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1 Introduction

B a l a n c e d n e s s  a n d  s y m m e t r y  p r o p e r t i e s  a re  a m o n g  t h e  m o s t  u s e f u l  a n d  p l e a s i n g
f e a t u r e s  t h a t  a n  e x p e r i m e n t a l  d e s i g n  c a n  possess .  In  t h e  p r e s e n t  p a p e r  we d i scuss
t h e  c l a s s i ca l  l i n e a r  m o d e l  o f  u n c o r r e l a t e d  h o m o s c e d a s t i c  o b s e r v a t i o n s  fo r  f i t t i n g
a p o l y n o m i a l  r e s p o n s e  o f  s o m e  se lec ted  order ,

q (t, O) = O0 + t~ O1 + . . .  + tmOm + tZ Ozt + tl t20~2 + . . . .  (1.1)
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This is a polynomial in the values t 1 . . . . .  t m that m factors can attain, with coef-
ficients 80, Ol . . . . .  Ore, 011,012 . . . .  to be estimated.

The levels t 1 . . . . .  t m jointly form the m-dimensional vector of  experimental
conditions tEIR m. An experimental design for sample size N then enumerates N
vectors of  experimental conditions at which to draw an observation. More
generally, we shall consider approximate designs which assign, to a finite number
of  experimental conditions, positive weights which sum to one. The weights deter-
mine the proportions of all observations to be taken under the corresponding vec-
tor of  experimental conditions.

For a polynomial fit the notion of  symmetry which has received the greatest
attention in the literature requires that the statistical performance of an ex-
perimental design remain the same when the experimental conditions tE~.  m
undergo an arbitrary rotation, that is, an arbitrary orthogonal transformation. In
the present paper, we provide a detailed study of  this concept as it pertains to
polynomial fits of  first and second order.

The orthogonal matrices Q, where Q ' Q  = I, form an infinite, though com-
pact, group of  nonsingular matrices. Our main result is that, for second order fits,
invariance with respect to the finite subset of sign changes, permutations, and the
orthodiagonal reflection implies rotatability. For two factors, m = 2, the or-
thodiagonal reflection is replaced by a rotation of  45 °.

For our mathematical analysis it is convenient to shift emphasis from the ex-
perimental conditions tEIE m to the regression vectors x = f ( t ) ~  k, where the
vector f ( t )  is composed of  the mixed powers in the variables tt. . . . . .  t m which ap-
pear in the response surface representation (1.1). Let ~__. ~ be the regression
range of  vectors f ( t )  which result when the experimental conditions t vary over
an experimental domain J-___ [pm. A design ~ on ~, or r on Y,, is taken to be a
probability measure which has a finite support. The support of a design is the set
of  points which are assigned a positive weight, and is denoted by supp ~ c_ ~ o r
supp r c_ f ,  respectively.

We call f the regression function associated with (1.1), and take its dimen-
sionality to be equal to k. In the present paper we discuss first and second order
models,

k = l + m  , (1.2)

(1.3)

respectively. The second order regression function (1.3) utilizes the Kronecker
product t ® t. This representation repeats the mixed second order terms twice, as
t i t j  and as t i t  i if i #:j. We prefer this representation for discussing rotatability
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because of the simple calculus that evolves. We show in Section 9 that the results
are the same had we cancelled all repetitions, or had we used the Schl~iflian power
notation.

Our considerations of  rotability allow us to derive measures of  rotatability,
that is, measures which indicate how well the moments of  any given design com-
pare to those of  a rotatable design. The criteria are presented in Section 6. An
alternative presentation together with practical examples is given by Draper and
Pukelsheim 0990).

We first provide a brief discussion of  those aspects which are common to all
invariant design problems.

2 Invariant Design Problems

Let ~ be a design on a regression range We_ Nk, and let Q be a nonsingular k x k
matrix. All invariance considerations amount to comparing the two designs ~ and
~Q, where the latter is the.rotation of ~ under Q given by

In a classical linear model the performance of  a design ~ is evaluated through its
moment matrix

M(~)--- ~ ~ ( x ) x x ' .
x~supp~

Our first lemma relates the support sets and the moment matrices of  a design and
its rotation in a quite simpler manner.

Lemma 2.L Let ~ be a design on :go_ rR k, and let Q be a nonsingular k x k
matrix. Then the support of  the rotated design ~Q is equal to the image under
Q of  the support of  ~,

supp ~0 = Q (supp ~) ,

and the moment matrix of ~Q is obtained from the moment matrix of ~ by a
congruence transformation,
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M ( ~  Q) = Q M ( ~ )  Q '  . []

Now let .~ be a set of  nonsingular k x k  matrices. (At his point we do not re-
quire .~ to be a group yet.) Then a design ~ is called invariant under ~ when

~ 2 = ~  for all Qe~ .  ;

and a symmetric k x k  matrix M is called invariant under ~ when

Q M Q ' = M  for all Q e ~ .

The set of all invariant symmetric k × k  matrices is denoted by Sym (k, .~).
It follows from Lemma 2.1 that an invariant design possesses an invariant mo-

ment matrix. However, the converse is not true. Moreover, the fact that an in-
variant moment matrix may be generated by a non-invariant design is often the
source of great economy. The rotatable central composite design of Box and
Hunter (1957) provide well-known examples: Although these designs are not
themselves invariant under all rotations, their moment matrices are. Thus the no-
tion of  invariant matrices carries further than that of  invariant designs.

Next we show that the invariant matrices form a subspace of symmetric
matrices.

