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A b stract
We present a  Lyapunov exponents approach to  out

put feedback stabilization of linear systems with time 
varying uncertainties. This allows the analysis of 
precise stability and stabilization radii. The results 
are compared to  those obtained using quadratic Lya
punov functions.

1. In trod uction
The stability behavior of linear, time constant sys

tems is determined by the spectrum  and the corre
sponding eigenspaces of the system m atrix. In this 
paper we show tha t one can also use these concepts 
— in an appropriately generalized form — to describe 
the stability behavior of linear uncertain systems.

Typically, in linear systems uncertain parameters 
change independently or jointly within prescribed 
bounds, given e.g. by intervals or Euclidian norm re
strictions. We use the following general model, which 
remains within the realm of linear systems theory

m

¿0) = + 22 .
> = 1

y(t) = C x(t),

where v =  (vt ) represents the uncertainty with values 
in Vt  := pVi, p >  0, Vi a given compact subset of Rm  
with 0 £  Vj.

For the uncontrolled system (i.e. û =  0.) we will 
study the stability properties; of particular interest is 
their dependence on the size p of the uncertainty. For 
the controlled system we allow static output feedback 
u = Fy, where F  has to satisfy given bounds. Again, 
the dependence of the stabilizability properties on the 
bounds for v(-) and F  are of particular interest.

For time constant uncertainties stability properties 
of linear systems are mainly analyzed following the 
already classical work of Kharitonov [18], cp. e.g. 
the proceedings [13]. A measure for the robustness
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of the stability of an equation x = A x  with respect to 
time constant uncertainties in Vp is the real stability 
radius [14]: Let p„ := max{p; p  £  spec(A +  Ev,j4.)}, 
then

m(A) =  inf{p > 0; sup p„ >  0}. (1.2)

For time varying uncertainties v £ Vp :=  {v : R -► 
Rm ; v(t) £  Vp a.e.} the use of quadratic Lyapunov 
functions is a well-established tool for stability anal
ysis. They yield sufficient conditions for stability and 
lead to the following measure of robustness

r t f  (A) =  sup {p > 0; there exist a positive 
definite matrix P  £ Gt(d, R) 
and a  > 0 such that for all
(r,v ) £ Rd  x Vp we have 
xT  [P(A + v) + (A + v)T P\ x 

<  —a |z |2 } .

This stability radius is implicit in much of the quadratic 
stability literature, see e.g. Rotea and Khargonekar 
[19]. Recall that for a large class of uncertainties, rL I  
coincides with the complex stability radius re  of Hin- 
richsen and Pritchard [14-16]. Compare also Doyle 
et al. [8] for connections with theory [9].

In this paper, we study the precise (exponential) 
stability radius given by

r(A) =  inf {p > 0; there is v £ Vp
such that (1.1) with u =  0 (1.4)
is not exponentially stable} .

This radius is characterized by (nonnegativity of) the 
natural generalization of eigenvalues for linear sys
tems with time-varying coefficients, namely Lyapunov 
exponents. They yield precise criteria for stability 
and stabilization of linear uncertain systems. More 
importantly, it turns out that these Lyapunov ex
ponents are actually eigenvalues of a certain family 
of matrices and the corresponding eigenspaces deter
mine the controllability structure. The Lyapunov ex
ponents are numerically computable using optim al
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control methods. This precise characterization of sta
bility and stabilization can already be different from 
r j  and r ^ j  for simple two-dimensional systems with 
output feedback.

The contents of this paper is as follows: In Section 
2. we introduce Lyapunov exponents of linear uncer
tain systems, in Section 3. several results on pertur
bations of linear differential equations are given, and 
in Section 4. these results are applied to  the output 
feedback stabilization of linear, uncertain systems, in
cluding several examples.

2. Linear Uncertain Systems and their 
Lyapunov Spectrum

We will consider linear, tim e constant output feed
backs, satisfying an a priori bound, for linear uncer
tain systems of the following kind:

r  =  A x + v(t)x  4- Bu,
, A (2-1)y = C x, x  £  Rd , y  G Rz

where A  G j/(d , R), the real d x d matrices, B  and C  
are real matrices of dimension d x k and Z x d, respec
tively. The uncertainties are denoted by v, and we 
assume: V C ^Z(d,R) is a  linear subspace, Vj C V  
a  compact, connected subset with 0 G ini Vj and 
ci(int Vj) =  Vi, where int and ci denote the inte
rior and the closure, respectively, with respect to V. 
Define

p 7 i= :V ,C g Z (d ,R ) , P > 0
Vp := {v: R —* Vp , measurable}.

