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Rotatability is one of many desirable characteristics of a response-surface design. Recent 
work (Draper and Guttman 1988; Khuri 1988) has, for the first time, provided ways to measure 
"how rotatable" a design may be when it is not perfectly rotatable. This had previously been 
assessed by the viewing of tediously obtained contour diagrams. This article provides a 
criterion that is easy to compute and is invariant under design rotation. It also easily extends 
to higher degree models. 
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1. INTRODUCTION 

Rotatability was first defined by Box and Hunter 
(1957). Suppose we wish to fit a response-surface 
polynomial of degree d, y = Xp + e to k predictor 
variables, or factors, xi, x2, . . ., Xk. Let z' = (1, 

2 2 
X, ., Xk, Xi, Xk, x X2, X . . * Xk-iXk, XI, 

x,x, .. .) be a row vector of monomials up to and 
including order d, evaluated at a general point x = 
(x,, x, . . , Xk)', with the form of z' being that of 
a row of X. Then, if e - N(O, Ic2) and we estimate 
p by ordinary least squares, b = (X'X)- X'y is the 
appropriate estimator, and the function 

V{9(x)} = z'(X'X) Iza2 (1.1) 
is the variance function of the predicted value y = 
z'b at any point (xl, x2, . . ., Xk) in the predictor 
space (or x space). The N x k experimental design 
matrix D, whose rows (or runs) (xI , x . . . , Xku) 
for u = 1, 2, .. ., N are part of X, is said to be 
rotatable (of the order d of polynomial fitted) if (1.1) 
is a function only of r2 = x2 + *.. + x2. This im- 
portant property is a desirable feature of any exper- 
imental design. Even if circumstances are such that 
exact rotatability is unattainable-because of more 
important restrictions such as orthogonal blocking, 
for example-it is still a good idea to make the design 
as "rotatable as possible." Thus it is important to 
know if a particular design is rotatable or, if it is not, 
to know "how rotatable" the design is. 

In a first-order model (d = 1), we have z' = (1, 
xl, x2, . . , Xk), and rotatability is identical to or- 
thogonality with equal scaling on the axes. The con- 

ditions for this are that 
N 

22N = E x,, 
u=l 

this equation serving to define the parameter 22, and, 
in addition, all sums of powers and products E, 
x,x, of odd first-order or second-order (namely, a 
= 1, b = 0; a = 0, b = 1; a = b = 1) are required 
to be 0. In a second-order model (d = 2), we have 
z = (1, X1, X2, x . . .x, Xk , X2 X1X2 . . . 

Xk-lXk). For second-order rotatability (which is not 
equivalent to orthogonality), the conditions are 

i2N = =1,2 .... k 

3i4,N = x = 3 i = 1, 2, .. , k, 

(1.3) 
the latter defining 24, and, in addition, all other sums 
of powers and products of order up to and including 
4 must be 0. See Box and Hunter (1957) or Box and 
Draper (1987, p. 489). 

When a design is rotatable, we know exactly where 
we are, but how do we know when a design is "nearly 
rotatable"? In general, this has been hard to assess 
without actually drawing the variance contours-a 
tedious task, especially in dimensions k - 3. The 
assessment of rotatability has been the topic of two 
recent articles by Draper and Guttman (1988) and 
Khuri (1988). The thrust of the first article was to 
provide an m value such that, for symmetric designs, 
the contour 

IX lm + Ix21n + ... + -Xklm = 1 (1.4) 
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provided an excellent representation of a contour of 
the variance function (1.1). This contour was the one 
through all axial points one unit from the origin after 
the design had been scaled (i.e., shrunk or expanded) 
to bring all of its points inside or onto the unit circle. 
The m value was then compared with a standard set 
of m contours. Khuri (1988) compared the moments 
of a general design with the moments of a rotatable 
design and essentially obtained an R2 statistic after 
regressing a vector of general design moments 
against vectors obtained from a rotatable design. 
This enabled him to say that a design was "R'% 
rotatable." 