L e m m a  2.2. Let ~. be a set of  nonsingular k × k  matrices. Then the set Sym (k, -~)
of invariant matrices forms a subspace of  symmetric matrices. If all matrices in

are orthogonal, then the subspace Sym(k, .~) is a quadratic subspace of  sym-
metric matrices, that is,

M 2 e S y m ( k , . ~ )  for all M e S y m ( k , . q )  .

The notion of  quadratic subspaces of  symmetric matrices is due to Seely
(1971). Quadratic subspaces of symmetric matrices have a number of pleasant
properties. For instance, with every member M they also contain the Moore-
Penrose inverse M ÷ . For our invariant subspaces Sym (k, ~ )  this is also easily
seen directly, since if Q is orthogonal then Q M  ÷ Q '  = ( Q M Q ' )  ÷ = M ÷ . Lemma
1.6 of  Seely (1971) provides another important property. If a member M of a
quadratic subspace has an eigenvalue decomposition

l
M =  2 I-liPi ,

i=l
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with / distinct eigenvalues/x i, then each projection matrix Pi also is a member of
the quadratic subspace. This entails that, if Sym (k, ~ )  has dimension l, then
every invariant symmetric matrix M can have at most l distinct eigenvalues, and
the associated projection matrices Pi are themselves invariant.

A major result of  the present paper is that we can always make do with finitely
many transformations Q. For rotatability in first and second order models these
are given in Theorems 4.I and 6.1, respectively. The following theorem ascertains
that the reduction from arbitrarily many to finitely many transformations is
always mathematically feasible, even though it does not provide a practical way
for carrying out this reduction.

Theorem 2.3. Let ~ be a set of  nonsingular k×k matrices. Then ~ contains a
finite subset {Q1 . . . . .  Qt}, say, such that ~ and [Q1 . . . . .  Qll share the same
subspace of invariant symmetric matrices, that is,

Sym (k, ~ )  = Sym (k,{Q 1 . . . . .  Ql}) •

Proof" For Qe .~  we define the mapping TQ from Sym (k) into Sym (k) by
TQ(A) = QA Q' -A .  Then M is invariant under ~ if and only if

TQ(M)=O for all Q e ~ .  (2.1)

Evidently TQ is a member of the space Ltof all linear mappings from Sym (k) in-
to Sym (k). Hence (2.1) extends to the subspace 5a(~) generated by TQ, Qe.~.
Thus (2.1) becomes the same as

T(M)=O for all T~LP(~) . (2.2)

But Lt(.~), being a subspace of the finite dimensional space ~ has finite dimen-
sion /, say. Therefore the generator [TQ: Q ~ ]  contains a basis ITQ, . . . . .  TQ,},
whence (2.2) reduces to

TQ.,(M) = 0 for all i =  1 , . . . , l .  (2.3)

The equivalence of (2.1) and (2.3) proves the assertion. []

In our investigations the sets ~ will often be subgroups of orthogonal
matrices. Before turning to our statistical problems, we first list those subgroups
that will be of  relevance to us.
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3 Finite Subgroups of Orthogonal Matrices

The transformations of the regression vectors xe  R k are induced by transforma-
tions of the experimental conditions t •  R m. We shall be interested in the follow-
ing groups acting on the experimental domain Yc_ IRm:

GL (m) = {Q • IR m × m : det Q ~: OI ,

Orth (m) = {Q• IRmxm:Q'Q = Ira} c_ GL (m) ,

Sign (m) = {AE• ~m×m:e•{+_ 11 m}

Perm ( m ) =  I ~kj< m e~cj)e':n•~em 1

Refl ( / m ) = I l m l m - 2 1 m l ' l '  --m m

Rot(45o) = ~ (cos ( ]  45°) - s in ( j45° )~
{.\sin(j45 °) cos(j45 °) , / : J

c_ Orth (m) ,

c_ Orth (m) ,

c_ Orth (m) ,

= 0  . . . . .  71 c_Orth(2) .

(3.~)

GL (m) is the general linear group of nonsingular m × m matrices. Orth (m) is the
orthogonal group consisting of all orthogonal matrices. Sign (m) is the sign
change group, composed as follows. Let e = (e 1 . . . . .  em)' be a vector with com-
ponents ___ 1, and let d~ be the diagonal matrix with the vector e on the diagonal.
Then d~ acts as a sign change transformation on a vector t e r  m, that is, d~t =
(eltl . . . . .  emtm)'.

Perm (m) is the permutation group where, in its definition, we have referred
to permutations n of the subscripts 1 . . . . .  m and the Euclidean unit vectors
e j •  ~m. The reflection group Refl (lm) describes the reflection at the hyperplane

orthogonal to the unity vector lm; the transformation Im -z-- lml m is called the
m

orthodiagonal reflection. Finally, in the plane rn = 2, we need the rotation group
Rot (45 °) which rotates the axes by half a right angle and which is generated by
the special case j = 1.

The groups differ considerably in size. GL (m) is infinite and noncompact,
Or th(m)  is infinite but compact. The remaining four subgroups are finite:
Sign(m) has order 2 m, Perm(m) has order m[, Refl(lm) has order 2, and
Rot (45 ° ) has order 8.