Vp are the time varying uncertainties of size p. This 
model includes in particular norm bounded and in
terval type uncertainties.

As inputs u we allow tim e invariant output feed
backs of the form u =  F C x  with: U is a jinear sub
space of the real k x t  matrices, U\ C U is a com
pact, connected subset with int^Ui Denote 
U ~  BU C, Ui := BUiC  and

crUi =: U„ C gt{d, R), a  >  0.

Then any output feedback gain matrix F  corresponds 
to an element of U . With these notations, the system 
(2.1) can be written as

x = (A + v ( t ) ) x + u x ,
(2 2) 

r G ^ ,  v E V p , u ^ U a ,

which represents a linear system with time varying 
uncertainties of size p and constant ou tpu t feedback 
of size a.

For a given initial point 0 x  G Rd , given un
certainty v G Vp and given feedback u G Ua , the ex
ponential growth rate, or Lyapunov exponent, of the 
corresponding trajectory <p{t,x, v, u), t >  0, of (2.2) 
is given by

X (x,v,u ) :=  limsup — log |^ (t, z, v, u)|; (2.3)
t—oo t

here and for the rest of the paper | • | denotes the 
Euclidean norm in Rd . (Observe that by equivalence 
of norms in Rd , (2.3) is independent of the norm em
ployed.) Contrary to state  space concepts, like Lya
punov functions, the Lyapunov exponents are defined 
on infinite dimensional spaces, i.e.

A: Rd  \  {0} x Vp x U , — ► R := R U { ± o o } .

The collection of all Lyapunov exponents is called the 
Lyapunov spectrum of (2.2). Note that for constant 
v G Vp, these exponents coincide with the real parts of 
the eigenvalues of A + v + u ; and for T-periodic v G Vp, 
they are the logarithms of the Floquet multipliers, 
multiplied by y , cp. e.g. [10,11]. It is easily seen 
that the Lyapunov exponents depend only on the di
rection of the initial value, i.e. X(ax, v, u) =  A(z, v, u) 
for a jkO. Hence A can also be defined on the space 
of directions in Rd , i.e. on the (d — 1)- dimensional 
projective space IP̂ - 1 , obtained by identifying oppo
site points s =  on the sphere S'*- 1 , i.e. A is a 
map A: x Vp x Ua  — ► R. A straightforward
application of the chain rule yields for the projected 
trajectories s(t) =  | |$ |-  of (2.2) the system (on § d - 1  
or ¡P1- 1)

s(t) = h ( s ( i ) ,v ( t ) ,u ) , t G R  (2.4)

and for the Lyapunov exponents

<
A(z, v, u) =  limsup -  /  q (s(r), v(r), u) d r  (2.5) 

t—oo t J  
o

with

h(s, v, u) :=  [A + v + u — ST (A 4- v 4- u)s  • Zd] s, 

q(s, v, u) :=  sT (A 4- v 4- u)s.

In Section 3. we will link the Lyapunov exponents to 
the dynamics of the nonlinear control system  (2.4).

For each feedback u G U denote the maximal real
izable exponent by

JC(p,u) =  sup sup A(z, v ,u ), (2.6)
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and the minimal exponent that can be achieved by a 
feedback u G Ua  is

K (p,<r)= inf £ (p ,u ). (2.7)ugy.

Observe tha t the system (1.1) can be written as a spe
cial case of (2.2) and that the stability radius r(A) de
fined in (1.4) is given by r(A) =  inf{p >  0; £(p, 0) > 
0}-

The discussion above shows that uncertainty may 
be viewed as a bounded, time-varying structured per
turbation of i  =  Ax. The maximal spectral value 
under these perturbations is JC(p, u). Time invariant 
feedback can be viewed as a time-constant structured 
perturbation x  =  (A +  u)z +  v(t)z, and £(p,<r) is the 
minimal spectral value for u G U ,, given all time 
varying perturbations v E V P . Therefore, we will dis
cuss in the next section perturbation theory of linear 
ordinary differential equations.

