First and Second Order Rotatability of Experimental Designs, Moment Matrices, and Information Surfaces

By N.R. Draper ${ }^{1}$, N. Gaffke ${ }^{2}$, and F. Pukelsheim ${ }^{2}$

1 Introduction

Balancedness and symmetry properties are among the most useful and pleasing features that an experimental design can possess. In the present paper we discuss the classical linear model of uncorrelated homoscedastic observations for fitting a polynomial response of some selected order,

$$
\begin{equation*}
\eta(t, \theta)=\theta_{0}+t_{1} \theta_{1}+\ldots+t_{m} \theta_{m}+t_{1}^{2} \theta_{11}+t_{1} t_{2} \theta_{12}+\ldots . \tag{1.1}
\end{equation*}
$$

[^0]This is a polynomial in the values t_{1}, \ldots, t_{m} that m factors can attain, with coefficients $\theta_{0}, \theta_{1}, \ldots, \theta_{m}, \theta_{11}, \theta_{12}, \ldots$ to be estimated.

The levels t_{1}, \ldots, t_{m} jointly form the m-dimensional vector of experimental conditions $t \in \mathbb{R}^{m}$. An experimental design for sample size N then enumerates N vectors of experimental conditions at which to draw an observation. More generally, we shall consider approximate designs which assign, to a finite number of experimental conditions, positive weights which sum to one. The weights determine the proportions of all observations to be taken under the corresponding vector of experimental conditions.

For a polynomial fit the notion of symmetry which has received the greatest attention in the literature requires that the statistical performance of an experimental design remain the same when the experimental conditions $t \in \mathbb{R}^{m}$ undergo an arbitrary rotation, that is, an arbitrary orthogonal transformation. In the present paper, we provide a detailed study of this concept as it pertains to polynomial fits of first and second order.

The orthogonal matrices Q, where $Q^{\prime} Q=I$, form an infinite, though compact, group of nonsingular matrices. Our main result is that, for second order fits, invariance with respect to the finite subset of sign changes, permutations, and the orthodiagonal reflection implies rotatability. For two factors, $m=2$, the orthodiagonal reflection is replaced by a rotation of 45°.

For our mathematical analysis it is convenient to shift emphasis from the experimental conditions $t \in \mathbb{R}^{m}$ to the regression vectors $x=f(t) \in \mathbb{R}^{k}$, where the vector $f(t)$ is composed of the mixed powers in the variables t_{1}, \ldots, t_{m} which appear in the response surface representation (1.1). Let $\mathscr{X} \subseteq \mathbb{R}^{k}$ be the regression range of vectors $f(t)$ which result when the experimental conditions t vary over an experimental domain $\mathscr{T} \subseteq \mathbb{R}^{m}$. A design ξ on \mathscr{X}, or τ on \mathscr{T}, is taken to be a probability measure which has a finite support. The support of a design is the set of points which are assigned a positive weight, and is denoted by supp $\xi \subseteq \mathscr{X}$ or $\operatorname{supp} \tau \subseteq \mathscr{T}$, respectively.

We call f the regression function associated with (1.1), and take its dimensionality to be equal to k. In the present paper we discuss first and second order models,

$$
\begin{align*}
& f(t)=\binom{1}{t} \in \mathbb{R}^{k}, \quad k=1+m \tag{1.2}\\
& f(t)=\left[\begin{array}{c}
1 \\
t \\
t \otimes t
\end{array}\right] \in \mathbb{R}^{k}, \quad k=1+m+m^{2} \tag{1.3}
\end{align*}
$$

respectively. The second order regression function (1.3) utilizes the Kronecker product $t \otimes t$. This representation repeats the mixed second order terms twice, as $t_{i} t_{j}$ and as $t_{j} t_{i}$ if $i \neq j$. We prefer this representation for discussing rotatability
because of the simple calculus that evolves. We show in Section 9 that the results are the same had we cancelled all repetitions, or had we used the Schläflian power notation.

Our considerations of rotability allow us to derive measures of rotatability, that is, measures which indicate how well the moments of any given design compare to those of a rotatable design. The criteria are presented in Section 6. An alternative presentation together with practical examples is given by Draper and Pukelsheim (1990).

We first provide a brief discussion of those aspects which are common to all invariant design problems.

2 Invariant Design Problems

Let ξ be a design on a regression range $\mathscr{X} \subseteq \mathbb{R}^{k}$, and let Q be a nonsingular $k \times k$ matrix. All invariance considerations amount to comparing the two designs ξ and ξ^{Q}, where the latter is the rotation of ξ under Q given by

$$
\xi^{Q}(y)=\xi\left(Q^{-1} y\right)
$$

In a classical linear model the performance of a design $\boldsymbol{\xi}$ is evaluated through its moment matrix

$$
M(\xi)=\sum_{x \in \operatorname{supp} \xi} \xi(x) x x^{\prime}
$$

Our first lemma relates the support sets and the moment matrices of a design and its rotation in a quite simpler manner.

Lemma 2.1. Let ξ be a design on $\mathscr{X} \subseteq \mathbb{R}^{k}$, and let Q be a nonsingular $k \times k$ matrix. Then the support of the rotated design ξ^{Q} is equal to the image under Q of the support of ξ,

$$
\operatorname{supp} \xi^{Q}=Q(\operatorname{supp} \xi)
$$

and the moment matrix of ξ^{Q} is obtained from the moment matrix of ξ by a congruence transformation,

$$
M\left(\xi^{Q}\right)=Q M(\xi) Q^{\prime} .
$$

Now let \mathscr{Q} be a set of nonsingular $k \times k$ matrices. (At his point we do not require \mathscr{Q} to be a group yet.) Then a design ξ is called invariant under \mathscr{Q} when

$$
\xi^{Q}=\xi \text { for all } Q \in \mathscr{Q} ;
$$

and a symmetric $k \times k$ matrix M is called invariant under \mathscr{Q} when

$$
Q M Q^{\prime}=M \text { for all } Q \in \mathscr{Q} .
$$

The set of all invariant symmetric $k \times k$ matrices is denoted by $\operatorname{Sym}(k, \mathscr{Q})$.
It follows from Lemma 2.1 that an invariant design possesses an invariant moment matrix. However, the converse is not true. Moreover, the fact that an invariant moment matrix may be generated by a non-invariant design is often the source of great economy. The rotatable central composite design of Box and Hunter (1957) provide well-known examples: Although these designs are not themselves invariant under all rotations, their moment matrices are. Thus the notion of invariant matrices carries further than that of invariant designs.

Next we show that the invariant matrices form a subspace of symmetric matrices.

Lemma 2.2. Let \mathscr{Q} be a set of nonsingular $k \times k$ matrices. Then the set $\operatorname{Sym}(k, \mathscr{Q})$ of invariant matrices forms a subspace of symmetric matrices. If all matrices in \mathscr{Q} are orthogonal, then the subspace $\operatorname{Sym}(k, \mathscr{Q})$ is a quadratic subspace of symmetric matrices, that is,

$$
M^{2} \in \operatorname{Sym}(k, \mathscr{Q}) \text { for all } M \in \operatorname{Sym}(k, \mathscr{Q})
$$

The notion of quadratic subspaces of symmetric matrices is due to Seely (1971). Quadratic subspaces of symmetric matrices have a number of pleasant properties. For instance, with every member M they also contain the MoorePenrose inverse M^{+}. For our invariant subspaces $\operatorname{Sym}(k, \mathscr{Q})$ this is also easily seen directly, since if Q is orthogonal then $Q M^{+} Q^{\prime}=\left(Q M Q^{\prime}\right)^{+}=M^{+}$. Lemma 1.6 of Seely (1971) provides another important property. If a member M of a quadratic subspace has an eigenvalue decomposition

$$
M=\sum_{i=1}^{l} \mu_{i} P_{i},
$$

with l distinct eigenvalues μ_{i}, then each projection matrix P_{i} also is a member of the quadratic subspace. This entails that, if $\operatorname{Sym}(k, \mathscr{Q})$ has dimension l, then every invariant symmetric matrix M can have at most l distinct eigenvalues, and the associated projection matrices P_{i} are themselves invariant.

A major result of the present paper is that we can always make do with finitely many transformations Q. For rotatability in first and second order models these are given in Theorems 4.1 and 6.1, respectively. The following theorem ascertains that the reduction from arbitrarily many to finitely many transformations is always mathematically feasible, even though it does not provide a practical way for carrying out this reduction.

Theorem 2.3. Let \mathscr{Q} be a set of nonsingular $k \times k$ matrices. Then \mathscr{Q} contains a finite subset $\left\{Q_{1}, \ldots, Q_{l}\right\}$, say, such that \mathscr{Q} and $\left\{Q_{1}, \ldots, Q_{l}\right\}$ share the same subspace of invariant symmetric matrices, that is,

$$
\operatorname{Sym}(k, \mathscr{Q})=\operatorname{Sym}\left(k,\left\{Q_{1}, \ldots, Q_{i}\right\}\right)
$$

Proof: For $Q \in \mathscr{Q}$ we define the mapping T_{Q} from $\operatorname{Sym}(k)$ into $\operatorname{Sym}(k)$ by $T_{Q}(A)=Q A Q^{\prime}-A$. Then M is invariant under \mathscr{Q} if and only if

$$
\begin{equation*}
T_{Q}(M)=0 \quad \text { for all } \quad Q \in \mathscr{Q} \tag{2.1}
\end{equation*}
$$

Evidently T_{Q} is a member of the space \mathscr{L} of all linear mappings from $\operatorname{Sym}(k)$ into $\operatorname{Sym}(k)$. Hence (2.1) extends to the subspace $\mathscr{L}(\mathscr{Q})$ generated by $T_{Q}, Q \in \mathscr{Q}$. Thus (2.1) becomes the same as

$$
\begin{equation*}
T(M)=0 \quad \text { for all } \quad T \in \mathscr{L}(\mathscr{Q}) \tag{2.2}
\end{equation*}
$$

But $\mathscr{L}(\mathscr{Q})$, being a subspace of the finite dimensional space \mathscr{L}, has finite dimension l, say. Therefore the generator $\left\{T_{Q}: Q \in \mathscr{Q}\right\}$ contains a basis $\left\{T_{Q_{1}}, \ldots, T_{Q_{l}}\right\}$, whence (2.2) reduces to

$$
\begin{equation*}
T_{Q_{i}}(M)=0 \quad \text { for all } i=1, \ldots, l \tag{2.3}
\end{equation*}
$$

The equivalence of (2.1) and (2.3) proves the assertion.
In our investigations the sets \mathscr{Q} will often be subgroups of orthogonal matrices. Before turning to our statistical problems, we first list those subgroups that will be of relevance to us.