Straightforward verification shows that the subspaces of  symmetric matrices
which are invariant under these groups are the following:
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(o1 R
~l{a lm : a~m }

~ {At: t e  }
Sym (m, ~ )  = i [a i  m + f l l m l m : a , f l  e JR}

I [A e S y m  (rn) : A Im = a lm, a e[R }
t.la I2 : a e JR)

for ~ = GL (m) ,
for ~ =  Orth(m) ,
for . ~=S ign (m)  , (3.2)
for ~ = P e r m ( m )  ,
for ~ = R e f l ( 1  m) ,
for ~ = R o t ( 4 5  ° ) .

In particular, Sign (m) is associated with the subspace of all diagonal matrices,
Perm (m) with all completely symmetric matrices, that is, those of the form
ot I m + fl I m l~n. A matrix A is invariant relative to Refl (1 m ) if and only if the uni-
ty vector 1 m is an eigenvector of A, that is, A has constant row and column
s u m s .

The experimental domains 5re_ ~m which are invariant under these groups
have familiar geometric shapes. Orth (m) is associated with the closed balls 5r=
f -N

~te ~m: ~ /}_<r/; Per m (m)with cubes Y-= [0, r] m. Together, the two groups
L j ~ m  )
Sign (m) and Perm (m) come with symmetrized cubes J-= I - r ,  r]m. Most often
the radius r > 0  is scaled to be equal to unity.

4 First Order Rotatability

The simplest case is that of a first order polynomial fit, sometimes called multiple
linear regression. Here the quantities mentioned before specialize as follows:

experimental conditions

experimental domain

regression vectors

regression range

transformation group

t E ~  m

~ ' C  I~ m

x = f ( t ) = ( ; ) ~  k , k = l + m

Y'= [f(t): t ~ J ]  c_ ~k

~ = I ( ;  O )  :R~Or th  (m) l

For a first order fit the regression range lies in IRk, with k = 1 +m. The k x k
matrix Q that is induced by an m × m rotation R is abbreviated by
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We call a symmetric k x  k matrix M (first order) rotatable when M is invariant
under .~. A design r is called first order rotatable when its moment matrix
M ( r )  = ~:f(t)f(t')dr is first order rotatable.

Hence a design r inherits its rotatability properties through its moment matrix
M(r ) .  Our definition does not mean or imply that a rotatable design r is invariant
under the group 9..

We first study which symmetric matrices are invariant, and then specialize the
result to moment matrices.

Theorem 4.1. Let M be a symmetric k×k matrix. Then the following three
statements are equivalent:

(i) M is first order rotatable.
(ii) M is invariant under the finitely many matrices QR, where R is any sign

change matrix or the orthodiagonal reflection.
(iii) There exists scalars a,fieR such that M has the form

0-(o (4.1)

Proof." It is clear that (i) implies (ii), since (ii) involves fewer transformations than
(i).

Next we show that (ii) implies (iii). To this end write M in the form

(4.2)

A congruence transformation using QR then yields

QRMQ'n=(R:a RBR'a'R') .

Invariance entails that Ra = a for R = -Im, whence a vanishes. Letting R vary
over all sign change matrices, the matrix B is seen to be diagonal. But B is also
invariant under the orthodiagonal reflection and hence must be a multiple of  the
identity matrix, B = fiIm.

That  (iii) implies (i) is plainly verified. []
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The two scalars a and fl (with multiplicity m)  are the k = m + 1 eigenvalues
o f  the matrix M in (4.1). Also the nonvanishing blocks in (4.1) correspond to the
design moments  o f  order 0 and 2, whence it is convenient to represent invariant
matrices using the two symmetric k ×  k matrices

(4.3)

It is easily verified that  the pair V 0 and V 2 form an o r thonormal  system in the
space Sym (k) o f  all symmetric  k x k  matrices, that  is, (V0, V 2) = trace V 0 V 2 = 0
and (Vi, V/) = trace V/a = 1 for i = 0,2.

Corollary 4.2. Let M be a symmetric k ×  k matrix. Then the following three
statements are equivalent:

(i) M is first order rotatable.
(ii) There exist scalars a,fle ~ such that  M = a Vo + fl V2.

(iii) M = (trace M Vo) V 0 + (trace M V2) V 2 .

Next we apply these results to moment  matrices.
Let r be a design on the experimental domain  ~ I f  its momen t  matrix M ( r )

has the form (4.1) then a = 1, and fl is the second momen t  22 c o m m o n  to the
components  tj of  the experimental conditions t, that  is, for all j<_m we have

r(t) t2 = f l  = )~2 • ( 4 . 4 )
t ~ supp z

In particular, when the design r is realizable for sample size N with experimental
condit ions tue ~rn for u = 1 . . . . .  N, then (4.4) may be written as

2tuj = N~,2 • (4.5)
u<-N

In summary,  it is easy to recognize rotatable momen t  matrices as follows.

Corollary 4.3. Let M be a symmetric  k ×  k matrix. Then  the following three
statements are equivalent:

(i) M is a first order rotatable momen t  matrix on some experimental domain
J-c_ Em.



138                   

(ii) There exists a scalar 22-> 0 such that M = V 0 + ,~2 ]/m V2.
(iii) M is a nonnegative definite matrix such that M = V 0 + (trace M V2) II1. []

It follows that the first order rotatable moment  matrices form a shifted convex
cone with tip in V 0, parametrized by 22-> 0. The interior of  the cone, 22 > 0, cor-
responds to those moment  matrices which have a maximum rank, k.