In a natural way, )C(p, u) and )C(p, a ) can be used 
to define stability and stabilization radii. This will 
be studied in Section 4., together with the continuity 
properties of the functions £ .

3. Perturbations of Linear Differential 
Equations

Consider the system (2.2) with u =  0, i.e.

i  =  A x  + v(t)x, x  G IR**, v € Vp. (3.1)p

We are interested in the Lyapunov exponents A(x, v), 
x 0, v 6  Vp of this family of differential equations 
and in the corresponding directions. Hence we study 
the projected system

s = h ( s ,v ( t ) ) ,  s G P * ’ 1 , v e V p  (3.2), 

on the space P^- 1  of directions, and its exponents 
described via (2.5).

Only the subspace, in which the perturbations act, 
is of interest; in the other directions the stability (and 
the stabilizability) properties are described by the 
well-known linear theory. In order to keep the no
tation simple, we will assume that the perturbations 
affect every direction. This is accomplished by pos
tulating th a t the Lie algebra generated by the vec
torfields A(-,v), v €  Vp, on has full rank for 
all s 6 P*- \  i.e. we assume from now on that the 
following hypothesis (H), well known from geometric 
control theory, is satisfied, cp. e.g. [17]:

dim/L4{h(-, v); v G Vp}(s) =  d — 1
for a lls  G F * -1 .

We will describe the Lyapunov exponents of (3.1), 
by analyzing specific perturbations, namely piecewise 

constant periodic elements of Vp , and their corre
sponding fundamental matrices. Define the positive 
semigroup S" of (3.1), by

S p := . e h(A+.,); v . e

ti > 0, i =  1 . . .  n G N}

and the associated group c  GZ(d,IR) as

S ' := . gU(A+v,); v , e

h G R, i =  1 . . .  n G N }.

Denote furthermore for t >  0 by S<t the subset of 
S p with Tt, < i. Note that each piecewise constant,
T-periodic perturbation v G V, gives rise to an ele

ment of 5 ' T  via: Let v = Vi for t G 72 ) >
J = I >=i /

i =  1 ... n with ^2 ty =  T  and v, G Vp . (We have set 
i=i

t0 = 0.) Then g„ ~  . . .  e ^ ^ ”̂  G S ^ T .
Similarly every element g of S p gives rise to a (not 
necessarily unique) piecewise constant periodic ele
ment v} of Vp .

The hypothesis (H) implies that the system semi
group satisfies for all T  > 0

ciS<T  = ci ini
in particular ini S<T  /  0, (3-3)

where ci and ini denote closure and interior with re
spect to S ' C Gt(d, IR). Before we can characterize 
perturbations and their eigenvalues and eigenspaces, 
we have to introduce one concept describing maximal 
sets of complete controllability [1,2]:

3.1. D efinition. A set Dp  C P^- 1  is called a control 
sei of (3.2),, if for all s G D p  one has c iO p (s) D 
Dp , and if D p is maximal with this property. Here 
Op {s) := {y G P^- 1 ; there are t >  0 and v G V, with 
s(i, s, v) =  y} is the set of points reachable from s 
with some perturbation v G V,.

3.2. Remark. Hypothesis (H) implies for control sets 
Dp with nonvoid interior that int Dp C O p (s) for all 
s G Dp , and that any such control set is closed iff it 
is invariant, i.e. Op (s) C D p for all s G Dp .

The following theorem classifies the control sets of 
the projected system (3.2),:

3.3 T h eo rem . Let Hypothesis (H) be satisfied. Then 
the following holds:

(i) The system (3.2), has 1 < i ,  <  d control sets 
D?, i =  1 . . .k p , with nonvoid interior. For a direction 
s g pd-i jre have s G int D? for some control se t D?
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iff s is an eigenvector for some real eigenvalue of some 
element g €  int S p .

(ii) Let Mi C P*- 1 , i =  be the sum of
the generalized eigenspaces o f the unperturbed sys
tem m atrix A, corresponding to the eigenvalues with 
equal real part. If go := eA t  €  int S p  for some t  >  0 
and all p >  0 (small), then there exists p >  0 such 
that — kg for all 0 <  p <  p, and Mi C int D p , 
i =  1 . . .  ¿o — i.e. the number o f control sets D p 
coincides with the number o f different Mi of A.