3 Finite Subgroups of Orthogonal Matrices

The transformations of the regression vectors $x \in \mathbb{R}^{k}$ are induced by transformations of the experimental conditions $t \in \mathbb{R}^{m}$. We shall be interested in the following groups acting on the experimental domain $\mathscr{T} \subseteq \mathbb{R}^{m}$:

$$
\begin{array}{ll}
\operatorname{GL}(m)=\left\{Q \in \mathbb{R}^{m \times m}: \operatorname{det} Q \neq 0\right\}, \\
\operatorname{Orth}(m)=\left\{Q \in \mathbb{R}^{m \times m}: Q^{\prime} Q=I_{m}\right\} & \subseteq \operatorname{GL}(m), \\
\operatorname{Sign}(m)=\left\{\Delta_{\varepsilon} \in \mathbb{R}^{m \times m}: \varepsilon \in\{ \pm 1\}^{m}\right\} & \subseteq \operatorname{Orth}(m), \\
\operatorname{Perm}(m)=\left\{\sum_{j \leq m} e_{\pi(j)} e_{j}^{\prime}: \pi \in \mathscr{S}_{m}\right\} & \subseteq \operatorname{Orth}(m), \tag{3.1}\\
\operatorname{Refl}\left(I_{m}\right)=\left\{I_{m}, I_{m}-\frac{2}{m} I_{m} I_{m}^{\prime}\right\} & \subseteq \operatorname{Orth}(m), \\
\operatorname{Rot}\left(45^{\circ}\right)=\left\{\binom{\cos \left(j 45^{\circ}\right)-\sin \left(j 45^{\circ}\right)}{\sin \left(j 45^{\circ}\right) \cos \left(j 45^{\circ}\right)}: j=0, \ldots, 7\right\} \subseteq \operatorname{Orth}(2) .
\end{array}
$$

GL (m) is the general linear group of nonsingular $m \times m$ matrices. Orth (m) is the orthogonal group consisting of all orthogonal matrices. Sign (m) is the sign change group, composed as follows. Let $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{m}\right)^{\prime}$ be a vector with components ± 1, and let Δ_{ε} be the diagonal matrix with the vector ε on the diagonal. Then Δ_{ε} acts as a sign change transformation on a vector $t \in \mathbb{R}^{m}$, that is, $\Delta_{\varepsilon} t=$ $\left(\varepsilon_{1} t_{1}, \ldots, \varepsilon_{m} t_{m}\right)^{\prime}$.

Perm (m) is the permutation group where, in its definition, we have referred to permutations π of the subscripts $1, \ldots, m$ and the Euclidean unit vectors $e_{j} \in \mathbb{R}^{m}$. The reflection group $\operatorname{Refl}\left(l_{m}\right)$ describes the reflection at the hyperplane orthogonal to the unity vector I_{m}; the transformation $I_{m}-\frac{2}{m} I_{m} I_{m}^{\prime}$ is called the orthodiagonal reflection. Finally, in the plane $m=2$, we need the rotation group Rot (45°) which rotates the axes by half a right angle and which is generated by the special case $j=1$.

The groups differ considerably in size. GL (m) is infinite and noncompact, Orth (m) is infinite but compact. The remaining four subgroups are finite: Sign (m) has order 2^{m}, Perm (m) has order m !, Refl $\left(1_{m}\right)$ has order 2, and Rot (45°) has order 8.

Straightforward verification shows that the subspaces of symmetric matrices which are invariant under these groups are the following:

$$
\operatorname{Sym}(m, \mathscr{Q})= \begin{cases}\{0\} & \text { for } \mathscr{Q}=\operatorname{GL}(m), \tag{3.2}\\ \left\{\alpha I_{m}: \alpha \in \mathbb{R}\right\} & \text { for } \mathscr{Q}=\operatorname{Orth}(m), \\ \left\{\Delta_{t}: t \in \mathbb{R}^{m}\right\} & \text { for } \mathscr{Q}=\operatorname{Sign}(m), \\ \left\{\alpha I_{m}+\beta I_{m} 1_{m}^{\prime}: \alpha, \beta \in \mathbb{R}\right\} & \text { for } \mathscr{Q}=\operatorname{Perm}(m), \\ \left\{A \in \operatorname{Sym}(m): A 1_{m}=\alpha 1_{m}, \alpha \in \mathbb{R}\right\} & \text { for } \mathscr{Q}=\operatorname{Refl}\left(I_{m}\right), \\ \left\{\alpha I_{2}: \alpha \in \mathbb{R}\right\} & \text { for } \mathscr{Q}=\operatorname{Rot}\left(45^{\circ}\right)\end{cases}
$$

In particular, $\operatorname{Sign}(m)$ is associated with the subspace of all diagonal matrices, Perm (m) with all completely symmetric matrices, that is, those of the form $\alpha I_{m}+\beta I_{m} I_{m}^{\prime}$. A matrix A is invariant relative to $\operatorname{Refl}\left(1_{m}\right)$ if and only if the unity vector l_{m} is an eigenvector of A, that is, A has constant row and column sums.

The experimental domains $\mathscr{T} \subseteq \mathbb{R}^{m}$ which are invariant under these groups have familiar geometric shapes. Orth (m) is associated with the closed balls $\mathscr{T}=$ $\left\{t \in \mathbb{R}^{m}: \sum_{j \leq m} t_{j}^{2} \leq r\right\} ;$ Perm (m) with cubes $\mathscr{T}=[0, r]^{m}$. Together, the two groups Sign (m) and Perm (m) come with symmetrized cubes $\mathscr{T}=[-r, r]^{m}$. Most often the radius $r>0$ is scaled to be equal to unity.

4 First Order Rotatability

The simplest case is that of a first order polynomial fit, sometimes called multiple linear regression. Here the quantities mentioned before specialize as follows:

$$
\begin{array}{ll}
\text { experimental conditions } & t \in \mathbb{R}^{m} \\
\text { experimental domain } & \mathscr{T} \subseteq \mathbb{R}^{m} \\
\text { regression vectors } & x=f(t)=\binom{1}{t} \in \mathbb{R}^{k}, \quad k=1+m \\
\text { regression range } & \mathscr{X}=\{f(t): t \in \mathscr{T}\} \subseteq \mathbb{R}^{k} \\
\text { transformation group } & \mathscr{Q}=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & R
\end{array}\right): R \in \operatorname{Orth}(m)\right\}
\end{array}
$$

For a first order fit the regression range lies in \mathbb{R}^{k}, with $k=1+m$. The $k \times k$ matrix Q that is induced by an $m \times m$ rotation R is abbreviated by

$$
Q_{R}=\left(\begin{array}{ll}
1 & 0 \\
0 & R
\end{array}\right) .
$$

We call a symmetric $k \times k$ matrix M (first order) rotatable when M is invariant under \mathscr{Q}. A design τ is called first order rotatable when its moment matrix $M(\tau)=\int_{\mathscr{T}} f(t) f\left(t^{\prime}\right) d \tau$ is first order rotatable.

Hence a design τ inherits its rotatability properties through its moment matrix $M(\tau)$. Our definition does not mean or imply that a rotatable design τ is invariant under the group \mathscr{Q}.

We first study which symmetric matrices are invariant, and then specialize the result to moment matrices.

Theorem 4.1. Let M be a symmetric $k \times k$ matrix. Then the following three statements are equivalent:
(i) M is first order rotatable.
(ii) M is invariant under the finitely many matrices Q_{R}, where R is any sign change matrix or the orthodiagonal reflection.
(iii) There exists scalars $\alpha, \beta \in \mathbb{R}$ such that M has the form

$$
M=\left(\begin{array}{cc}
\alpha & 0 \tag{4.1}\\
0 & \beta I_{m}
\end{array}\right)
$$

Proof: It is clear that (i) implies (ii), since (ii) involves fewer transformations than (i).

Next we show that (ii) implies (iii). To this end write M in the form

$$
M=\left(\begin{array}{ll}
\alpha & a^{\prime} \tag{4.2}\\
a & B
\end{array}\right)
$$

A congruence transformation using Q_{R} then yields

$$
Q_{R} M Q_{R}^{\prime}=\left(\begin{array}{cc}
\alpha & a^{\prime} R^{\prime} \\
R a & R B R^{\prime}
\end{array}\right)
$$

Invariance entails that $R a=a$ for $R=-I_{m}$, whence a vanishes. Letting R vary over all sign change matrices, the matrix B is seen to be diagonal. But B is also invariant under the orthodiagonal reflection and hence must be a multiple of the identity matrix, $B=\beta I_{m}$.

That (iii) implies (i) is plainly verified.

The two scalars α and β (with multiplicity m) are the $k=m+1$ eigenvalues of the matrix M in (4.1). Also the nonvanishing blocks in (4.1) correspond to the design moments of order 0 and 2 , whence it is convenient to represent invariant matrices using the two symmetric $k \times k$ matrices

$$
V_{0}=\left(\begin{array}{ll}
1 & 0 \tag{4.3}\\
0 & 0
\end{array}\right), \quad V_{2}=\frac{1}{\sqrt{m}}\left(\begin{array}{cc}
0 & 0 \\
0 & I_{m}
\end{array}\right) .
$$

It is easily verified that the pair V_{0} and V_{2} form an orthonormal system in the space $\operatorname{Sym}(k)$ of all symmetric $k \times k$ matrices, that is, $\left\langle V_{0}, V_{2}\right\rangle=$ trace $V_{0} V_{2}=0$ and $\left\langle V_{i}, V_{i}\right\rangle=$ trace $V_{i}^{2}=1$ for $i=0,2$.

Corollary 4.2. Let M be a symmetric $k \times k$ matrix. Then the following three statements are equivalent:
(i) M is first order rotatable.
(ii) There exist scalars $\alpha, \beta \in \mathbb{R}$ such that $M=\alpha V_{0}+\beta V_{2}$.
(iii) $M=\left(\operatorname{trace} M V_{0}\right) V_{0}+\left(\operatorname{trace} M V_{2}\right) V_{2}$.

Next we apply these results to moment matrices.
Let τ be a design on the experimental domain \mathscr{T}. If its moment matrix $M(\tau)$ has the form (4.1) then $\alpha=1$, and β is the second moment λ_{2} common to the components t_{j} of the experimental conditions t, that is, for all $j \leq m$ we have

$$
\begin{equation*}
\sum_{t \in \operatorname{supp} \tau} \tau(t) t_{j}^{2}=\beta=\lambda_{2} \tag{4.4}
\end{equation*}
$$

In particular, when the design τ is realizable for sample size N with experimental conditions $t_{u} \in \mathbb{R}^{m}$ for $u=1, \ldots, N$, then (4.4) may be written as

$$
\begin{equation*}
\sum_{u \leq N} t_{u j}^{2}=N \lambda_{2} \tag{4.5}
\end{equation*}
$$

In summary, it is easy to recognize rotatable moment matrices as follows.

Corollary 4.3. Let M be a symmetric $k \times k$ matrix. Then the following three statements are equivalent:
(i) M is a first order rotatable moment matrix on some experimental domain $\mathscr{T} \subseteq \mathbb{R}^{m}$.
(ii) There exists a scalar $\lambda_{2} \geq 0$ such that $M=V_{0}+\lambda_{2} \sqrt{m} V_{2}$.
(iii) M is a nonnegative definite matrix such that $M=V_{0}+\left(\operatorname{trace} M V_{2}\right) V_{2} . \quad \square$

It follows that the first order rotatable moment matrices form a shifted convex cone with tip in V_{0}, parametrized by $\lambda_{2} \geq 0$. The interior of the cone, $\lambda_{2}>0$, corresponds to those moment matrices which have a maximum rank, k.