We shall study designs through their p x p mo- 
ment matrices 

n 

A = N-'X'X = N-1 E z,u, (1.5) 
u=1 

where z, contains the coordinate of the uth run, 
rather than through their design points. Because ro- 
tatability is defined in terms of moment relationships, 
this is entirely logical. 

2. NOTATION 
We shall be primarily concerned here with second- 

order rotatability. The traditional representation of 
a second-order model is such that a row of the X 
matrix consists of the terms 
1; X, X2, . . ., Xk; X , X2, . . . , Xk; 

xlx2, . .. , Xk-lXk. (2.1) 
(These terms compose z'.) There are certain theo- 
retical disadvantages to this notation in terms of mov- 
ing from second order to other orders. Box and 
Hunter (1957) were aware of these disadvantages and 
consequently introduced the Schlaflian notation (see 
also Draper 1984) in which the terms used were 
1; Xi, X2, . . ., Xk; 

X2, x, . . ., 2 2, x, 21x, . . ., 2X k. (2.2) 
A disadvantage of this notation is that, as higher 
terms are added, the various proper constants must 
be introduced and carried through the computations. 

A conceptually simpler notation, which we shall 
use here, is the following. Let x = (x,, x2,. . , xk) 
We shall denote the terms in the second-order model 
by z(x)' with elements 

1; x'; x' ? x', (2.3) 
where the symbol ? denotes the Kronecker product. 
Thus there are (1 + k + k2) terms, 
1; xI, X2, . . ., Xk; X2 , X . XlXk; 

X2XI, X2, . .., X2Xk; .. . ; XkX, XkX2 . . ., X. 

(2.4) 

An obvious disadvantage of (2.4) is that all cross- 
product terms occur twice, so the corresponding X'X 
matrix is singular. A suitable generalized inverse is 
obvious, however, and this notation is very easily 
extended to higher orders. For example, third order 
is added via x' 0 x' 0 x', and so on. 

3. MEASURING ROTATABILITY 
Now consider any second-order rotatable design 

with second-order moments A2 = N-~ 2u xi and 24 
= u xi x2. We can write its moment matrix V of 
order (1 + k + k2) x (1 + k + k2), in the form 

V = Vo + A2(3k)'12V2 + )4[3k(k + 2)]1/2V4, 

(3.1) 
where Vo consists of a one in the (1, 1) position and 
zeros elsewhere, where V2 consists of (3k)- 1/2 in each 
of the 3k positions corresponding to second-order 
moments in V and zeros elsewhere, and V4 consists 
of 3[3k(k + 2)]-1/2 in the k positions corresponding 
to pure fourth-order moments, [3k(k + 2)]-1/2 in the 
3k(k - 1) positions corresponding to mixed even 
fourth-order moments in V, and zeros elsewhere. 
The values of V2 and V4 for k = 3 are given in the 
Appendix for illustration. Note that Vo, V2, and V4 
are symmetric and orthogonal so that Vi,V = 0, and 
also the Vi have norms IlV,ll = [tr(ViVi)]"2 = 1. 

Suppose we now take an arbitrary design with mo- 
ment matrix A, say. Draper, Gaffke, and Pukelsheim 
(in press) showed that, by averaging A over all pos- 
sible rotations in the x space, we obtain 

A = V0 + V2tr(AV2) + V4tr(AV4). (3.2) 
An alternative way to obtain (3.2) relies on a regres- sion argument. Suppose that we regress A on V0, 
V2, V4 to give the fitted equation 