Furthermore, f o r O < p < p '  and every control set 
Dp  there is a control set D p  with Dp  C Dp  , and vice 
versa, the map pt->k f  is nonincreasing.

(iii) For fixed p > 0, the control sets with nonvoid 
interior are linearly ordered by Dp  -< D p iff there are 
x €  D p , y  € D p  and v G V?, t >  0 with s(t, x, v) =  y. 
We enumerate these sets such that i <  j  iff D f -< 
D f. The maximal element C p  := D f is closed and J
invariant, the minimal element C t  := Dp  is open.

The proof of (i) and (iii) was given in [1, Theorem 
3.10]; there the control sets were constructed around 
the eigenspaces of elements g G ini S<T - Assertion 
(ii) is a consequence of a much more general result 
in [2]: The sets Mi are the Morse sets of the flow 
associated with x =  Ax on the projective space IP**- 1 . 
The assumption on go =  eA t  guarantees that every 
pair (vg a ,s )  G Vp x P*- 1  is an inner pair for all p > 0, 
[2, Remark 3.3]. Hence the first claim in (ii) follows 
from [2, Theorem 4.12]. The second one is an obvious 
consequence of the definitions.

3.1. Remark. The structure of the eigenspaces of el
ements in int Sp , p >  0 is therefore the following: 
For p =  0 we have the Morse sets Mt of A  on P 4 - 1 . 
As p grows, the Mi extend to sets of eigenspaces D p , 
which are characterized by controllability properties 
of (3.2);, with Mi C ini D f. Depending on the struc
ture of A  and V, certain D f  may unite for increasing 
p. In particular, ¿o =  d iff all eigenvalues of A  have 
different real parts parts, and io  =  1 =  kg for all 
p >  0 iff all real parts of eigenvalues of A are equal.

Interesting enough, the eigenvalues of the elements 
in int S p  determine the stability of the uncertain sys
tem (3.1); via the Lyapunov spectrum:

3.5, T heorem . Let Hypothesis (H) be satisfied. Then 
the following holds:

(i) To each control set D p  corresponds an interval 
=  c f lf , i =  1 ...  kp , via I f  := {A(x, v,); x £  D f 

and x is an eigenvector o f some g £  int S p }. Hence 
each value in any If corresponds to an eigenvalue of 
some g £  int S p , i.e. to a Floquet multiplier o f the 
fundamental matrix g, o f some periodic v £ V P .

(ii) The intervals If depend continuously on p on 
the intervals, where kp is constant, and all real parts 

of eigenvalues of A are in one of these intervals. Fur
thermore, the largest and the smallest eigenvalues, 
sup/£ and inf i f  respectively, depend continuously 
on p £  [0,oo).

(iii) For each p > 0, the intervals If  are ordered in 
the sense that i <  j  implies ap  <  af and bf <  bf.

For a proof of this result see [6]. The complete 
stability behavior of (3.1); is given by these intervals 
of eigenvalues together with the eigenspace structure 
Dp  [6]. Here we are only interested in the stability 
properties with respect to all x €  BL** \  {0}, hence only 
the largest spectral value plays a role and one obtains 
the following result:

3.6. Theorem . Let Hypothesis (H) be satisfied. De
note for each u £ U  by If(u) the corresponding spec
tral intervals of x =  (A +  u)x +  v(t)x, v £  Vp . Then 
K,{p,u) =  supL^(u) and lC(p, u) depends continu
ously on p £  [0, oo), for u €  U fixed.

For a proof see [4], where also further characteri
zations of IC are given.

3.7. Remark. It is well known that in general Lyar 
punov exponents — in contrast to eigenvalues for 
time invariant matrices — do not depend continu
ously on the right hand side of a linear differential 
equation, cp. e.g. Hahn [11]. Therefore, the continu
ity statement with respect to p given above appears 
remarkable, cp. also the discussion in Hinrichsen and 
Pritchard [16] about perturbations of eigenvalues.

4. Stabilization o f  Linear U n certa in  
System s

The perturbation results of the preceeding section 
will be applied now to the stabilization of linear, un
certain systems described by (2.2). Note that all re
sults cf Section 3. remain valid for the feedback sys
tem (2.2) for fixed feedback u £  Ua .