Many authors scale the design so that the second moment  22 is equal to uni-
ty. With this scaling, any first order rotatable moment  matrix becomes the identi-
ty matrix, M = V 0 + ~ V 2 = Ix. In our exposition we stick to an experimental
domain 5Twhich is fixed and given in advance. The best second moment  22 then
is the maximum )~2(ff) that can be achieved among all designs r which have zero
first moments and which satisfy the symmetry condition (4.4). Corollary 4.3(ii)
does not show this upper bound, in the sense that an arbitrarily large second mo-
ment 2. 2 can be achieved provided the experimental domain 5rbecomes arbitrari-
ly large.

A design on the experimental domain J t h a t  has moment  matrix V0+
,~2(J-)Vm V 2 is universally optimal in the sense of  Pukelsheim (1987b). This
means that any other design r with moment  matrix M may first be improved in
the direction of  a more balanced matrix (say) _/f/= V 0 + (trace M 112) V 2, followed
by an improvement in the LOwner ordering towards V0 + J.2(ff)[I2.

For various shapes of  the experimental domain Ywe may determine the max-
imal second moment  22(ff), and the first order rotatable designs r that achieve
this maximal second moment.  For example, if J i s  the ball of  radius r then
2 2 ( J )  = rZ/m. An identical value holds for a hypercube whose vertices are on
the ball.

So far we have concentrated on moment  matrices. A function which is o f  con-
siderable statistical interest is the information surface which is induced by a mo-
ment  matrix M. It is defined by

I (:)1iM(t )= ( 1 , t ' ) M  -1 for all t e r  m , (4.6)

provided M is positive definite. Such a (first order) information surface iu is
called rotatable when iM(Rt ) = iM(t) for all R e O r t h  (m) and t e r  m.

The study o f  information surfaces is aided by first discussing the quadratic
form qM induced by M, given by

(4.7)

This quadratic form makes sense for every symmetric k ×  k matrix M, and does
not require nonsingularity. A quadratic form q u  is called rotatable when
q u ( R t )  = qM(t) for all R e O r t h  (m) and tER  m.
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Rotatability of  a matrix M coincides with rotatability of  its quadratic form
q N  or its information surface iN. For first order models this result holds for all
symmetric matrices, for higher order models it is restricted to moment  matrices,
only. Therefore the following argument does not carry over to second order
models, compare Section 7.

Theorem 4.4. A symmetric k × k  matrix M is first order rotatable if and only if
its induced quadratic form q u  from (4.7) is rotatable. A nonsingular symmetric
k × k  matrix M is first order rotatable if and only if the information surface iN
from (4.6) is rotatable.

Proof" A rotatable moment  matrix as in (4.1) has quadratic form q M ( t ) =
a + f l t ' t  which clearly is rotatable.

Conversely, write M in the partitioned form (4.2). Its quadratic form is
qM(t )  = a + 2 t '  a + t ' B t .  Fix R e O r t h  (m) and t ~  rn. Then q M ~ R t )  and qNO2t)
form two polynomials in p e ~ which, by the invariance assumption, are identical.
Equating coefficients we obtain

t ' R ' a  = t ' a  and t ' R ' B R t  = t ' B t  for all R e O r t h ( m )  and tE[R m .

As in the proof  of  Theorem 4.1 it follows that I. a = 0 and II. B = f l I  m for some
scalar p. Hence M has the form (4.1).

Now we assume M to be nonsingular and rotatable. Then

is rotatable. Hence 1/ i  M = qM-, ,  and the information surface i M is rotatable.
Conversely, if i M is rotatable then so is qM-' .  Therefore the matrix M -1 is
rotatable, and then M must be rotatable as well. []

In summary, the notion of  first order rotatability of  designs r is the same
whether it pertains their moment  matrices M ( z ) ,  the quadratic forms qM(~), or
the information surfaces iM(~).

We now turn to the corresponding results for second order rotatability. First
we review some convenient tools from matrix algebra.
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5 Kronecker Products and Vectorization of Matrices

We arrange the second order terms as a Kronecker square,

t ® t = (t 2, t~ t2, t~ t3 . . . . .  tl tm; t2 fi ,  t 2, t2 t3 . . . . .  t 2 t m; . . . .  t 2 ) ,  . (5.1)

Thus the mixed second order terms t i t  j,  for i ~:j, are represented twice, as t i t  j
and t j t  i. This representation is redundant. But the powerful properties of  the
Kronecker product make it vastly superior to any other representation, for our
manipulations.

The Kronecker* product of  two matrices A ~ ~ ~ ×p and B ~ ~ m × q is

Ia l ! B  . . .  a l p B  1A ® B  = : ~ . [R  k m × p q  .

( akl B akpB )
(5.2)

For vectors sEE  k and tE[~ m this simplifies to

IS! t 1 ~ [~ kms ® t =  :
k_sk t J

(5.3)

The most important  property of  the Kronecker product is that it conforms with
matrix multiplication by way of

(A  ® B ) ( s ®  t )  = ( A s )  ® ( B t )  , (5.4)

provided the dimensions match appropriately. It is a consequence of  (5.4) that the
transpose (inverse, generalized inverse, Moore-Penrose inverse) of  a Kronecker
product is equal to the Kronecker products of  the transposes (inverses, generalized
inverses, Moore-Penrose inverses).