Many authors scale the design so that the second moment λ_{2} is equal to unity. With this scaling, any first order rotatable moment matrix becomes the identity matrix, $M=V_{0}+\sqrt{m} V_{2}=I_{k}$. In our exposition we stick to an experimental domain \mathscr{T} which is fixed and given in advance. The best second moment λ_{2} then is the maximum $\lambda_{2}(\mathscr{T})$ that can be achieved among all designs τ which have zero first moments and which satisfy the symmetry condition (4.4). Corollary 4.3(ii) does not show this upper bound, in the sense that an arbitrarily large second moment λ_{2} can be achieved provided the experimental domain \mathscr{T} becomes arbitrarily large.

A design on the experimental domain \mathscr{T} that has moment matrix $V_{0}+$ $\lambda_{2}(\mathscr{T}) \sqrt{m} V_{2}$ is universally optimal in the sense of Pukelsheim (1987b). This means that any other design τ with moment matrix M may first be improved in the direction of a more balanced matrix (say) $\bar{M}=V_{0}+\left(\right.$ trace $M V_{2}$) V_{2}, followed by an improvement in the Löwner ordering towards $V_{0}+\lambda_{2}(\mathscr{T}) V_{2}$.

For various shapes of the experimental domain \mathscr{T} we may determine the maximal second moment $\lambda_{2}(\mathscr{T})$, and the first order rotatable designs τ that achieve this maximal second moment. For example, if \mathscr{T} is the ball of radius r then $\lambda_{2}(\mathscr{T})=r^{2} / m$. An identical value holds for a hypercube whose vertices are on the ball.

So far we have concentrated on moment matrices. A function which is of considerable statistical interest is the information surface which is induced by a moment matrix M. It is defined by

$$
\begin{equation*}
i_{M}(t)=\left\{\left(1, t^{\prime}\right) M^{-1}\binom{1}{t}\right\}^{-1} \quad \text { for all } \quad t \in \mathbb{R}^{m} \tag{4.6}
\end{equation*}
$$

provided M is positive definite. Such a (first order) information surface i_{M} is called rotatable when $i_{M}(R t)=i_{M}(t)$ for all $R \in \operatorname{Orth}(m)$ and $t \in \mathbb{R}^{m}$.

The study of information surfaces is aided by first discussing the quadratic form q_{M} induced by M, given by

$$
\begin{equation*}
q_{M}(t)=\left(1, t^{\prime}\right) M\binom{1}{t} \quad \text { for all } \quad t \in \mathbb{R}^{m} \tag{4.7}
\end{equation*}
$$

This quadratic form makes sense for every symmetric $k \times k$ matrix M, and does not require nonsingularity. A quadratic form q_{M} is called rotatable when $q_{M}(R t)=q_{M}(t)$ for all $R \in \operatorname{Orth}(m)$ and $t \in \mathbb{R}^{m}$.

Rotatability of a matrix M coincides with rotatability of its quadratic form q_{M} or its information surface i_{M}. For first order models this result holds for all symmetric matrices, for higher order models it is restricted to moment matrices, only. Therefore the following argument does not carry over to second order models, compare Section 7.

Theorem 4.4. A symmetric $k \times k$ matrix M is first order rotatable if and only if its induced quadratic form q_{M} from (4.7) is rotatable. A nonsingular symmetric $k \times k$ matrix M is first order rotatable if and only if the information surface i_{M} from (4.6) is rotatable.

Proof: A rotatable moment matrix as in (4.1) has quadratic form $q_{M}(t)=$ $\alpha+\beta t^{\prime} t$ which clearly is rotatable.

Conversely, write M in the partitioned form (4.2). Its quadratic form is $q_{M}(t)=\alpha+2 t^{\prime} a+t^{\prime} B t$. Fix $R \in \operatorname{Orth}(m)$ and $t \in \mathbb{R}^{m}$. Then $q_{M}(\mu R t)$ and $q_{M}(\mu t)$ form two polynomials in $\mu \in \mathbb{R}$ which, by the invariance assumption, are identical. Equating coefficients we obtain

$$
t^{\prime} R^{\prime} a=t^{\prime} a \quad \text { and } t^{\prime} R^{\prime} B R t=t^{\prime} B t \text { for all } R \in \operatorname{Orth}(m) \text { and } t \in \mathbb{R}^{m}
$$

As in the proof of Theorem 4.1 it follows that I. $a=0$ and II. $B=\beta I_{m}$ for some scalar β. Hence M has the form (4.1).

Now we assume M to be nonsingular and rotatable. Then

$$
M^{-1}=\left(\begin{array}{ll}
\frac{1}{\alpha} & 0 \\
0 & \frac{1}{\beta} I_{m}
\end{array}\right)
$$

is rotatable. Hence $1 / i_{M}=q_{M^{-1}}$, and the information surface i_{M} is rotatable. Conversely, if i_{M} is rotatable then so is $q_{M^{-1}}$. Therefore the matrix M^{-1} is rotatable, and then M must be rotatable as well.

In summary, the notion of first order rotatability of designs τ is the same whether it pertains their moment matrices $M(\tau)$, the quadratic forms $q_{M(\tau)}$, or the information surfaces $i_{M(\tau)}$.

We now turn to the corresponding results for second order rotatability. First we review some convenient tools from matrix algebra.

5 Kronecker Products and Vectorization of Matrices

We arrange the second order terms as a Kronecker square,

$$
\begin{equation*}
t \otimes t=\left(t_{1}^{2}, t_{1} t_{2}, t_{1} t_{3}, \ldots, t_{1} t_{m} ; t_{2} t_{1}, t_{2}^{2}, t_{2} t_{3}, \ldots, t_{2} t_{m} ; \ldots, t_{m}^{2}\right)^{\prime} \tag{5.1}
\end{equation*}
$$

Thus the mixed second order terms $t_{i} t_{j}$, for $i \neq j$, are represented twice, as $t_{i} t_{j}$ and $t_{j} t_{i}$. This representation is redundant. But the powerful properties of the Kronecker product make it vastly superior to any other representation, for our manipulations.

The Kronecker* product of two matrices $A \in \mathbb{R}^{k \times p}$ and $B \in \mathbb{R}^{m \times q}$ is

$$
A \otimes B=\left(\begin{array}{ccc}
a_{11} B & \ldots & a_{1 p} B \tag{5.2}\\
\vdots & & \\
a_{k 1} B & \ldots & a_{k p} B
\end{array}\right) \in \mathbb{R}^{k m \times p q} .
$$

For vectors $s \in \mathbb{R}^{k}$ and $t \in \mathbb{R}^{m}$ this simplifies to

$$
s \otimes t=\left[\begin{array}{c}
s_{1} t \tag{5.3}\\
\vdots \\
s_{k} t
\end{array}\right] \in \mathbb{R}^{k m}
$$

The most important property of the Kronecker product is that it conforms with matrix multiplication by way of

$$
\begin{equation*}
(A \otimes B)(s \otimes t)=(A s) \otimes(B t) \tag{5.4}
\end{equation*}
$$

provided the dimensions match appropriately. It is a consequence of (5.4) that the transpose (inverse, generalized inverse, Moore-Penrose inverse) of a Kronecker product is equal to the Kronecker products of the transposes (inverses, generalized inverses, Moore-Penrose inverses).

The same cross products $s_{i} t_{j}$ which appear in $s \otimes t$ also appear, in a different arrangement, in the rank-one matrix $s t^{\prime}$. For an easy transition between the two arrangements we define the vectorization operator

$$
\begin{equation*}
\operatorname{vec}\left(s t^{\prime}\right)=s \otimes t \tag{5.5}
\end{equation*}
$$

[^1]In other words, the matrix $s t^{\prime}$ is converted into a column vector by writing one row after the other, followed by a transposition. This procedure extends to the vectorization of any matrix, according to

$$
\begin{equation*}
\operatorname{vec} A=(\text { first row of } A ; \text { second row of } A ; \ldots ; \text { last row of } A)^{\prime} \tag{5.6}
\end{equation*}
$$

This is a vector representing the entries of the matrix A in lexicographic order; see Pukelsheim (1977), or the alternative treatment in Searle (1982, p. 332) who defines vec A to be the column vector obtained from stacking the columns of A one under the other. The vectorization operator also preserves the inner products between vectors and between matrices,

$$
\begin{equation*}
(\operatorname{vec} A)^{\prime}(\operatorname{vec} B)=\operatorname{trace} A^{\prime} B \quad \text { for all } \quad A, B \in \mathbb{R}^{k \times m} \tag{5.7}
\end{equation*}
$$

Vectorization, matrix products and Kronecker products go together in the formula

$$
\begin{equation*}
\operatorname{vec}(A B C)=\left(A \otimes C^{\prime}\right)(\operatorname{vec} B) \tag{5.8}
\end{equation*}
$$

provided dimensions match appropriately.
All these properties are proved best by first establishing them for Euclidean unit vectors e_{i} with $i^{\text {th }}$ entry unity and zeros elsewhere, and Euclidean unit matrices

$$
E_{i j}=e_{i} e_{j}^{\prime}
$$

with $(i, j)^{\text {th }}$ entry unity and zeros elsewhere. As a prototype proof we derive (5.8):

$$
\begin{aligned}
\operatorname{vec}\left(A E_{i j} C\right) & =\left(A e_{i}\right) \otimes\left(C^{\prime} e_{j}\right) & \text { by }(5.5) \\
& =\left(A \otimes C^{\prime}\right)\left(e_{i} \otimes e_{j}\right) & \text { by }(5.4) \\
& =\left(A \otimes C^{\prime}\right)\left(\operatorname{vec} E_{i j}\right) & \text { by }(5.5)
\end{aligned}
$$

For an arbitrary matrix $B=\sum \sum b_{i j} E_{i j}$ this immediately extends to formula (5.8), by linearity; compare BenIsrael and Greville (1974, p. 42).

In second order moment matrices, the submatrix corresponding to fourth moments is conveniently displayed using the three matrices

$$
\begin{array}{ll}
I_{m} \otimes I_{m} & =\sum \sum E_{i i} \otimes E_{j j}, \\
I_{m, m} & =\sum \sum E_{i j} \otimes E_{j i}, \\
\left(\operatorname{vec} I_{m}\right)\left(\operatorname{vec} I_{m}\right)^{\prime} & =\sum \sum E_{i j} \otimes E_{i j} . \tag{5.11}
\end{array}
$$

The matrix $I_{m, m}$ in (5.10) is called the vec permutation matrix, for the reason that

$$
\begin{aligned}
I_{m, m}\left(\operatorname{vec} E_{k l}\right) & =\sum_{i} \sum_{j}\left\{\left(e_{i} \otimes e_{j}\right)\left(e_{j} \otimes e_{i}\right)\right\}\left(e_{k} \otimes e_{l}\right) & & \text { by }(5.10) \text { and }(5.5) \\
& =e_{l} \otimes e_{k} & & \text { by (5.4) } \\
& =\operatorname{vec} E_{l k} & & \text { by (5.5) }
\end{aligned}
$$

Linearity extends this to $I_{m, m}(\operatorname{vec} A)=\operatorname{vec} A^{\prime}$ for all square matrices $A \in \mathbb{R}^{m \times m}$; see Henderson and Searle (1981, p. 279).