First of all we note the following continuity prop
erties of the functions IC as defined in Section 2.

4.1. Theorem . Assume that for all u £  and all 
f  > 0, p > 0, the system  (2.4); satisfies Hypothesis 
(H). Then the following holds:

(i) The function IC: [0,oo) x Ua  —* R, (p,u) 
)C(p, u) is continuous, and increasing in p for u fixed.

(ii) The function IC: [0, oo) x [0, oo) —► R, (p, a) 
)C(p, <r) is continuous, and increasing in p, decreasing 
in <r.

Proof. The monotonicity statements follow directly 
from the definitions. Continuity in (i) is a conse
quence of Theorem 3.6, and (ii) follows from a stan
dard perturbation argument, see [7].
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4.2. C o ro lla ry . The zero level sets o f the functions 
r

F(u) :=  {(p,u) G [0,oo) x U; ^ p , u )  =  0}
F := {(p,<r) €  [0,oo) x [0,oo); =  0}

are closed and connected, possibly empty.

We will use these results to characterize the fol
lowing stabilization radii:

4.3, D efin ition . Given a  m atrix A  G gf(d,R), a 
family of uncertainties {Vp , p >  0} and of output 
feedbacks {% , 6 >  0}, define the stabilization radius 
for constant u G U

r(u) :=  inf {p >  0; there is v G Vp

such that (2.2) is not exponentially 
stable}

and for feedbacks u of a given size <r

r(a) :=  inf {p >  0; for every u G Ua

there is v G Vp  such tha t (2.2) 
is not exponentially stable} .

If A +  u +  v(-) is exponentially stable for all v G Vp , 
p> 0, then we set r(u) :=  oo, and similarly for r(<r).

4.4. C o ro lla ry . The stabilization radii defined above 
are characterized by

' min{p >  0; lC(p, u) =  0}

r(ti) =  <
ifr(u )n {('); P > o}

0 if  £ (0 , u) >  0, i.e. i f  A  + u 
is unstable

. oo otherwise

’ min{p >  0; £ (p , <r) =  0}
* r u { ( ' ) ; p > o } /d >  

0 i f£ (0 ,< r )> 0
. oo otherwise.

Proof. The expressions above with min replaced by 
inf are clear from the definitions. Since the functions 
IC are continuous, the assertions follow.

The continuity and monotonicity properties of AC 
imply also certain continuity and monotonicity re
sults for the stabilization radii:

4^, C o ro lla ry . Denote by dom^ := {u G U; r(u) <  
oo} and by  dom^ :=  {a >  0; r(<r) <  oo} the effective 
domains o f  r(u), and ofr(<r) respectively. Then

(i) r(<r) is right continuous with left hand limits, 
and increasing in donv, in particular r(o) is lower 
semi continuous;

(ii) r(u) is semi continuous in don^, i.e. i f  u0  G 
domu is a point o f discontinuity, then there is a se
quence {un , n > 1} in dorr^ such that un  —♦ u0  and 
r (u n) —* r(uo) as n —♦ oo.

Proof. Both parts follow from Theorem 4.1 and Corol
lary 4.2 via standard analysis arguments.

The following result characterizes the extreme cases, 
where either r(u) =  0 or r(u) =  oo.

4.6. P roposition , (i) r(u) > 0 iff A  + u is stable.
(ii) r(u) = oo iff A + u is stable and there ex

ists a transformation matrix T  G Gt(d, 1R) such that 
T V T ~ l  consists only o f skew symmetric matrices.

Proof, (i) If A+ u  is stable, then 1C(O, u) =  max {Re p; 
p G spec(A 4- u)} < 0, where spec(A +  u) denotes the 
set of eigenvalues of A  + u. Hence r(u) >  0 by con
tinuity of £ (-,u ). Vice versa, if r(u) >  0, then there 
exists p > 0 with K(p,u) < 0. But A + u G A  + u +  Vp 
for all p >  0. For a proof of (ii) see [7].