The same cross products sitj  which appear in s ® t also appear, in a different
arrangement,  in the rank-one matrix s t ' .  For an easy transition between the two
arrangements we define the vectorization operator

vec ( s t ' )  = s ®  t . (5.5)

* This product is actually due to Zehfuf$; see Henderson,  Pukelsheim and Searle (1983).
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In other words, the matrix s t '  is converted into a column vector by writing one
row after the other, followed by a transposition. This procedure extends to the vec-
torization of  any matrix, according to

vecA = (first row of  A; second row of A ; . . . ; l a s t  row of A) '  . (5.6)

This is a vector representing the entries of  the matrix A in texicographic order;
see Pukelsheim (1977), or the alternative treatment in Searle (1982, p. 332) who
defines vec A to be the column vector obtained from stacking the columns of  A
one under the other. The vectorization operator also preserves the inner products
between vectors and between matrices,

( v e c A ) ' ( v e c B ) =  t r a c e A ' B  for all A , B ~ I E  k×m . (5.7)

Vectorization, matrix products and Kronecker products go together in the for-
mula

vec ( A B C )  = (A ® C')(vec B) , (5.8)

provided dimensions match appropriately.
All these properties are proved best by first establishing them for Euclidean

unit vectors ei with ith entry unity and zeros elsewhere, and Euclidean unit
matrices

E i j  eiej

with (i,j)th entry unity and zeros elsewhere. As a prototype proof  we derive (5.8):

vec (A EoC) = (A el) ® (C' ej)

= (A ® C')(e i®e i)

= (A @ C')(vecEij)

by (5.5)

by (5.4)

by (5.5) .

For an arbitrary matrix B = ~ ~ bijEij this immediately extends to formula
(5.8), by linearity; compare BenIsrael and Greville (i974, p. 42).

In second order moment  matrices, the submatrix corresponding to fourth
moments  is conveniently displayed using the three matrices
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!m,m = E 2 E i jeE j i  ,

(veclm)(veclm)'= E ~ E i j e E o  •

(5.9)
(5.10)
(5.11)

The matrix Ira, m in (5.10) is called the vec permutation matrix, for the reason
that

Im, m(vecEgl) = ~ ~ {(ei®ej)(ej®ei)'](eg®et) by (5.10) and (5.5)
i j

= e~® e,  by (5.4)

= vec Etk by (5.5) .

Linearity extends this t o  Im, m (vec A ) = vec A '  for all square matrices A ~ [~mxm;
see Henderson and Searle (1981, p. 279).

It is convenient to define the m 2× m 2 matrix

Fm= (Ira ®Im)+ Im,m + (vec Ira)(vec Ira)' . (5.12)

The matrix Fm will reflect the fourth moment  structure in case of rotatability. It
is nonnegative definite, as follows from

(vec A )'Fro (vec A ) = trace (A 'A ) + trace (A 2) + (trace A )2

= ~-trace (A ' + A  )'(.4 ' + A  ) + (trace A )2 (5.13)

_>0

for all square matrices AER m×m. In (5.13) equality holds if and only if
A ' =  - A ,  whence F m has rank m(m+ 1)/2.

With these tools we now turn to models for fitting a second order response
surface.

6 Second Order Rotatability of Moment Matrices

We first list the pertinent quantities for an m-way second order polynomial  fit
model:
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experimental conditions t~ R m

experimental domain ~-c_ R m

regressionvectors x = f ( t ) =  I t l t t l  ~P, k ®  , k = l + m + m  2

regression range ~ =  If( t )  : t~ J ]  c_ R k

transformation group .~ = R : R eOr th  (m
O R ®

Here the regression range lies in R k, with k = 1 + m + m  2. For brevity we write

I °° QR= R 
0 R ®

for the transformation of the regression range which is induced by the rotation
R of the experimental domain.

A symmetric k × k matrix M is called (second order) rotatable when M is in-
variant under .@. A design r on f i s  called second order rotatable when its mo-
ment matrix M(z) = l~f(t)f(t) 'dr is second order rotatable.

Again we first tackle the purely matrix oriented problem of characterizing sec-
ond order rotatable matrices.

Theorem 6.1. Let M be a symmetric k ×  k matrix. Then the following three
statements are equivalent:

(i) M is second order rotatable.
(ii) M is invariant under the finitely many matrices OR where R is any sign

change matrix, any permutation matrix, or the orthodiagonal reflection
(which, for m = 2, is replaced by the 45 ° rotation).

(iii) There exist scalars a ,  fl, y, 61, 62, 63~R such that M has the form

o 0  Vo''mM = film , (6.1)
y vec Im 0 F(61,62, 63).)

where  F(61,62 , 63) ---- 61 (Ira (~ Ira) Jr 62Im, m q- 63 (vec Im ) (vec I m )'.
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Proof." Part (i) implies (ii), since (ii) comprises fewer transformations than (i). Part
(iii) implies part (i), since by (5.8) and (5.4) we have

(R  ® R ) ( v e c  1.7) = v e c  ( R R ' )  = v e c  I m ,

(R @R)(lrn @ Im)(R' @ R') = (RR')  @ (RR')  = I m @ 1 m ,

(R (~ R)Im, m(R' (~ R') = Ira, m .

The latter property, invariance of the vec permutation matrix Im,m, is seen best
by postmultiplying by vec A with an arbitrary square matrix A ~ II~ m×'~, to obtain

(R (~ R ) Im, m (R ' ® R ') (vec A ) = (R ® R ) Im, m (vec R 'A R)
= (R @ R) vec (R'A 'R)

= vec ( R R ' A  'RR' )
= vecA'

= Im, m (vec A ) .