It is convenient to define the $m^{2} \times m^{2}$ matrix

$$
\begin{equation*}
F_{m}=\left(I_{m} \otimes I_{m}\right)+I_{m, m}+\left(\operatorname{vec} I_{m}\right)\left(\operatorname{vec} I_{m}\right)^{\prime} \tag{5.12}
\end{equation*}
$$

The matrix F_{m} will reflect the fourth moment structure in case of rotatability. It is nonnegative definite, as follows from

$$
\begin{align*}
(\operatorname{vec} A)^{\prime} F_{m}(\operatorname{vec} A) & =\operatorname{trace}\left(A^{\prime} A\right)+\operatorname{trace}\left(A^{2}\right)+(\operatorname{trace} A)^{2} \\
& =\frac{1}{2} \operatorname{trace}\left(A^{\prime}+A\right)^{\prime}\left(A^{\prime}+A\right)+(\operatorname{trace} A)^{2} \tag{5.13}\\
& \geq 0
\end{align*}
$$

for all square matrices $A \in \mathbb{R}^{m \times m}$. In (5.13) equality holds if and only if $A^{\prime}=-A$, whence F_{m} has rank $m(m+1) / 2$.

With these tools we now turn to models for fitting a second order response surface.

6 Second Order Rotatability of Moment Matrices

We first list the pertinent quantities for an m-way second order polynomial fit model:
experimental conditions $t \in \mathbb{R}^{m}$
experimental domain $\quad \mathscr{T} \subseteq \mathbb{R}^{m}$
regression vectors $\quad x=f(t)=\left[\begin{array}{c}1 \\ t \\ t \otimes t\end{array}\right) \in \mathbb{R}^{k}, \quad k=1+m+m^{2}$
regression range
$\mathscr{X}=\{f(t): t \in \mathscr{T}\} \subseteq \mathbb{R}^{k}$
transformation group $\quad \mathscr{Q}=\left\{\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & R & 0 \\ 0 & 0 & R \otimes R\end{array}\right]: R \in \operatorname{Orth}(m)\right\}$.
Here the regression range lies in \mathbb{R}^{k}, with $k=1+m+m^{2}$. For brevity we write

$$
Q_{R}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & R & 0 \\
0 & 0 & R \otimes R
\end{array}\right)
$$

for the transformation of the regression range which is induced by the rotation R of the experimental domain.

A symmetric $k \times k$ matrix M is called (second order) rotatable when M is invariant under \mathscr{Q}. A design τ on \mathscr{T} is called second order rotatable when its moment matrix $M(\tau)=\int_{\mathscr{F}} f(t) f(t)^{\prime} d \tau$ is second order rotatable.

Again we first tackle the purely matrix oriented problem of characterizing second order rotatable matrices.

Theorem 6.1. Let M be a symmetric $k \times k$ matrix. Then the following three statements are equivalent:
(i) M is second order rotatable.
(ii) M is invariant under the finitely many matrices Q_{R} where R is any sign change matrix, any permutation matrix, or the orthodiagonal reflection (which, for $m=2$, is replaced by the 45° rotation).
(iii) There exist scalars $\alpha, \beta, \gamma, \delta_{1}, \delta_{2}, \delta_{3} \in \mathbb{R}$ such that M has the form

$$
M=\left(\begin{array}{ccc}
\alpha & 0 & \gamma \operatorname{vec}^{\prime} I_{m} \tag{6.1}\\
0 & \beta I_{m} & 0 \\
\gamma \operatorname{vec} I_{m} & 0 & F\left(\delta_{1}, \delta_{2}, \delta_{3}\right)
\end{array}\right)
$$

where $F\left(\delta_{1}, \delta_{2}, \delta_{3}\right)=\delta_{1}\left(I_{m} \otimes I_{m}\right)+\delta_{2} I_{m, m}+\delta_{3}\left(\operatorname{vec} I_{m}\right)\left(\text { vec } I_{m}\right)^{\prime}$.

Proof: Part (i) implies (ii), since (ii) comprises fewer transformations than (i). Part (iii) implies part (i), since by (5.8) and (5.4) we have

$$
\begin{aligned}
& (R \otimes R)\left(\operatorname{vec} I_{m}\right)=\operatorname{vec}\left(R R^{\prime}\right)=\operatorname{vec} I_{m}, \\
& (R \otimes R)\left(I_{m} \otimes I_{m}\right)\left(R^{\prime} \otimes R^{\prime}\right)=\left(R R^{\prime}\right) \otimes\left(R R^{\prime}\right)=I_{m} \otimes I_{m}, \\
& (R \otimes R) I_{m, m}\left(R^{\prime} \otimes R^{\prime}\right)=I_{m, m} .
\end{aligned}
$$

The latter property, invariance of the vec permutation matrix $I_{m, m}$, is seen best by postmultiplying by vec A with an arbitrary square matrix $A \in \mathbb{R}^{m \times m}$, to obtain

$$
\begin{aligned}
(R \otimes R) I_{m, m}\left(R^{\prime} \otimes R^{\prime}\right)(\operatorname{vec} A) & =(R \otimes R) I_{m, m}\left(\operatorname{vec} R^{\prime} A R\right) \\
& =(R \otimes R) \operatorname{vec}\left(R^{\prime} A^{\prime} R\right) \\
& =\operatorname{vec}\left(R R^{\prime} A^{\prime} R R^{\prime}\right) \\
& =\operatorname{vec} A^{\prime} \\
& =I_{m, m}(\operatorname{vec} A)
\end{aligned}
$$

Hence $F\left(\delta_{1}, \delta_{2}, \delta_{3}\right)$ is invariant under $R \otimes R$, and M is invariant under Q_{R}.
It remains to show that part (ii) implies part (iii). To this end write M in the partioned form

$$
M=\left(\begin{array}{lll}
\alpha & a^{\prime} & b^{\prime} \tag{6.2}\\
a & B & C^{\prime} \\
b & C & D
\end{array}\right)
$$

A transformation by Q_{R} transforms M into

$$
Q_{R} M Q_{R}^{\prime}=\left[\begin{array}{ccc}
a & a^{\prime} R^{\prime} & b^{\prime}\left(R^{\prime} \otimes R^{\prime}\right) \tag{6.3}\\
R a & R B R^{\prime} & R C^{\prime}\left(R^{\prime} \otimes R^{\prime}\right) \\
(R \otimes R) b & (R \otimes R) C R^{\prime} & (R \otimes R) D\left(R^{\prime} \otimes R^{\prime}\right)
\end{array}\right]
$$

I. If, in the invariance relation $R a=a$, we insert the reflection $R=-I_{m}$, then $a=0$.
II. The invariance property $R B R^{\prime}=B$, for all sign changes and the orthodiagonal reflection, entails $B=\beta I_{m}$ for some scalar β, by (4.2).
III. The vector b has m^{2} entries and hence may be written as $b=\operatorname{vec} A$ for some square matrix $A \in \mathbb{R}^{m \times m}$. The invariance property $(R \otimes R) b=b$ thus turns into $\operatorname{vec}\left(R A R^{\prime}\right)=\operatorname{vec} A$. Varying R over all sign changes and the orthodiagonal reflection, we see that $A=\gamma I_{m}$ for some scalar γ, again by (4.2). Hence $b=\gamma \mathrm{vec} I_{m}$.
IV. If in the invariance relation $(R \otimes R) C R^{\prime}=C$ we insert the reflection $R=-I_{m}$, then we obtain $-C=C$, that is, $C=0$.
V. It remains to exploit the invariance property

$$
D=(R \otimes R) D\left(R^{\prime} \otimes R^{\prime}\right)
$$

for the transformations R mentioned in part (ii). In terms of its entries

$$
\begin{equation*}
d_{i j, k l}=\left(e_{i} \otimes e_{j}\right)^{\prime} D\left(e_{k} \otimes e_{l}\right) \tag{6.4}
\end{equation*}
$$

the matrix D takes the form

$$
\begin{align*}
D & =\sum_{i, j, k, l}\left(e_{i} \otimes e_{j}\right)\left(e_{i} \otimes e_{j}\right)^{\prime} D\left(e_{k} \otimes e_{l}\right)\left(e_{k} \otimes e_{l}\right)^{\prime} \tag{6.5}\\
& =\sum_{i, j, k, l} d_{i j, k l} E_{i k} \otimes E_{j l}
\end{align*}
$$

Va. First we consider the sign changes $R=\Delta_{\varepsilon}$ with $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{m}\right)^{\prime}$. This yields

$$
\begin{align*}
d_{i j, k l} & =\left(e_{i} \otimes e_{j}\right)^{\prime} D\left(e_{k} \otimes e_{l}\right) \\
& =\left(e_{i} \otimes e_{j}\right)^{\prime}(R \otimes R) D\left(R^{\prime} \otimes R^{\prime}\right)\left(e_{k} \otimes e_{l}\right)=\varepsilon_{i} \varepsilon_{j} \varepsilon_{k} \varepsilon_{l} d_{i j, k l} \tag{6.6}
\end{align*}
$$

Inserting $\varepsilon_{i}= \pm 1$ etc. we see that $d_{i j, k l}$ vanishes provided we have four distinct subscripts, or three distinct subscripts, or two distinct subscripts of which one has multiplicity 1 and the other one has multiplicity 3 . Because of $\varepsilon_{i}^{2} \varepsilon_{j}^{2}=\varepsilon_{i}^{4}=1$ no reduction occurs for two distinct pairs of subscripts nor for a single subscript of multiplicity 4. This reduces the subscript ranges in (6.5) to $i=k \neq j=l$, $i=l \neq j=k, i=j \neq k=l$, and $i=j=k=l$,

$$
\begin{equation*}
D=\sum_{i \neq j}\left\{d_{i j, i j} E_{i i} \otimes E_{j j}+d_{i j, j i} E_{i j} \otimes E_{j i}+d_{i i, j j} E_{i j} \otimes E_{i j}\right\}+\sum_{i} d_{i i, i i} E_{i i} \otimes E_{i i}, \tag{6.7}
\end{equation*}
$$

and leaves $3 m(m-1)+m=3 m^{2}-2 m$ coefficients to be determined.
Vb. Now we let R run through the permutation group Perm (m). With $R=\sum e_{j} e_{\pi(j)}^{\prime}$ for some permutation π we have $R^{\prime} e_{i}=e_{\pi(i)}$, and thus obtain

$$
\begin{equation*}
d_{i j, k l}=\left(e_{i} \otimes e_{j}\right)^{\prime}(R \otimes R) D\left(R^{\prime} \otimes R^{\prime}\right)\left(e_{k} \otimes e_{l}\right)=d_{\pi(i) \pi(j), \pi(k) \pi(l)} \tag{6.8}
\end{equation*}
$$

For the subscript ranges of the four terms in (6.7) this entails

$$
\begin{array}{lll}
d_{i j, i j}=\text { const }=\delta_{1}, & \text { say }, & \text { for all } i \neq j, \\
d_{i j, j i}=\text { const }=\delta_{2}, & \text { say }, & \text { for all } i \neq j, \tag{6.9}\\
d_{i i, j j}=\text { const }=\delta_{3}, & \text { say }, & \text { for all } i \neq j, \\
d_{i i, i i}=\text { const }=\delta_{4}, & \text { say }, & \text { for all } i .
\end{array}
$$