A = aV0 + fV2 + YV4, (3.3) 
with regression coefficients a, fi, y. These coefficients 
are determined by multiplying Equation (3.3) in turn 
by V,, V2, V4 and taking traces, 

a = tr(AV,) = tr(AV0) = tr(AV,) = 1 

P = tr(AV2) = tr(AV2) = tr(AV2) 

y = tr(AV4) = tr(AV4) = tr(AV4). (3.4) 
Here we have profited from having the V, scaled so 
as to have norms 1 and from their pairwise ortho- 
gonality. We call A the rotatable component of A. 
We shall be interested in two measures based on A 
and A. These will be defined as (a) the measure of 
rotatability, 

Q* = IIA - Vol0l2/IA - Voll2 
= {tr(A - VO)2}/{tr(A - V0)2} (3.5) 
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(Q* - 1 with equality iff A is second-order rotata- 
ble), and (b) the distance between A and A, 

5 = llA - All = {tr(A - A)2}1/2. (3.6) 

Our rotatability measure Q* is, like Khuri's (1988, 
p. 98) (, essentially an R2 statistic for the regression 
of the design moments of second and fourth order 
in A onto the "ideal" design moments represented 
by V. There are, however, important differences. 
Because Khuri's regression is based on vectors se- 
lected from an upper triangular portion of a matrix 
similar to V, his regression coefficients and R2 value 
are weighted differently from ours. Because of this, 
his statistic is not invariant when the design is rotated 
in the x space, whereas ours is. For an example in- 
volving the 32 design, see Section 4. It is, of course, 
desirable that a measure of rotatability not be af- 
fected by how the design is oriented in the x space. 

Scaling. An important issue that we have not yet 
discussed, which affects both Q* and 6, is the scaling 
of the designs examined. In nearly all comparisons 
of two or more designs, a decision must be made on 
how far out from the origin to place a given set of 
design points. The "traditional" way, dating back to 
Box and Hunter (1957, p. 212), is to set ;2 = 1. This 
was followed by Khuri (1988). We prefer, however, 
to think of the unit circle (k = 2) or unit sphere (k 
- 3) as the region of interest. Hence we scale designs 
so that all of the points lie inside or on the unit 
sphere. One consequence of this is that, when we 
add center points, the remaining points do not have 
to be rescaled and the values of Q* and 6 are un- 
changed. If 92 is to be fixed equal to 1, the addition 
of a (or another) center point will require the design 
to be rescaled; moreover, the "shape" of the original 
design-point setup will be axially distorted. It is of 
limited value to compare our numerical values with 
Khuri's, even if we ignore the rotational problem of 
the latter discussed earlier in this section. The values 
we provide are, however, internally consistent and 
invariant under design rotation. 

The numerical value of Q* is completely unaf- 
fected by the choice of notation used to represent 
the second-order terms discussed in Section 2. Our 
selected notation makes the proof that Q* is not 
dependent on orientation very straightforward, for, 
if we rotate any x-vector into Rx, where R is a k x 
k orthogonal matrix, we obtain the transformation 
Q in the z(x) space from (2.3) as 

I 0 0 \ I l O O /' 1 
Q = 0 R 0 , since z(x) = x . 

0 0 R0R Ix?x 

Hence the matrix Q, of order (1 + k + k2) x (1 
+ k + k2), is also orthogonal. But the norms and 
distances used in the definition of Q* and 6 are or- 
thogonally invariant. Hence Q* and 6 stay the same 
under design rotation. 

Note that if two moment matrices Al and A2 have 
the same A = Al = A2, then they can be directly 
compared via the distance measure, the one with 
smaller 6 being more rotatable. This follows from 

IIA - Voll2 
Q 2 + 6= A - V2 + IIA - Voll2' (3.8) 

If Ai, : A2, however, a simple comparison of Q* and 
6 is not available. When Al - A2 is positive semi- 
definite, we may have 5(Al) > 6(A2) and Q*(Al) = 
Q*(A2). Since we shall not consider this type of be- 
havior in the present article, we henceforth concen- 
trate on Q*. 

Equation (3.2) is appropriate for second-order ro- 
tatability. For additional theoretical discussion, see 
Draper et al. (in press). This concept can be extended 
straightforwardly to higher-order rotatability, which 
will be discussed in a subsequent article. 