Hence F(O 1, 02, ~3) is invariant under R ® R, and M is invariant under QR.
It remains to show that part (ii) implies part (iii). To this end write M in the

partioned form

I b  a '  bc,1M =  B
C

(6.2)

A transformation by QR transforms M into

I (  a a' R '  b' (R' ® R') -~
QRMQ'R= Ra R B R '  R C ' ( R ' ® R ' )  l

R ® R ) b  ( R ® R ) C R '  ( R ® R ) D ( R ' ® R ' ) J
(6.3)

I. If, in the invariance relation Ra  = a, we insert the reflection R = - I n ,  then
a = 0 .
II. The invariance property R B R '  = B, for all sign changes and the orthodiagonal
reflection, entails B - - f i l  m for some scalar fl, by (4.2).
III. The vector b has m 2 entries and hence may be written as b = vec A for some
square matrix A e •rn ×m. The invariance property (R ® R)b  = b thus turns into
v e c ( R A R ' ) - - v e c A .  Varying R over all sign changes and the orthodiagonal
reflection, we see that A = 7Ira for some scalar y, again by (4.2). Hence
b = )'vec Ira.
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IV. I f  in the invariance relation ( R ® R ) C R ' = C  we insert the reflection
R = - I  m, then we obtain - C  = C, that is, C = 0.
V. It remains to exploit the invariance property

D = (R ® R ) D ( R '  ® R ' )  ,

for the t ransformat ions  R ment ioned in part  (ii). In  terms of  its entries

dij, kl = (el Q e j) '  D (e k (~ e t) ,

the matrix D takes the form

(6.4)

D= ~ ( e i ® e j ) ( e i ® e j ) ' D ( e k Q e t ) ( e k @ e t ) '
i,j, k, l

E a..k:ik®Ej,.
i , j ,k , l

(6.5)

Va.  First we consider the sign changes R = d e with e = (e  1 . . . . .  e m ) ' .  This yields

dij, kl = (ei ® e j ) 'D(ek  Q et)

= (ei ® ej ) ' (R ® R ) D ( R '  Q R ' ) ( ek  ® et) = eiejekeldij, kt • (6.6)

Inserting ei = +-1 etc. we see that  dij, k t vanishes provided we have four distinct
subscripts, or three distinct subscripts, or  two distinct subscripts o f  which one has
multiplicity 1 and the other  one has multiplicity 3. Because o f  2 2 4 F~iF. j . : -8  i : 1 no
reduct ion occurs for two distinct pairs o f  subscripts nor  for a single subscript o f
multiplicity 4. This reduces the subscript ranges in (6.5) to i = k = g j = l ,
i = l # : j = k ,  i = j ~ k = l ,  a n d i = j = k = l ,

D = E {dU, ijEii®Ejj+dij,jiEij®Eji+dii,jjEu®Eij}+ E dii, iiEii(~Eii , (6.7)
i ~ j i

and leaves 3 m ( m - 1 ) + m  = 3 m 2 - 2 m  coefficients to be determined.
Vb. Now we let R run th rough the permutat ion group P e r m ( m ) .  With
R -- ~ eye'~q) for some permutat ion n we have R ' e  i = en(i), and thus obtain

dij, kt = (el ® e j ) ' (R ® R ) D ( R '  ® R ' )  (ek ® et) = d,~(0,~q),,~(k),~(0 • (6.8)
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For the subscript ranges of  the four terms in (6.7) this entails

dij, i )=cons t=61  , say , for all i C j  ,

dij,ji = const = 8z , say , for all i ¢ j ,

dii,.O = const = 83 , say , for all i q: j ,

dii, i i = c o n s t = 8 4 ,  s a y ,  for all i .

(6.9)

This reduces representation (6.7) of  the matrix D to

D= E {81Eii® Ejj + a2Eij ® Eji+ 83Eij ® Eij} q-84 E Ei i® Eii
i--/:j i

(6.10)

which leaves us with 4 coefficients.
Vc. For our final argument we concentrate on the top left element d l l ,  l 1. From

(el ® eO' (R ® R)  (Elk ® Ejt) (R' ® R') (el @ eO = rlirljrlkrl! (6.11)

and (6.10) we get

d11,11 (81+82+83) ~ 2 2 = rlirlj+t~ 4 ~ r~i •
i--/=j i

(6.12)

The choice R = I,n yields d11.1t = ~4. For m > 2 another choice is the orthodia-

gonal reflection R = I m  - 2 lm lm. Comparing the resulting value for d11,11 with
84 we obtain m

0 = 8 ( m -  1) (m - 2) (81 + 82 + 83 -- 84)/m 3 . (6.13)

Because m > 2  it follows that 84 = 81"q- 82 + 83. Now (6.10) turns into D =
F(81, 82, 83), and M takes the form claimed in (6.1). This completes the proof
when the experimental conditions have m > 2 cgmponents.

o 1 / 1  - 1 \
Vd. I f  m = 2 we use the 45 r o t a t i o n R = ~ _ ~ l  1 ) .  The top left hand entry

d11,11 equals 84 before the transformation, and (81 + 82 + 83 + 84)/2 after the
transformation. This again yields 84 = 81 + 82 + 83. []
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The representation from Theorem 6.1 (iii) takes a special form in case of  mo-
ment matrices.

