE,v) by (13)

provided CU[E] holds so that we finally obtain the following transformation rule TAILREC:

CUTE]
® 9 (10) (11) (12)

Dspec “pEF Drec

some x : Rx,v) »p Dy GEV)

It should be mentioned, that this rule is the basis for compact rules describing some general
algorithm design techniques like angmentation or the greedy approach. For details we refer to
[Berghammer 90], where such transformation rules are proved using the language CIP-L (cf.
[Baver et al. 85]) for program notation.

7. Conclusion

In this paper we have demonstrated that the common method of program development by
unfold/fold in the deterministic case can be applied in the erratic non-deterministic case as well,
We have formulated a very general rule describing the refinement of non-deterministic routines.
As a specific case this rule formalizes the unfold/fold method, too. Rather than giving a proof
using a specific language semantics, we have only stated some postulates about the semantics
which have been actually needed. These postulates turned out to be very natural and do not res-
trict the possible semantics much. Finally, we demonstrated an application, viz. the proof of a
rule describing the derivation of tail-recursions from invariants. The results of this paper show
that there is no need to restrict functional programming to the deterministic case.

Acknowledgement

We thank Manfred Broy and Wolfgang Heinle for giving us valuable hints on a draft version of
this paper.

References

[Back 88]

Back R. J. R.: A calculus of refinements for program derivations. Acta Informatica 25,
593-624 (1988)

70

[Bauer et al, 85]
Bauer F. L., Berghammer R., Broy M., Dosch W., Geiselbrechtinger F., Gnatz R., Hangel
E., Hesse W., Krieg-Briickner B., Laut A., Matzner T., Moller B., Nickl F., Partsch H.,
Pepper P., Samelson K., Wirsing M., Wéssner H.: The Munich Project CIP, Volume I:
The wide spectrum language CIP-L. LNCS 183, Springer: Berlin-Heidelberg-New York
(1985)

[Bauer et al. 89]
Bauer F. L., Mbller B., Partsch H., Pepper P.: Formal program construction by transfor-
mations — Computer-aided, Intuition-guided Programming. IEEE Trans. on Software
Engineering, SE-15, 2, 165-180 (1989)

[Berghammer 90]
Berghammer R.: Transformational programming with non-deterministic and higher-order
constructs. In preparation

[Broy 80]
Broy M.: Transformational semantics for concurrent programs. Inform. Processing Let-
ters 11, §7-91 (1980)

[Broy Partsch Pepper Wirsing 80]
Broy M., Partsch H., Pepper P., Wirsing M.: Semantic relations in programming langua-
ges. In: Lavington S. H. (ed): Information Processing 80, Proc. IFIP Congress 80 - 8
World Computer Congress, North-Holland: Amsterdam, 101-106 (1980)

[Burstall Darlington 77]
Burstall R. M., Darlington J.: A transformation system for developing recursive pro-
grams, Journal ACM 24, 44-67 (1977)

[de Roever 72]
de Roever W. P.; A formalization of various parameter mechanisms as products of relati-
ons within a calculus of recursive program schemes. Theorie des Algorithmes, des Lan-
guages et de la Programmation, Seminaires IRIA, 55-88 (1972)

[Feather 87]
Feather M. S.: A survey and classification of some program transformation technigues.
In: Meertens L. G. L. T (ed.): Proc. TC 2 Working Conference on Program Specification
and Transformation, April 15-17, 1986, Bad Teélz, F.R.G., North-Holland: Amsterdam,
165-195 (1987)

[Furbach 83] .
Furbach U.: Uber Transformationsregeln fiir nichtdeterministische rekursive Funktions-
definitionen. Dissertation, Fachbereich Informatik, Hochschule der Bundeswehr Miin-
chen (1983)

[Gries 81)
Gries D.: The science of computer programming. Springer: Berlin-Heidelberg-New
York (1981)

[Hennessy 80]
Hennessy M.: The semantics of call-by-value and call-by-name in a nondeterministic en-
vironment. SIAM J. Comp. 1, 67-84 (1980)

[Hennessy Ashcroft 76] -
Hennessy M., Ashcroft E. A.: The semantics of non-determinism, In: Michaelson §.,
Milner R. (eds.): Proc. 3 ICALP, Edinburgh, 478-493 (1976)

[Loeckx Sieber 84])
Loeckx J., Sieber K.: The foundations of program verification. Teubner: Stutrgart (1984)

71

{Markowsky 76]
Markowsky G.: Chain-complete posets and directed sets with applications. Algebra
universalis 6, 53-68 (1976)

[McCarthy 63]
McCharty J.: A basis for a mathematical theory of computation. In: Braffort P., Hirsch-
berg D. (eds): Computer programming and formal systems. North-Holland : Amsterdam,
33-69 (1963)

[Morgan et al. 88]
Morgan C. C., Robinson K. A., Gardiner P. H. B.: On the refinement calculus. Technical
report PRG-70, Programming Research Group, Oxford University (1988)

[Mbller 89] '
Msller B.: Applicative assertions. In: van de Snepscheut J. L. A. (ed.): Mathematics of
program construction, LNCS 375, Springer: Berlin-Heidelberg-New York, 348-362
(1989)

[Morris 87]
Morris J. M.; A theoretical basis for stepwise refinement and the programming calculus.
Science of Computer Programming 9, 298-306 (1987)

[Park 69]
Park D.: Fixpoint induction and proofs of program properties. In: Meltzer B., Michie D.
(eds.): Machine Intelligence 5, Edinburgh Univ. Press, 59-78 (1969)

[Partsch 85]
Partsch H.: Transformational program development in a paricular problem domain.
Habilitationsschrift, Institut fiir Informatik, TU Miinchen (1985). Also in: Science of
Computer programming 7, 99-241 (1986)

[Plotkin 76]
Plotkin G.: A powerdomain construction. STAM Journal on Comp. 5, 452-487 (1976)

[Schmidt 86]
Schmidt D. A.: Denotational semantics - A methodology for language development.
Allyn and Bacon: Boston (1986)