4. COMPOSITE DESIGNS 

Composite designs consist of a combination of a 
cube-that is, a two-level factorial or fractional fac- 
torial 2k-" design with coordinates (?1, +1, ..., 
?1)-plus a star of 2k points (?a, 0, . . ., 0), (0, 
?a, 0, . .., 0), .. ., (0, 0, .. ., 0, +a), plus n, 
center points. Table 1 shows the values of the rotat- 
ability measure Q* for a selection of such designs 
with the cube portion of resolution V or higher when 
the design is rescaled so that all of the points lie inside 
or on the unit ball. This table is designed to be vis- 
ually comparable to table 1 of Draper and Guttman 
(1988, p. 109), which showed the shape of a variance 
contour through the point (1, 0, . . . , 0) after re- 
scaling the design so that all points were inside or 
on the unit sphere, the same rescaling as that done 
for Q*. A comparison of these two tables shows that 
Q* is a sensible criterion and that the two tables are 
entirely consistent. Moreover, any rotation of these 
designs will leave Q* unaltered. 

We can compare the three criteria mentioned in 
this article via an example. Consider the 32 design, 
which is a composite design with a = 1 and one 
center point. Figure 1 shows how Khuri's ( changes 
as the 32 design is rotated through an angle 0, 0 < 0 
< 90?. Our Q* = .9826, from Table 1, remains con- 
stant throughout. The Draper and Guttman (1988, 
pp. 110-111) m criterion can be evaluated only for 
the symmetric cases 0 = 0 or 90? (when m = 3.73) 
and 0 = 45? (when m = 1.29). Note that these m 
values apply to different variance contours; if the 
same contour is used (as in Draper and Guttman 
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Table 1. Values of Rotatability Measure Q* for Standard Composite Designs, With 2k-p Cube at (? 1, ?, . ., ? 1) and Axial 
Points at Distance a, Rescaled to the Unit Sphere 

k= 2, k= 3, k= 4, k= 5, k= 5, k= 6, k= 7, k= 8, k= 8, k= 9, 
a p=O p=O p=O p=O p= p= 1 p= 1 p= 1 p= 2 p=2 

1.00 .9826 .9754 .9752 .9781 .9814 .9830 .9853 .9875 .9880 .9896 
1.25 .9967 .9873 .9819 .9812 .9864 .9854 .9864 .9879 .9889 .9900 
1.41 1.0000 
1.50 .9992 .9972 .9897 .9854 .9922 .9887 .9880 .9887 .9902 .9906 
1.68 1.0000 
1.75 .9916 .9995 .9968 .9906 .9976 .9927 .9901 .9897 .9919 .9914 
2.00 .9826 .9928 1.000 .9957 1.0000 .9967 .9927 .9910 .9941 .9926 
2.25 .9746 .9829 .9969 .9994 .9965 .9995 .9956 .9927 .9964 .0040 
2.38 1.0000 1.0000 
2.50 .9682 .9729 .9900 .9996 .9887 .9995 .9983 .9947 .9986 .9956 
2.75 .9632 .9639 .9817 .9965 .9792 .9962 .9999 .9968 .9999 .9973 
2.83 1.0000 1.0000 
3.00 .9592 .9559 .9732 .9917 .9694 .9909 .9996 .9989 .9995 .9989 
3.25 .9560 .9492 .9649 .9858 .9600 .9846 .9977 .9999 .9976 .9999 
3.36 1.0000 1.0000 
3.50 .9534 .9434 .9572 .9796 .9512 .9777 .9947 .9999 .9945 .9999 
4.00 .9497 .9344 .9438 .9668 .9358 .9637 .9869 .9978 .9862 .9977 
4.50 .9471 .9277 .9329 .9547 .9233 .9504 .9777 .9938 .9766 .9936 
5.00 .9452 .9228 .9241 .9436 .9133 .9384 .9679 .9888 .9663 .9884 
NOTE: When Q* = 1, the design is fully rotatable. The a values 2(k-p)/4 that achieve rotatability are also given. 