This reduces representation (6.7) of the matrix D to

$$
\begin{equation*}
D=\sum_{i \neq j}\left\{\delta_{1} E_{i i} \otimes E_{j j}+\delta_{2} E_{i j} \otimes E_{j i}+\delta_{3} E_{i j} \otimes E_{i j}\right\}+\delta_{4} \sum_{i} E_{i i} \otimes E_{i i} \tag{6.10}
\end{equation*}
$$

which leaves us with 4 coefficients.
Vc. For our final argument we concentrate on the top left element $d_{11,11}$. From

$$
\begin{equation*}
\left(e_{1} \otimes e_{1}\right)^{\prime}(R \otimes R)\left(E_{i k} \otimes E_{j l}\right)\left(R^{\prime} \otimes R^{\prime}\right)\left(e_{1} \otimes e_{1}\right)=r_{1 i} r_{1 j} r_{1 k} r_{1 l} \tag{6.11}
\end{equation*}
$$

and (6.10) we get

$$
\begin{equation*}
d_{11,11}=\left(\delta_{1}+\delta_{2}+\delta_{3}\right) \sum_{i \neq j} r_{1 i}^{2} r_{1 j}^{2}+\delta_{4} \sum_{i} r_{1 i}^{4} \tag{6.12}
\end{equation*}
$$

The choice $R=I_{m}$ yields $d_{11,11}=\delta_{4}$. For $m>2$ another choice is the orthodiagonal reflection $R=I_{m}-\frac{2}{m} I_{m} I_{m}^{\prime}$. Comparing the resulting value for $d_{11,11}$ with δ_{4} we obtain

$$
\begin{equation*}
0=8(m-1)(m-2)\left(\delta_{1}+\delta_{2}+\delta_{3}-\delta_{4}\right) / m^{3} \tag{6.13}
\end{equation*}
$$

Because $m>2$ it follows that $\delta_{4}=\delta_{1}+\delta_{2}+\delta_{3}$. Now (6.10) turns into $D=$ $F\left(\delta_{1}, \delta_{2}, \delta_{3}\right)$, and M takes the form claimed in (6.1). This completes the proof when the experimental conditions have $m>2$ components.
Vd. If $m=2$ we use the 45° rotation $R=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right)$. The top left hand entry $d_{11,11}$ equals δ_{4} before the transformation, and $\left(\delta_{1}+\delta_{2}+\delta_{3}+\delta_{4}\right) / 2$ after the transformation. This again yields $\delta_{4}=\delta_{1}+\delta_{2}+\delta_{3}$.

The representation from Theorem 6.1(iii) takes a special form in case of moment matrices.

Theorem 6.2. Let M be a symmetric $k \times k$ matrix. Then M is a second order rotatable moment matrix on some experimental domain $\mathscr{T} \subseteq \mathbb{R}^{m}$ if and only if there exist scalars $\lambda_{2} \geq 0$ and $\lambda_{4} \geq \frac{m}{m+2} \lambda_{2}^{2}$ such that, with F_{m} from (5.12), M takes the form

$$
M=\left(\begin{array}{ccc}
1 & 0 & \lambda_{2} \operatorname{vec}^{\prime} I_{m} \tag{6.14}\\
0 & \lambda_{2} I_{m} & 0 \\
\lambda_{2} \operatorname{vec} I_{m} & 0 & \lambda_{4} F_{m}
\end{array}\right)
$$

Proof: For the direct part assume M to be a rotatable matrix as well as the moment matrix of a design τ, say. Then, in (6.1), we must have $\gamma=\beta=\lambda_{2}$, as given by (4.4). Similarly, the coefficients for the right bottom block satisfy, for $i \neq j$,

$$
\begin{equation*}
\delta_{1}=d_{i j, i j}=\left(e_{i} \otimes e_{j}\right) \mathrm{E}_{\tau}\left[(t \otimes t)(t \otimes t)^{\prime}\right]\left(e_{i} \otimes e_{j}\right)=\int_{\mathscr{T}} t_{i}^{2} t_{j}^{2} d \tau=\lambda_{4}, \tag{6.15}
\end{equation*}
$$

and $\delta_{2}=\delta_{3}=\lambda_{4}$ as well.
Nonnegative definiteness of the variance-covariance matrix of $t \otimes t$ under the design τ yields

$$
\begin{align*}
V_{\tau}[t \otimes t] & =\mathrm{E}_{\tau}\left[(t \otimes t)(t \otimes t)^{\prime}\right]-\mathrm{E}_{\tau}[t \otimes t] \mathrm{E}_{\tau}[t \otimes t]^{\prime} \\
& =\lambda_{4} F_{m}-\lambda_{2}^{2}\left(\operatorname{vec} I_{m}\right)\left(\operatorname{vec} I_{m}\right)^{\prime} \tag{6.16}
\end{align*}
$$

Hence the variance of $t^{\prime} t=\left(\operatorname{vec} I_{m}\right)^{\prime}(t \otimes t)$ becomes

$$
\begin{align*}
\operatorname{var}_{\leftarrow}\left[t^{\prime} t\right] & =\lambda_{4}\left(\operatorname{vec} I_{m}\right)^{\prime} F_{m}\left(\operatorname{vec} I_{m}\right)-\lambda_{2}^{2}\left(\operatorname{vec} I_{m}\right)^{\prime}\left(\operatorname{vec} I_{m}\right)\left(\operatorname{vec} I_{m}\right)^{\prime}\left(\operatorname{vec} I_{m}\right) \\
& =\lambda_{4}\left(m+m+m^{2}\right)-\lambda_{2}^{2} m^{2} \\
& =m\left\{(m+2) \lambda_{4}-m \lambda_{2}^{2}\right\} \tag{6.17}
\end{align*}
$$

It follows that $\lambda_{4} \geq \frac{m}{m+2} \lambda_{2}^{2}$, and the lower bound is attainable, for example, for the point arrangements mentioned in Box and Draper (1987, p. 489).

Conversely, let $\lambda_{2} \geq 0$ and $\lambda_{4} \geq \frac{m}{m+2} \lambda_{2}^{2}$ be given. Clearly the matrix M in (6.14) is rotatable. We need to find a design τ which has M for its moment matrix. To this end we define

$$
\begin{equation*}
\alpha=\frac{m}{m+2} \frac{\lambda_{2}^{2}}{\lambda_{4}} \in[0,1], \tag{6.18}
\end{equation*}
$$

and choose τ to be the probability measure assigning mass $1-\alpha$ to the origin and distributing the remaining mass α uniformly over the sphere of radius

$$
\begin{equation*}
r=\sqrt{(m+2) \frac{\lambda_{4}}{\lambda_{2}}} \tag{6.19}
\end{equation*}
$$

Clearly the probability measure τ is invariant under all rotations, whence its moment matrix $M(\tau)$ is rotatable. Furthermore, the moments $\lambda_{2}(\tau)$ and $\lambda_{4}(\tau)$ of τ satisfy

$$
\begin{aligned}
m \lambda_{2}(\tau) & =\sum_{i=1}^{m} \int t_{i}^{2} d \tau=\int t^{\prime} t d \tau=\alpha r^{2}=m \lambda_{2} \\
(m-1) \lambda_{4}(\tau) & =\sum_{i>1} \int t_{i}^{2} t_{1}^{2} d \tau=\int t^{\prime} t t_{1}^{2} d \tau-\int t_{1}^{4} d \tau=r^{2} \lambda_{2}(\tau)-3 \lambda_{4}(\tau) \\
& =(m+2) \lambda_{4}-3 \lambda_{4}(\tau)
\end{aligned}
$$

It follows that $\lambda_{2}(\tau)=\lambda_{2}$ and $\lambda_{4}(\tau)=\lambda_{4}$. Hence $M(\tau)=M$, and the proof is complete.

Another convenient representation uses the following matrices corresponding to the design moments of orders $0,2,4$, respectively:

$$
\begin{align*}
& V_{0}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \tag{6.20}\\
& V_{2}=\frac{1}{\sqrt{3 m}}\left[\begin{array}{ccc}
0 & 0 & \operatorname{vec}^{\prime} I_{m} \\
0 & I_{m} & 0 \\
\operatorname{vec} I_{m} & 0 & 0
\end{array}\right], \tag{6.21}
\end{align*}
$$

$$
V_{4}=\frac{1}{\sqrt{3 m(m+2)}}\left(\begin{array}{ccc}
0 & 0 & 0 \tag{6.22}\\
0 & 0 & 0 \\
0 & 0 & F_{m}
\end{array}\right)
$$

It is easy to check that the matrices V_{0}, V_{2}, V_{4} form an orthonormal system in the space $\operatorname{Sym}(k)$ with inner product $\left\langle V_{i}, V_{j}\right\rangle=$ trace $V_{i} V_{j}$.

Corollary 6.3. For a moment matrix $M=\sum_{t \in \operatorname{supp} \tau} \tau(t) f(t) f(t)^{\prime}$ with $r^{2}=\max \left\{t^{\prime} t: t \in \operatorname{supp} \tau\right\}$, the following three statements are equivalent:
(i) M is second order rotatable.
(ii) There exist scalars $\lambda_{2} \geq 0, \lambda_{4} \in\left[\frac{m}{m+2} \lambda_{2}^{2}, \frac{r^{2}}{m+2} \lambda_{2}\right]$ such that

$$
M=V_{0}+\lambda_{2} \sqrt{3 m} V_{2}+\lambda_{4} \sqrt{3 m(m+2)} V_{4}
$$

(iii) $M=V_{0}+\left(\operatorname{trace} M V_{2}\right) V_{2}+\left(\operatorname{trace} M V_{4}\right) V_{4}$.