/.7 . Remark. Our definition of the stabilization ra
dius for time varying uncertainties uses exponential 
stability, i.e. it is based on Lyapunov exponents. An 
alternative definition in Hinrichsen et al. [12] uses 
uniform exponential stability, i.e. is based on Bohl 
exponents. Since by the results of Section 3., JC(p,u) 
is, for each u G U, the supremum over eigenvalues of 
periodic matrix functions, the two concepts agree in 
the situation considered here, see also Theorem 5. in 
[3]-
1.8. Remark. The model (2.2) allows for measurable 
uncertainties with values in Vp . If more information 
concerning the stochastic nature of the uncertainties 
is available, assertions holding with probability one 
are of interest. In [3] results of this type and their 
relation to the deterministic radii defined above are 
discussed.

Finally we examine more closely the relation be
tween the stability radii r>(A), see (1.3), r(A )  as in 
Definition 4.3, and rL/(A) from (1.4). It is an im
mediate consequence of the definitions th a t for fixed 
feedback gain u G U these radii satisfy

n (u )  > r(u) > rL / (u); (4.1)

hence, taking suprema over u G Ua , we also have

r i(a )  > r(<r} > r L f (<r). (4.2)

Townley and Ryan [20] give conditions, which ensure 
that for <r large ri(<r) =  and then all these
radii agree. This is in particular the case for d =  2, 
A  stable, (A, B )  controllable, and static linear state  
feedback u. The following two examples illustrate 
further the relation between the three radii. T he  first
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one shows that even if ri(<r) =  r£ /(a ) for a large, it is 
possible that ri(o-) > r(<7) >  r£/(<r) for <7 small. The 
second example demonstrates that with output feed
back the strict inequalities ri(<r) > r(a) > for 
all a  >  0 can occur even in 2-dimensional systems.

4.9. Exam ple, (linear oscillator with uncertain restor
ing force) Consider the linear oscillator y +  2uy +  
( l  +  v(t))y =  0, or in the form of (2.1) with x =  
(*1> ̂ 2)r  =  (y ,y )T

Using F =  & J , the resulting closed loop system

is

Figure 1: The stabilization radii for 
the linear oscillator (4.3)

4.10. Exam ple. Consider the system

+  u 0
0

0 
- 2 x.

(4-3)

+  u
0 A- 2  ) X,

17 1/4 1 \  (  0* = [ ( - 1  1 /4 )  + ’ (<) ( _ !

(4-4)

We choose v(t) € Vp  := [—p,p} as the uncertainty 
range, and u €  Ua := [0, a] as the feedback gain range 
for p,<r >  0. Then we have (cp. Figure 1):

ri(<7) >  > rL f (tr)
for 0 <  <r <  <To, with O-Q ~  0.405 

=  K*) > ’‘L it“ )
for <7Q <  <r < 1/V2

r>(a) =  r(<r) =
for 1/V2 <  <7.

(Note that all three radii satisfy r0 (u) =  ro(<7), if u =  
<7.) If one is interested in time varying uncertainties, 
the stabilization criterion based on quadratic Lya
punov functions is too conservative for <7 <  1 />/2, and 
the one based on constant uncertainties is too opti
mistic for <r <  0.405. In this example, the pair {A, B) 

is controllable and A can be shifted to ( ),
\ —1 “ /  

with 0 < a  <  <7o, to produce a system that satis
fies the assumption of Townley and Ryan [20], which 
shows that for large <r the radii can agree also for 
nontrivial output feedback, see [5] for more details on 
this example.

which again can be interpreted as an output feed
back system as above. The stabilization radii are 
shown in Figure 2. We see that for u =  1/4 and 
u =  17/8 the radii depending on u are 0, and each 
of them has unique maximum, namely r> (l/4) =  
0.9375, r(0.59) =  0.77, and r£ / (0.77) =  0.67. There
fore we obtain that

>  r(<r) >  r t j ( a )  for all <7 >  1/4.

Again, the pair (A, B ) is controllable and a shift of 
( 1 /4  1 \

—1 1/4 +  a  /  ’ <  a  <  15/8, produces
a stable systems matrix. However, the stabilization 
radii depending on <7, and for <r —► 00 are different. 
Note that in this example, as well as in Example 4.9 
the values of the radii in a bounded u-interval deter
mine the possibilities of stabilization, i.e. the stabi
lization via bounded output feedback for linear sys
tems with time-varying uncertainties is not a  high 
gain problem, but should be formulated realistically 
with bounds on the size of the uncertainty and on the 
size of the feedback gain. For more details see [7].
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Figure 2: The stabilization radii for 
the system (4.4)
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