1988, p. 111) the corresponding m values become 
4.44 and 1.29. These values are conjugates of each 
other in the sense that (4.44)-1 + (1.29)-' = 1. This 
conjugacy relationship shows a pattern balanced 
around the circle (m = 2), which is self-conjugate 
in that 2 + I = 1. 

5. ROQUEMORE'S DESIGNS 
Three designs given by Roquemore (1976, p. 420) 

were examined by both Khuri (1988, p. 100) and 
Draper and Guttman (1988, p. 110, with rescaled 
coordinates). The values of the rotatability measures 
for the designs are shown in Table 2. Obviously the 
values are sensibly consistent. As other authors have 
remarked, 311A is the "most rotatable" of the three 
designs. 

6. REPAIRING DESIGN ROTATABILITY 
The idea of adding one or more points to a design 

to make it conform better to a desirable criterion is 

0 4-5 90 
Figure 1. Plot of Khuri's (d for a 32 Design Rotated Through 

an Angle 0 (0 - 0 < 90?). 

long established, and Khuri used this idea to make 
designs more rotatable as measured by his criterion 
(D. We now reconsider Khuri's (1988, p. 100) ex- 
ample 4.3, due originally to Hebble and Mitchell 
(1972, ex. 1, p. 769). The initial nonrotatable design 
with 10 design points is given in Table 3, in which 
Q* = .9496. New points are restricted to a circle of 
radius 2 in the original coordinate system. The best 
11th, 12th, 13th, and 14th points to add to the design 
to provide a maximum increase in rotatability are as 
shown in Table 4. We have searched only to one 
decimal place, which is all that is justified by the 
stability of Q* in this example. Figure 2 shows the 
progressive changes in the variance contours as 
points are added to make the design more rotatable. 

Note that, if we repair design rotatability using the 
traditional A2 = 1 scaling, we immediately distort our 
initial design space. For repair of designs, choosing 
a scaling that merely shrinks or expands equally in 
all directions seems more sensible. 

As a second example, we reconsider Khuri's (1988, 
p. 100) example 4.4, provided by John Cornell. The 
initial design is given in Table 5. This was a modi- 
fication of a central composite design with axial dis- 

Table 2. The Values of Rotatability Measures for 
Roquemore's Designs 

Design number 
Rotatability 
measures 310 311A 311B 

Khuri's ) .9489 .9940 .9899 
Our Q* .9903 .9993 .9969 
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Table 3. First Example: The Design to Be Repaired 
(Q* = .9496) 

u x, X2 

1 -1 1.35 
2 1 -1.25 
3 -1.6 -.85 
4 1 1 
5 -1.5 0 
6 1.55 0 
7 0 -1 
8 0 1.55 
9 .55 .30 

10 0 0 

tance 1.682. The codings from the original variables 
P (a polymer), CA (a coupling agent), and L (a 
lubricant) were 

xl = (P - 250)/25, X2 = (CA - 22.5)/2.5, 

x3 = (L - 7.5)/2.5, (6.1) 

Table 5. Second Example: The Design to Be Repaired 
(Q* = .9710) 

Xt X2 X3 

-1 -1 -1 
1 -1 -1 

-1 1 -1 
1 1 -1 

-1 -1 1 
1 -1 1 

-1 1 1 
.48 1 1 

0 -1.682 0 
o 1.682 0 
0 0 -1.682 
0 0 1.682 
o o 0 
0 0 0 

and the design modification resulted from a require- 
ment that P + CA + L < 305-namely, 