Proof: It only remains to establish the upper bound on λ_{4}. But, assuming that (i) holds, we obtain

$$
(m-1) \lambda_{4}=\sum_{i>1} \int t_{i}^{2} t_{1}^{2} d \tau=\int t^{\prime} t t_{1}^{2} d \tau-\int t_{1}^{4} d \tau \leq r^{2} \lambda_{2}-3 \lambda_{4}
$$

The second order rotatable moment matrix M in (6.14) has eigenvalues λ_{2} with multiplicity m, and $2 \lambda_{4}$ with multiplicity $\frac{1}{2} m(m+1)-1$. The associated projection matrices are, respectively,

$$
P_{2}=\left(\begin{array}{ccc}
0 & 0 & 0 \tag{6.23}\\
0 & I_{m} & 0 \\
0 & 0 & 0
\end{array}\right), \quad P_{4}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & G_{m}
\end{array}\right)
$$

where $G_{m}=\frac{1}{2}\left(I_{m} \otimes I_{m}+I_{m, m}\right)-\frac{1}{m}\left(\operatorname{vec} I_{m}\right)\left(\operatorname{vec} I_{m}\right)^{\prime}$. This accounts for all but two of the $\frac{1}{2}(m+1)(m+2)$ degrees of freedom. In order to investigate the remaining two eigenvalues we observe that

$$
\begin{equation*}
M=S T S^{\prime}+\lambda_{2} P_{2}+2 \lambda_{4} P_{4} \tag{6.24}
\end{equation*}
$$

where

$$
S=\left(\begin{array}{cc}
\mathrm{I} & 0 \tag{6.25}\\
0 & 0 \\
0 & \operatorname{vec} I_{m}
\end{array}\right), \quad T=\left[\begin{array}{cc}
1 & \lambda_{2} \\
\lambda_{2} & \frac{m+2}{m} \lambda_{4}
\end{array}\right) .
$$

The nonvanishing eigenvalues of $S T S^{\prime}$ are the same as those of the 2×2 matrix $S^{\prime} S T$, and the latter has determinant

$$
\begin{equation*}
\operatorname{det}\left(S^{\prime} S T\right)=(m+2) \lambda_{4}-m \lambda_{2}^{2}=d, \quad \text { say } . \tag{6.26}
\end{equation*}
$$

Hence the rank of M can attain only three values,

$$
\operatorname{rank} M= \begin{cases}1 & \text { for } \quad \lambda_{4}=\lambda_{2}=0 ; \tag{6.27}\\ \frac{1}{2}(m+1)(m+2)-1 & \text { for } \quad \lambda_{4}=\frac{m}{m+2} \lambda_{2}^{2}>0 ; \\ \frac{1}{2}(m+1)(m+2) & \text { for } \quad \lambda_{4}>\frac{m}{m+2} \lambda_{2}^{2}>0\end{cases}
$$

When $\lambda_{4}>\frac{m}{m+2} \lambda_{2}^{2}>0$ the rank of M is maximal. From (6.24), the MoorePenrose inverse of M then is

$$
\begin{equation*}
M^{+}=S\left(S^{\prime} S\right)^{-1} T^{-1}\left(S^{\prime} S\right)^{-1} S^{\prime}+\frac{1}{\lambda_{2}} P_{2}+\frac{1}{2 \lambda_{4}} P_{4} . \tag{6.28}
\end{equation*}
$$

With d given by (6.26), M^{+}thus has form (6.1) with

$$
\begin{align*}
& \alpha=\frac{(m+2) \lambda_{4}}{d} ; \\
& \beta=\frac{1}{\lambda_{2}} ; \\
& \gamma=-\frac{\lambda_{2}}{d} ; \tag{6.29}\\
& \delta_{1}=\frac{1}{4 \lambda_{4}}=\delta_{2} ; \\
& \delta_{3}=\frac{1}{m d}-\frac{1}{2 m \lambda_{4}} .
\end{align*}
$$

The results of the present section also provide the foundation for the measures of rotatability discussed in Draper and Pukelsheim (1990). Given an arbitrary moment matrix M its rotatable part, \bar{M} say, is the projection of M onto the subspace of rotatable matrices, namely

$$
\begin{equation*}
\bar{M}=V_{0}+\left(\operatorname{trace} M V_{2}\right) V_{2}+\left(\operatorname{trace} M V_{4}\right) V_{4} . \tag{6.30}
\end{equation*}
$$

Hence the rotatable part \bar{M} can be interpreted as the fitted value obtained by regressing M on V_{0}, V_{2}, and V_{4}. Measures of rotatability that suggest themselves in this context are the squared distance

$$
\begin{equation*}
\delta^{2}=\|M-\bar{M}\|^{2}=\operatorname{trace}(M-\bar{M})^{2}, \tag{6.31}
\end{equation*}
$$

or the R^{2}-type statistic

$$
\begin{equation*}
Q^{*}=\frac{\left\|\bar{M}-V_{0}\right\|^{2}}{\left\|M-V_{0}\right\|^{2}} . \tag{6.32}
\end{equation*}
$$

Hence, for rotatability the following statements are equivalent:
(i) M is second order rotatable,
(ii) $M=\bar{M}$,
(iii) $\delta^{2}=0$,
(iv) $Q^{*}=1$.

For the practical uses to which Q^{*} may be applied, see Draper and Pukelsheim (1990).

Alternatively the rotatable part \bar{M} is obtained by averaging $Q_{R} M Q_{R}^{\prime}$ over all rotations R,

$$
\begin{equation*}
\bar{M}=\int_{\operatorname{Orth}(m)} Q_{R} M Q_{R}^{\prime} d R, \tag{6.33}
\end{equation*}
$$

where $d R$ is Haar probability measure on the orthogonal group Orth (m). This fits into the majorization orderings of experimental designs discussed by Giovagnoli and Wynn (1981; 1985 a, b), Bondar (1983), Giovagnoli, Pukelsheim and Wynn (1987), and Pukelsheim (1987a, b, c). From this point of view, if A is a matrix in the set

$$
\begin{equation*}
\operatorname{conv}\left\{Q_{R} M Q_{R}^{\prime}: R \in \operatorname{Orth}(m)\right\}, \tag{6.34}
\end{equation*}
$$

- the convex hull of the orbit of M under rotations - then A is called more rotatable than M. The rotatable part \bar{M} is the barycenter of the set (6.34).

So far we have concentrated on second order moment matrices. Next we turn to their associated information surfaces.

7 Second Order Rotatability of Information Surfaces

Due to our choice of second order representation which involves $t \otimes t$, all our second order moment matrices are singular. Hence before we define information surfaces, we prove a result which allows us to replace regular inverses by generalized inverses.

Lemma 7.1. Let M be a moment matrix of rank $\frac{1}{2}(m+1)(m+2)$. Then the information surface

$$
i_{M}(t)=\left\{\left(1, t^{\prime}, t^{\prime} \otimes t^{\prime}\right) M^{-}\left[\begin{array}{c}
1 \tag{7.1}\\
t \\
t \otimes t
\end{array}\right]\right\}^{-1} \quad, \quad t \in \mathbb{R}^{m}
$$

is well defined, that is, the expression in braces is invariant to the choice of generalized inverse M^{-}of M, and is positive.

Proof: The idempotent and symmetric matrix

$$
P_{m}=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{7.2}\\
0 & I_{m} & 0 \\
0 & 0 & \frac{1}{2}\left(I_{m} \otimes I_{m}+I_{m, m}\right)
\end{array}\right),
$$

say, is the orthogonal projector onto its range (column space) $\mathscr{L} \subseteq \mathbb{R}^{k}$, say. The dimension of \mathscr{L} is rank $P_{m}=\operatorname{trace} P_{m}=\frac{1}{2}(m+1)(m+2)$. For every vector $t \in \mathbb{R}^{m}$ we have $P_{m} f(t)=f(t)$, as is seen by straightforward verification.

As a consequence, every moment matrix M has a range that is a subspace of \mathscr{L}. Our assumption that rank $M=\frac{1}{2}(m+1)(m+2)$ makes the range of M is equal to \mathscr{L}, entailing

$$
\begin{equation*}
M M^{+}=P_{m} \tag{7.3}
\end{equation*}
$$

Hence given $t \in \mathbb{R}^{m}$, we define $a=M^{+} f(t)$. Then we have $M a=M M^{+} f(t)=$ $P_{m} f(t)=f(t)$, and therefore $f(t)^{\prime} M^{-} f(t)=a^{\prime} M M^{-} M a=a^{\prime} M a$, independently of the specific choice of M^{-}.

Furthermore the quantity $f(t)^{\prime} M^{-} f(t)$ is positive, since otherwise $a^{\prime} M a=0$ leads to the contradiction

$$
0=M a=f(t) \neq 0
$$

We call (7.1) the information surface of M and say that it is rotatable when $i_{M}(R t)=i_{M}(t)$ for all $R \in \operatorname{Orth}(m)$ and $t \in \mathbb{R}^{m}$. Rotatability of the information surface is implied by rotatability of moment matrices, as follows.

Theorem 7.2. Let M be a second order rotatable moment matrix (6.14), with $\lambda_{2}>0$ and $\lambda_{4}>\frac{m}{m+2} \lambda_{2}^{2}$. Then the information surface i_{M} is rotatable. More precisely, with d from (6.26) the information surface is, for $t \in \mathbb{R}^{m}$,

$$
\begin{equation*}
i_{M}(t)=d /\left\{(m+2) \lambda_{4}+(m+2)\left(\frac{\lambda_{4}}{\lambda_{2}}-\lambda_{2}\right) t^{\prime} t+\frac{1}{2}\left[m+1-(m-1) \frac{\lambda_{2}^{2}}{\lambda_{4}}\right]\left(t^{\prime} t\right)^{2}\right\} \tag{7.4}
\end{equation*}
$$

Proof: A rotatable moment matrix M has a Moore-Penrose inverse M^{+}of the form (6.1), with coefficients as given by (6.29). Inserting this representation into $i_{M}(t)=\left\{f(t)^{\prime} M^{+} f(t)\right\}^{-1}$ establishes (7.4) which clearly is rotatable.

When the second moments are scaled to unity, $\lambda_{2}=1$, formula (7.4) reduces to a result due to Box and Hunter (1957, p. 213, Eq. (48)).

Box and Hunter (1957, pp. 207-208) demand as a starting point that the variance surface

$$
v_{M}(t)=\frac{1}{i_{M}(t)}=\left(1, t^{\prime}, t^{\prime} \otimes t^{\prime}\right) M^{-}\left[\begin{array}{c}
1 \tag{7.5}\\
t \\
t \otimes t
\end{array}\right]
$$

is rotatable, and then deduce that the moment matrix M is rotatable, too. Their brief argument suggests a trivial conclusion. However, there is more to prove than there seems at first glance.

At this point it becomes crucial whether we admit moment matrices M, only, or whether we endeavor to cover arbitrary nonnegative definit $k \times k$ matrices A. A second glance at the proof of Lemma 7.1 reveals that it makes sense to speak of the information surface i_{A} whenever the nonnegative definite $k \times k$ matrix A has the same range as the projector P_{m} in (7.2). However, the hypothesis is false that, for any such matrix A, rotatability if i_{A} implies rotatability of A.

The issue becomes more transparent in terms of the form

$$
q_{A}(t)=\left(1, t^{\prime}, t^{\prime} \otimes t^{\prime}\right) A\left[\begin{array}{c}
1 \tag{7.6}\\
t \\
t \otimes t
\end{array}\right)
$$

Since the rotatable symmetric matrices form a quadratic subspace by Lemma 2.2, rotatability of A forces rotatability of A^{+}. Hence our hypothesis would entail that rotatability of $q_{A^{+}}$, via rotatability of A, implies rotatability of A^{+}. Therefore a simpler version of our hypothesis is that rotatability of the form q_{A} implies rotatability of the matrix A.

The following counterexample is adapted from Koll (1980).