T h e o r e m  6.2. Let  M be a symmetric k × k  matrix. Then M is a second order
rotatable moment matrix on some experimental domain J -c  IR m if and only if

there exist scalars 22_>0 and 24_>mm+2 2 2 , . . ,  such that, with F m from (5.12), M

takes the form

21 0 2 VoC, ;. ]
M = 0 22Im (6.14)

2vec I  m 0 24F m J

Proof." For the direct part assume M to be a rotatable matrix as well as the mo-
ment matrix of a design z, say. Then, in (6.1), we must have y = fl = 22, as given
by (4.4). Similarly, the coefficients for the right bot tom block satisfy, for i :#j,

a I = dij, i j = (e i ® e))E~[(t ® t ) ( t  ® t)'l (ei ® ej) = ~ t ~ t 2 d r  = 24 , (6.15)

and ~2 = ~3 = 24 as well.
Nonnegative definiteness of the variance-covariance matrix of  t ® t under the

design r yields

VT[t ® tl = E~[(t ® t)(t ® t)'l-ET[t ® tlE~[t ® t]'

= 24Fro - 2 2 (vec Ira) (vec Im)'  • (6.16)

Hence the variance of t ' t  = (vec Ira)' (t ® t)  becomes

Varr [ t ' t  ] = 24 (vec Im) 'Fm(vec  I r a ) -  2 22(vec Ira)' (vec Ira) (vec Im)'(vec Ira)

= 2 4 ( m + m + m 2 )  - )~2m2

= m [ ( m + 2 ) 2 4 - m 2  2] . (6.17)

m 2 and the lower bound is attainable, for example,It follows that 24->m+222,

for the point arrangements mentioned in Box and Draper (1987, p. 489).



148                   

m
Conversely, let 22>_0 and ,~4 ~ /~2 be given. Clearly the matrix M in

m + 2
(6.14) is rotatable. We need to find a design z which has M for its moment matrix.
To this end we define

m ~.~e
a - - -  [ o ,  1 1 ,  ( 6 . 1 8 )

m+2/]'4

and choose r to be the probability measure assigning mass 1 - a to the origin and
distributing the remaining mass a uniformly over the sphere of radius

•ff 24 
r =  (m+2) ~-~2 (6.19)

Clearly the probability measure r is invariant under all rotations, whence its mo-
ment matrix M(r)  is rotatable. Furthermore, the moments 22(r) and 24(r) of r
satisfy

m
m22(r) = E J t~dr  = j t ' t d z =  a r  2 = rn3.2 ;

i=1

(m-1)A4(r)  = E J t2t~ dr  = J t ' t t Z l d z - J  t4dr  = r2Az(r) -324(z)
i>1

= (m+2)~. 4 -  3 ~4('f ')  .

It follows that )t2(z ) = 22 and , ~ 4 ( T ) =  2 4. Hence M ( r ) =  M, and the proof is
complete. []

Another convenient representation uses the following matrices corresponding
to the design moments of orders 0, 2, 4, respectively:

V o =  0 ,
0

Iv o1 o xo
V 2 = - ~ m eclm 0

(6.20)

(6.21)
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0 (6.22)
V4 - ] /3m(m+2)  0

It is easy to check that the matrices Vo, V2, V4 form an orthonormal system in
the space Sym (k) with inner product (V~., Vj) = trace Vi Vj.

Corollary 6.3. For a moment matrix M = ~ z(t)f(t)f(t) '  with
t~supp

r E= max {t't:tEsupp r}, the following three statements are equivalent:

(i) M is second order rotatable.
I m ;t~, rE

(ii) There exist scalars A2>_O, A4e ~ + 2  ~-2+2 ~2

M =  V0+AEl/3m V2+~a]/3m(m+2)V4.
(iii) M = V 0 + (trace M V2) V2 + (trace M V4) V4 •

such that

Proof." It only remains to establish the upper bound on A4- But, assuming that (i)
holds, we obtain

(m-l )~4:  ~ I tit~dr=2 2 It,tt2dz_It4dz<_r2A2_3A4 .
i>1

[]

The second order rotatable moment matrix M in (6.14) has eigenvalues 22
with multiplicity m, and 224 with multiplicity ~ m ( m + l ) - l .  The associated
projection matrices are, respectively,

io P 2  = , P 4  = 0 
0 G  

(6.23)

1where Gm= ~ (Ira Q Im + Ira, m)-  l__m (vec I m) (vec I m)'. This accounts for all but

two of the ~(rn+ 1)(m+2) degrees of  freedom. In order to investigate the re-
maining two eigenvalues we observe that

M =  STS'  + &2P2+ 2A4P 4 , (6.24)

where
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S =  , T =  m + 2  (6.25)
vec 2 2m

The nonvanishing eigenvalues of  STS' are the same as those of the 2 x 2  matrix
S'ST, and the latter has determinant

det (S'ST) = (m+2)~.4-mA 2 = d , say . (6.26)

Hence the rank of  M can attain only three values,

( ~ for 2 4 = 2 2 = 0 ;

r a n k M :  ( m + l ) ( m + 2 ) - I  for A4 = m 2 ~ > 0 ;
m + 2

L~ (m + l ) (m + 2) for ~4 > m ~ > 0 .
m + 2

(6.27)

m
When J.4>m_~2.... 2zz>0 the rank of  M is maximal. From (6.24), the Moore-

Penrose inverse of  M then is

M + =S(S,S)-1T-I(S,S)IS'+~2P2+2~-~4P4.