10xi + x2 + X3 < 10. (6.2) 
In adding new points to the design, we shall ob- 

serve both this restriction and the one that x2 + x2 
+ x -< 3, as observed by Khuri (1988), which keeps 
new points within the maximum radial distance of 
the old points. Because of the (X2, x3) symmetry of 
the initial design in Table 5, there is no need to search 
in three dimensions, so we seek points of form (xl, 
x2, x2) such that 

1Ox1 + 2x2 < 10 (6.3) 

and 
x2 + 2x2 < 3. (6.4) 

Thus we search within the left portion of the ellipse 
(6.4) cut off by the line (6.3) in the (xI, x2) subspace. 
Table 6 shows the points 17-19 that, added singly, 
make the design the most rotatable at each stage of 
addition. For the 17th point, we searched on a .05 
unit grid, but the stability of Q* again showed that 
one decimal place was perfectly adequate here, and 
this was used for the subsequent points. Note that 
(1, 0, 0) was used as the 18th point giving Q* = 
.9899. In fact, (.98, .1, .1) provided Q* = .9900, so 

Table 4. First Example: Points That Most Improve Q* 

u XI xz Q* 

11 -.1 -1.5 .9861 
12 .2 .4 .9875 
13 -.1 0 .9876 
14 0 0 .9876 

slight an improvement that we continued with the 
neater (1, 0, 0). Figure 3 shows the progressive 
changes in the variance contours. Remember that, 
because of the dimensional reduction from (xl, x2, 
X3) to (xI, X2 = X3), rotatable contours would be 
elliptical, like (6.4). We see that the variance con- 
tours of the original design were already quite sat- 
isfactory and the addition of the new points provides 
only a marginal improvement. 

We note that, for this second example, our cal- 
culations contradict Khuri's, whose 17th point was 
at (-.828, -.506, -.506). When we inserted that 
point as number 17, Q* fell to .9626. This seems 
logical. The design moment 1. xluIN = -.075125 
initially, and it would thus seem appropriate to add 
a 17th design point with a positive xl coordinate, as 
we have done, rather than a negative one. Khuri's 
18th and last point, (.966, .151, .151), is much like 
our 17th and 18th points. 

7. SUMMARY 

A new criterion for rotatability is suggested. The 
criterion is invariant under design rotation and, be- 
cause of the use of Kronecker product formation of 
the terms of a polynomial model, is extendable to 
models of any order. Detailed calculations are pro- 
vided for composite designs, and the criterion is used 

Table 6. Second Example: Points That Most Improve Q* 

u x, x2 X3 Q* 

17 .95 .25 .25 .9855 
18 1 0 .9888 
19 -.6 -.2 -.2 .9918 
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Figure 2. Successive Variance Contours as Points Are Added Sequentially to the Design of Table 2: (a) Original Design, N = 

10, Q* = .9496; (b) Points 1-11, N = 11, Q* = .9861; (c) N = 12, Q* = .9875; (d) N = 13, Q* = .9876; (e) N = 14, Q* = .9876. 
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Figure 3. Successive Variance Contours as Points Are Added Sequentially to the Design of Table 4: (a) Original Design, N = 
16, Q* = .9710; (b) Points 1-17, N = 17, Q* = .9855; (c) N = 18, Q* = .9899; (d) N = 19, Q* = .9918. 

to repair two specific designs already considered by 
previous authors. 

(2.4), we have 
0 0 OO a OOO a OOO a 
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APPENDIX: THE VALUES OF V2 AND V4 
FOR k = 3 

The matrices V2 and V4 for the k = 3 second-order 
case are both of sizes 13 x 13. [In general, the di- 
mensions are (k2 + k + 1) x (k2 + k + 1).] With 
columns and rows designated by the elements in 
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and 

0 0 0 0 0 0 0 0 0 0 00 

0 
0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

3b b 
b b 

b 

0 

b 

b 

b b 
b 3b b 

b b 

b 

b 

b 
b b 

b 3b 

In V2, a = I and all unfilled positions are zeros; in 
V4, b = (45)-112 and all unfilled positions are zeros. 
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