Counterexample 7.3 . For $m=2$ we have $k=7$. Define the 7×7 matrix

$$
A(\varepsilon)=\left[\begin{array}{rrrrrrr}
2 & 0 & 0 & -\frac{1}{2} & -\frac{\varepsilon}{2} & -\frac{\varepsilon}{2} & -\frac{1}{2} \tag{7.7}\\
0 & 1 & \varepsilon & 0 & 0 & 0 & 0 \\
0 & \varepsilon & 1 & 0 & 0 & 0 & 0 \\
-\frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 & 0 & 0 \\
-\frac{\varepsilon}{2} & 0 & 0 & 0 & \frac{1}{4} & \frac{1}{4} & 0 \\
-\frac{\varepsilon}{2} & 0 & 0 & 0 & \frac{1}{4} & \frac{1}{4} & 0 \\
-\frac{1}{2} & 0 & 0 & 0 & 0 & 0 & \frac{1}{2}
\end{array}\right]
$$

According to (6.29) the matrix $A(0)$ is the Moore-Penrose inverse of the moment matrix (6.14) with $\lambda_{2}=\lambda_{4}=1$. Augmenting some of its entries by ε or $-\varepsilon / 2$ produces $A(\varepsilon)$ as shown in (7.7). Straightforward evaluation yields, for $x=\left(x_{1}, \ldots, x_{7}\right)^{\prime} \in \mathbb{R}^{7}$,

$$
\begin{align*}
x^{\prime} A(\varepsilon) x= & \frac{1}{2}(2-\varepsilon) x_{1}^{2}+\frac{1}{2}\left(x_{1}-x_{4}\right)^{2}+\frac{1}{2}\left(x_{1}-x_{7}\right)^{2}+\frac{\varepsilon}{2}\left(x_{1}-x_{5}-x_{6}\right)^{2} \\
& +(1-\varepsilon)\left(x_{2}^{2}+x_{3}^{2}\right)+\varepsilon\left(x_{2}+x_{3}\right)^{2}+\frac{1}{2}\left(\frac{1}{2}-\varepsilon\right)\left(x_{5}+x_{6}\right)^{2} \tag{7.8}
\end{align*}
$$

Hence if $\varepsilon \in\left[0, \frac{1}{2}\right]$ then $A(\varepsilon)$ is nonnegative definite, and since its nullspace is spanned by the vector $x \in \mathbb{R}^{7}$ with components

$$
\begin{equation*}
x_{1}=x_{2}=x_{3}=x_{4}=x_{7}=0, \quad x_{5}=-x_{6}, \tag{7.9}
\end{equation*}
$$

we see that $A(\varepsilon)$ has the same range as P_{2} in (7.2).
All of the forms $q_{A(\varepsilon)}$ are rotatable, as follows from

$$
\begin{equation*}
q_{A(\varepsilon)}(t)=q_{A(0)}(t)+2 \varepsilon t_{1} t_{2}-2 \varepsilon t_{1} t_{2}=q_{A(0)}(t) \tag{7.10}
\end{equation*}
$$

and the rotatability of the matrix $A(0)$. The latter is verified by inspection from (6.1). In the same way we see that the matrices $A(\varepsilon)$ with $\varepsilon \in\left(0, \frac{1}{2}\right]$ are not rotatable.

The problem is resolved by restricting attention to moment matrices M, only. Since the moment matrix property of M does not tell us enough of the structure of M^{+}, we cannot present a unified treatment as in the first order discussion of Theorem 4.4. Instead we offer two separate derivations depending on whether we assume rotatability of i_{M}, or of q_{M}. The proof of the converse of Theorem 7.2 is based on a matrix lemma.

Lemma 7.4. Let A be a nonnegative definite $k \times k$ matrix. Then A is idempotent if and only if

$$
\begin{equation*}
\operatorname{trace} A=\operatorname{trace} A^{+}=\operatorname{rank} A \tag{7.11}
\end{equation*}
$$

Proof: The direct part is folklore. For the converse part let y_{1}, \ldots, y_{r} be the positive eigenvalues of A, repeated according to their multiplicities. Then (7.11) entails

$$
\begin{equation*}
\sum_{j=1}^{r}\left(y_{j}+\frac{1}{y_{j}}\right)=\operatorname{trace} A+\operatorname{trace} A^{+}=2 \operatorname{rank} A=2 r \tag{7.12}
\end{equation*}
$$

Since for $y>0$ the minimum of $y+1 / y$ equals 2 and is attained only at $y=1$, it follows from (7.12) that $y_{1}=\ldots=y_{r}=1$. Hence A is idempotent.

Theorem 7.5. A moment matrix M of rank $(m+1)(m+2) / 2$ is second order rotatable if and only if the information surface i_{M} or the variance surface v_{M} is rotatable.

Proof: The direct part is Theorem 7.2. For the converse part fix a rotation $R \in \operatorname{Orth}(m)$ and define

$$
\begin{equation*}
A=M^{1 / 2} Q_{R}^{\prime} M^{+} Q_{R} M^{1 / 2} \tag{7.13}
\end{equation*}
$$

There is a design τ which has moment matrix M. Rotatability of $v_{M}(t)=$ $f(t)^{\prime} M^{+} f(t)$ entails

$$
\begin{align*}
\operatorname{trace} A & =\operatorname{trace} M Q_{R}^{\prime} M^{+} Q_{R} \\
& =\sum_{i=1}^{l} \tau\left(t_{i}\right) f\left(t_{i}\right)^{\prime} Q_{R}^{\prime} M^{+} Q_{R} f\left(t_{i}\right)=\sum_{i=1}^{l} \tau\left(t_{i}\right) f\left(t_{i}\right)^{\prime} M^{+} f\left(t_{i}\right) \\
& =\operatorname{trace} M M^{+}=\operatorname{rank} P_{m} \tag{7.14}
\end{align*}
$$

by (7.3). Next we observe that the matrices Q_{R} and P_{m} commute, $Q_{R} P_{m}=$ $P_{m} Q_{R}$. This is easily seen to be equivalent to $(R \otimes R) I_{m, m}=I_{m, m}(R \otimes R)$, and the latter follows by postmultiplying with vec A where A is an arbitrary square $m \times m$ matrix:

$$
\begin{aligned}
(R \otimes R) I_{m, m} \operatorname{vec} A & =(R \otimes R) \operatorname{vec}\left(A^{\prime}\right)=\operatorname{vec}\left(R A^{\prime} R^{\prime}\right) \\
& =I_{m, m} \operatorname{vec}\left(R A R^{\prime}\right)=I_{m, m}(R \otimes R) \operatorname{vec} A
\end{aligned}
$$

Therefore we obtain

$$
\begin{equation*}
Q_{R} M^{1 / 2} M^{+1 / 2} Q_{R}^{\prime}=Q_{R} P_{m} Q_{R}^{\prime}=P_{m} \tag{7.15}
\end{equation*}
$$

Hence the Moore-Penrose inverse of A is easily verified to be

$$
\begin{equation*}
A^{+}=M^{+1 / 2} Q_{R}^{\prime} M Q_{R} M^{+1 / 2} \tag{7.16}
\end{equation*}
$$

With $Q_{R}^{\prime}=Q_{R^{\prime}}$ the invariance of v_{M} yields, as in (7.14),

$$
\begin{equation*}
\operatorname{trace} A^{+}=\operatorname{trace} M Q_{R} M^{+} Q_{R}^{\prime}=\operatorname{trace} M M^{+}=\operatorname{rank} P_{m} \tag{7.17}
\end{equation*}
$$

From $Q_{R^{\prime}} P_{m}=P_{m} Q_{R^{\prime}}$ and nonsingularity of $Q_{R^{\prime}}$ we get

$$
\begin{align*}
\operatorname{rank} A & =\operatorname{rank} M^{1 / 2} Q_{R}^{\prime} M^{+1 / 2}=\operatorname{rank} M^{+1 / 2} M^{1 / 2} Q_{R}^{\prime} M^{+1 / 2} M^{1 / 2} \\
& =\operatorname{rank} P_{m} Q_{R}^{\prime} P_{m}=\operatorname{rank} P_{m} \tag{7.18}
\end{align*}
$$

Thus (7.14), (7.17), and (7.18) verify (7.11) whence A is idempotent.
Inserting (7.13) into $A^{2}=A$ we get

$$
\begin{equation*}
M^{1 / 2} Q_{R}^{\prime} M^{+} Q_{R} M Q_{R}^{\prime} M^{+} Q_{R} M^{1 / 2}=M^{1 / 2} Q_{R}^{\prime} M^{+} Q_{R} M^{1 / 2} \tag{7.19}
\end{equation*}
$$

In view of (7.15) this simplifies by pre- and postmultiplication with $Q_{R} M^{+1 / 2}$ and $M^{+1 / 2} Q_{R}^{\prime}$, respectively,

$$
\begin{equation*}
M^{+} Q_{R} M Q_{R}^{\prime} M^{+}=M^{+} \tag{7.20}
\end{equation*}
$$

Finally we pre- and postmultiply by M. Becaue of $M M^{+} Q_{R}=P_{m} Q_{R}=Q_{R} P_{m}$ we obtain $Q_{R} M Q_{R}^{\prime}=M$. Since $R \in \operatorname{Orth}(m)$ is arbitrary, M is rotatable.

Our final result shows that rotatability of the form q_{M} implies rotatability of M provided M is a moment matrix.

Theorem 7.6. A moment matrix M is second order rotatable if and only if the form q_{M} of (7.6) is rotatable.

Proof: If M is rotatable then from (6.14) we get $q_{M}(t)=1+3 \lambda_{2} t^{\prime} t+3 \lambda_{4}\left(t^{\prime} t\right)^{2}$ which is clearly rotatable.

Conversely let q_{M} be rotatable, and fix a transformation Q_{R}. Then we have

$$
\begin{equation*}
\operatorname{trace} Q_{R}^{\prime} M Q_{R} f(t) f(t)^{\prime}=\operatorname{trace} M f(t) f(t)^{\prime}, \quad \text { for all } t \in \mathscr{T} \tag{7.21}
\end{equation*}
$$

This means that, relative to the inner product $\langle A, B\rangle=$ trace $A B$, the matrix $Q_{R}^{\prime} M Q_{R}-M$ is orthogonal to all matrices $f(t) f(t)^{\prime}$ with $t \in \mathscr{T}$. Denoting by \mathscr{L} the subspace of symmetric matrices that is generated by $f(t) f(t)^{\prime}$ with $t \in \mathscr{T}$, we get

$$
\begin{equation*}
Q_{R}^{\prime} M Q_{R}-M \perp \mathscr{L} \tag{7.22}
\end{equation*}
$$

On the other hand there is a design τ which has M for its moment matrix, leading to

$$
\begin{aligned}
M & =\sum_{i=1}^{l} \tau\left(t_{i}\right) f\left(t_{i}\right) f\left(t_{i}\right)^{\prime} \in \mathscr{L}, \\
Q_{R}^{\prime} M Q_{R} & =\sum_{i=1}^{l} \tau\left(t_{i}\right) f\left(R^{\prime} t_{i}\right) f\left(R^{\prime} t_{i}\right)^{\prime} \in \mathscr{L} .
\end{aligned}
$$

Hence $Q_{R}^{\prime} M Q_{R}-M$ itself is a member of \mathscr{L}. Because of (7.22) then $Q_{R}^{\prime} M Q_{R}=$ M. Since $R \in \operatorname{Orth}(m)$ is arbitrary, M is invariant.

8 Second Order Rotatability of Experimental Designs

Can one actually obtain second order rotatable experimental designs? The answer is yes, and there are many published examples available. First of all, it is always possible to find measure designs (designs whose support does not necessarily consist of finitely many points, but of measure allocated to points or regions). For a discussion see, for example, Neumaier and Seidel (1990), or Kiefer (1985). Discrete point designs can be achieved by combining sets of points on concentric spheres. For a general discussion, see Seymour and Zaslavsky (1984). In practical experimental work, the emphasis is on designs with a relatively small number of points; for point sets, see Coxeter (1963, pp. 292-295). For specific designs see, for example, Box and Carter (1959), Box and Draper (1959), Box and Behnken (1960a, b), Box and Hunter (1957), Draper (1960), Draper and Herzberg (1968), Herzberg (1967), Huda (1981), Nigam (1977), Nigam and Das (1966), Nigam and Dey (1970), Raghavarao (1963), and Singh (1979). In general, any specified rotatable matrix can be achieved by a design consisting of a combination of symmetric sets of design points on concentric spheres.

9 Equivalence of Second Order Regression Functions

In models for a second order polynomial fit the regression function $f: \mathbb{R}^{m} \mapsto \mathbb{R}^{k}$ can be expressed in at least three distinct ways, using the Kronecker product notation, the Schläflian notation, or the Box-Hunter minimal set of monomials:

$$
f_{K}(t)=\left[\begin{array}{c}
1 \\
t \\
t \otimes t
\end{array}\right], \quad k=1+m+m^{2}
$$

$$
\begin{align*}
& f_{S}(t)=\left(\begin{array}{c}
1 \\
t \\
t^{[2]}
\end{array}\right), k=\frac{1}{2}(m+1)(m+2) \\
& f_{B H}(t)=\left(1, t_{1}, \ldots, t_{m}, t_{1}^{2}, \ldots, t_{m}^{2}, t_{1} t_{2}, \ldots, t_{m-1} t_{m}\right)^{\prime}, \quad k=\frac{1}{2}(m+1)(m+2) \tag{9.1}
\end{align*}
$$

Let the corresponding moment matrices be $M_{J}=\sum_{t \in \operatorname{supp} \tau} \tau(t) f_{J}(t) f_{J}(t)^{\prime}$, for $J=$
$K, S, B H$.

Lemma 9.1. We have rank $M_{K}=(m+1)(m+2) / 2$ if and only if M_{S} is positive definite if and only if $M_{B H}$ is positive definite. In this case the three corresponding variance surfaces all coincide:

$$
\begin{equation*}
f_{K}(t)^{\prime} M_{K}^{-} f_{K}(t)=f_{B H}(t)^{\prime} M_{B H}^{-1} f_{B H}(t)=f_{S}(t)^{\prime} M_{S}^{-1} f_{S}(t) \tag{9.2}
\end{equation*}
$$

as do the three corresponding information surfaces.

Proof: The three different expressions for the regression functions in (9.1) lead to the following respective differences in the portions of (9.2) related to the intersection of cross-product columns and rows in the moment matrices:

$$
\left(t_{i} t_{j}, t_{i} t_{j}\right)\left(\begin{array}{ll}
\lambda_{4} & \lambda_{4} \\
\lambda_{4} & \lambda_{4}
\end{array}\right)^{-}\binom{t_{i} t_{j}}{t_{i} t_{j}}, \quad t_{1} t_{2} \sqrt{2}\left(2 \lambda_{4}\right)^{-1} t_{1} t_{2} \sqrt{2}, \quad t_{1} t_{2}\left(\lambda_{4}\right)^{-1} t_{1} t_{2}
$$

These portions are orthogonal to all other pieces of (9.2) and the other pieces are identical for all representations. The second and third portions of (9.3) are obviously identical, and equal to $t_{1}^{2} t_{2}^{2} / \lambda_{4}$. By Lemma 7.3 , any generalized inverse can be used in the first portion. Two obvious choices are

$$
\frac{1}{4 \lambda_{4}}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \text { and } \frac{1}{\lambda_{4}}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

both of which, again, give $t_{1}^{2} t_{2}^{2} / \lambda_{4}$.
The implication of Lemma 9.1 is that rotatability is the same whether defined in the Kronecker calculus using M_{K}, in the Schläflian calculus M_{S}, or in the BoxHunter calculus $M_{B H}$. Another way of establishing Lemma 9.1 is furnished by
reparametrization arguments as in Gaffke (1987), re-expressing f_{K}, f_{S}, and $f_{B H}$ as linear transformations of one another.

As an aside we mention that the origin of the term "Schläflian matrix" remains unclear to us. Reference to Schläfli's work may originate with Muir (1911, pp. 52-53) who quotes Schläfli (1851) with a theorem on determinants that relate to polynomials of degree r. The term "Schläflian matrix" is used in Aitken (1949, p. 60), but not in Aitken (1951, p. 137f).

In matrix algebra other names prevail. Wedderburn (1934, p. 75) speaks of "induced or power matrices". Marcus and Minc (1964, p. 20) and Minc (1978, p. 87) use the term "induced matrix". The approach in those books does not readily reveal the properties that are needed in our statistical context; the closest we could find is the formula on the top of page 90 in Minc (1978).

Acknowledgements: We would like to thank Professor O. Krafft for drawing our attention to the thesis Koll (1980). We would also like to thank the referee for valuable remarks on the first version of the paper. We gratefully acknowledge partial support from grants of the National Science Foundation (DMS-89000426) and of the Deutsche Forschungsgemeinschaft.

References

Aitken AC (1949) On the Wishart distribution in statistics. Biometrika 36:59-62
Aitken AC (1951) Determinants and matrices. Oliver and Boyd, Edinburgh and London
BenIsrael A, Greville T (1974) Generalized inverses: theory and applications. Wiley, New York
Bondar JV (1983) Universal optimality of experimental designs: definitions and a criterion. Canad J Statist 11:325-331
Bose RC, Carter RL (1959) Complex representation in the construction of rotatable designs. Ann Math Statist 30:771-780
Bose RC, Draper NR (1959) Second order rotatable designs in three dimensions. Ann Math Statist 30:1097-1112
Box GEP, Behnken DW (1960a) Some new three level designs for the study of quantitative variables. Technometrics 2:455-475
Box GEP, Behnken DW (1960b) Simplex-sum designs: a class of second order rotatable designs derivable from those of first order. Ann Math Statist 31:838-864
Box GEP, Draper NR (1987) Empirical model-building and response surfaces. Wiley, New York
Box GEP, Hunter JS (1957) Multi-factor experimental designs for exploring response surfaces. Ann Math Statist 28:195-241
Coxeter HSM (1963) Regular Polytopes. Dover, New York
Draper NR (1960) Second order rotatable designs in four or more dimensions. Ann Math Statist 31:23-33
Draper NR, Herzberg AM (1968) Further second order rotatable designs. Ann Math Statist 39:1995-2001
Draper NR, Pukelsheim F (1990) Another look at rotatability. Technometrics 32:195-202
Gaffke N (1987) Further characterizations of design optimality and admissibility for partial parameter estimation in linear regression. Ann Statist 15:942-957
Giovagnoli A, Wynn HP (1981) Optimum continuous block designs. Proc Roy Soc London Ser A 377:405-416
Giovagnoli A, Wynn HP (1985a) Schur-optimal continuous block designs for treatments with a control. In: Le Cam LM, Olshen RA (eds) Proceedings of the Berkeley Conference in honor of Jerzy Neyman and Jack Kiefer, vol 1. Wadsworth, Belmont CA, pp 418-433

Giovagnoli A, Wynn HP (1985b) G-majorization with applications to matrix orderings. Linear Algebra Appl 67:111-135
Giovagnoli A, Pukelsheim F, Wynn HP (1987) Group invariant orderings and experimental designs. J Statist Plann Inference 17:159-171
Henderson HV, Pukelsheim F, Searle SR (1983) On the history of the Kronecker product. Linear and Multilinear Algebra 14:113-120
Henderson HV, Searle SR (1981) The vec-permutation matrix, the vec operator and Kronecker products: A review. Linear and Multilinear Algebra 9:271-288
Herzberg AM (1967) A method for the construction of second order rotatable designs in k dimensions. Ann Math Statist 38:177-180
Huda S (1981) A method for constructing second order rotatable designs. Calcutta Statist Assoc Bull 30:139-144
Kiefer JC (1985) Jack Carl Kiefer collected papers, vol III. Brown RD, Olkin I, Sacks J, Wynn HP (eds). Springer, New York
Koll K (1980) Drehbare Versuchspläne erster und zweiter Ordnung. Diplomarbeit, RWTH Aachen
Marcus M, Minc H (1964) A survey of matrix theory and matrix inequalities. Prindle, Weber and Schmidt, Boston MA, London, Syndney
Minc H (1978) Permanents. Encyclopedia of mathematics and its applications, vol 6. Addison-Wesley, Reading MA
Muir T (1911) The theory of determinants in the historical order of development, vol II. The Period 1841-1860. Macmillan, London
Neumaier A, Seidel JJ (1990) Measures of strength $2 e$, and optimal designs of degree e. Sankhya, forthcoming
Nigam AK (1977) A note on four and six level second order rotatable designs. J Indian Soc Agric Statist 29:89-91
Nigam AK, Das MN (1986) On a method of construction of rotatable designs with smaller number of points controlling the number of levels. Calcutta Statist Assoc Bull 15:153-174
Nigam AK, Dey A (1970) Four and six level second order rotatable designs. Calcutta Statist Assoc Bull 19:155-157
Pukelsheim F (1977) On Hsu's model in regression analysis. Math Operationsforsch Statist Ser Statist 8:323-331
Pukelsheim F (1987a) Majorization orderings for linear regression designs. In: Pukkila T, Puntanen S (eds) Proceedings of the second international Tampere Conference in statistics. Department of Mathematical Sci, Tampere, pp 261-274
Pukelsheim F (1987b) Information increasing orderings in experimental design theory. Internat Statist Rev 55:203-219
Pukelsheim F (1987c) Ordering experimental designs. In: Prohorov Yu A, Sazonov VV (eds) Proceedings of the 1st World Congress of the Bernoulli Society, vol 2. Tashkent, USSR, 8-14 Sept 1986. VNU Science Press, Utrecht, pp 157-165

Raghavarao D (1963) Construction of second order rotatable designs through incomplete block designs. J Ind Statist Assoc 1:221-225
Schläfli L (1851) Über die Resultante eines Systems mehrerer algebraischer Gleichungen. Ein Beitrag zur Theorie der Elimination. Denkschriften der Kaiserlichen Akademie der Wissenschaften, mathe-matisch-naturwissenschaftliche Klasse, 4. Band (1852) Wien. Reprinted in: Ludwig Schläfli (1814-1895) Gesammelte Mathematische Abhandlungen, Band II, herausgegeben vom Steiner-Schläfli-Komitee der Schweizerischen Naturforschenden Gesellschaft, Birkhäuser, Basel 1953
Searle SR (1982) Matrix algebra useful for statistics. Wiley, New York
Seely J (1971) Quadratic subspaces and completeness. Ann Math Statist 42:710-721
Seymour PD, Zaslavski T (1984) Averaging sets: a generalization of mean values and spherical designs. Adv in Math 52:213-240
Singh M (1979) Group divisible second order rotatable designs. Biometrical J 21:579-589
Wedderburn JHM (1934) Lectures on Matrices. Colloquium Publ vol XVII. American Math Society, Providence RI

[^0]: Norman R. Draper, Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706, USA.
 ${ }^{2}$ Norbert Gaffke and Friedrich Pukelsheim, Institut für Mathematik, Universität Augsburg, Universitätsstraße 8, 8900 Augsburg, FRG.

[^1]: * This product is actually due to Zehfuß; see Henderson, Pukelsheim and Searle (1983).