With d given by (6.26), M + thus has form (6.1) with

(6.28)

(m +2)A4 .
d

1/ ~ = - - ;
~-2

~-2.
d

1
01 = = 62 ;

4~. 4

1 1
md 2mA4

(6.29)



                                    151

The results of the present section also provide the foundation for the measures
of rotatability discussed in Draper and Pukelsheim (1990). Given an arbitrary mo-
ment matrix M its rotatable part, h~/say, is the projection of M onto the subspace
of rotatable matrices, namely

37/= V 0 + (trace M V2) V2 + (trace M V4) V 4 . (6.30)

Hence the rotatable part ] f / can  be interpreted as the fitted value obtained by
regressing M on V 0, V 2, and V 4. Measures of rotatability that suggest themselves
in this context are the squared distance

~2 = I I M _ M I I  2 = t r a c e  ( M - 2 f / )  2 , (6.31)

or the R2-type statistic

Q, IIM-v0112
- (6.32)

IIM_V0112 •

Hence, for rotatability the following statements are equivalent:

(i) M is second order rotatable,
(ii) M=_~7/,

(iii) j2 = 0,
(iv) Q* = 1.

For the practical uses to which Q* may be applied, see Draper and Pukelsheim
(1990).

M ' Alternatively the rotatable part ~ / i s  obtained by averaging QR QR over all
rotations R,

2VI = ~ Q R M Q ' R d R  , ( 6 . 3 3 )
Orth (m)

where dR is Haar probability measure on the orthogonal group Orth (m). This
fits into the majorization orderings of experimental designs discussed by
Giovagnoli and Wynn (1981; 1985a, b), Bondar (1983), Giovagnoli, Pukelsheim
and Wynn (1987), and Pukelsheim (1987a, b, c). From this point of view, if A is
a matrix in the set

conv {QRMQ'R: R ~Orth (m)} , (6.34)
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- the convex hull o f  the orbit of  M under rotations - then A is called more
rotatable than M. The rotatable part  M is the barycenter of  the set (6.34).

So far we have concentrated on second order moment  matrices. Next we turn
to their associated information surfaces.

7 Second Order Rotatability of Information Surfaces

Due to our choice of  second order representation which involves t ® t ,  all our sec-
ond order moment  matrices are singular. Hence before we define information sur-
faces, we prove a result which allows us to replace regular inverses by generalized
inverses.

Lemma 7.1. Let M be a moment  matrix of  rank ~-(m + 1)(m +2). Then the infor-
mation surface

iM(t)= ((1,t ' , t '®t')M- It l~tl )
-1

t ~  m , (7.1)

is well defined, that  is, the expression in braces is invariant to the choice of
generalized inverse M -  of  M, and is positive.

Proof" The idempotent and symmetric matrix

i0 0 0 ,1Pm = /m
0 -~(Im®lm+lm, m

(7.2)

say, is the orthogonal  projector onto its range (column space) LPc_ ~k, say. The
dimension of  ~ i s  rank Pm = trace Pm= ~ (m + l) (m + 2). For every vector t e ~ m
we have Pr, oe(t) = f ( t ) ,  as is seen by straightforward verification.

As a consequence, every moment  matrix M has a range that is a subspace of
~. Our assumption that rank M=~(m+l)(m+2) makes the range of  M is
equal to ~, entailing

MM + = Pm • (7.3)
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Hence given t~[R m, we define a = M + f ( t ) .  Then we have Ma = M M + f ( t ) =
Pmf(t)  = f ( t ) ,  and therefore f ( t ) ' M -  f ( t )  = a ' M M -  M a  = a'Ma,  independent-
ly of the specific choice of M .

Furthermore the quantity f ( t ) ' M - f ( t )  is positive, since otherwise a ' M a  = 0
leads to the contradiction

0 = M a  = f ( t )  ¢ 0 . []

We call (7.1) the information surface of M and say that it is rotatable when
iM(Rt) = iM(t) for all R e O r t h  (m) and t e r  m. Rotatability of the information
surface is implied by rotatability of moment matrices, as follows.

Theorem 7.2. Let M be a second order rotatable moment matrix (6.14), with

22 > 0 and 24 > m 2 2- Then the information surface iM is rotatable. More
m + 2

precisely, with d from (6.26) the information surface is, for te[R m,

i M ( t ) = d / I ( m + 2 ) 2 4 + ( m + 2 ) ( ~ 2 - 2 2 ) t ' t + ~ [ m + l - ( m  222] ( t ' t )21.
-- 1) 2 4 J

(7.4)

Proof" A rotatable moment matrix M has a Moore-Penrose inverse M + of the
form (6.1), with coefficients as given by (6.29). Inserting this representation into
iM(t) = I f ( t ) 'M + f(t)}-1 establishes (7.4) which clearly is rotatable. []

When the second moments are scaled to unity, 22 = 1, formula (7.4) reduces
to a result due to Box and Hunter (1957, p. 213, Eq. (48)).

Box and Hunter (1957, pp. 207-208)  demand as a starting point that the
variance surface

I I1 - ( 1 , t ' , t ' ® t ' ) M -  t (7 .5)VM(t) = iM(t) ®

is rotatable, and then deduce that the moment matrix M is rotatable, too. Their
brief argument suggests a trivial conclusion. However, there is more to prove than
there seems at first glance.

At this point it becomes crucial whether we admit moment matrices M, only,
or whether we endeavor to cover arbitrary nonnegative definit k x k  matrices A.
A second glance at the proof of I_emma 7.1 reveals that it makes sense to speak
of  the information surface ix whenever the nonnegative definite k x k  matrix A
has the same range as the projector Pm in (7.2). However, the hypothesis is false
that, for any such matrix A, rotatability if iA implies rotatability of A.
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The issue becomes more  transparent in terms of  the form

qA(t)=(l't"t'Qt')A It It tl® (7.6)

Since the rotatable symmetr ic  matrices fo rm a quadratic subspace by Lemma 2.2,
rotatability o f  A forces rotatability o f  A +. Hence our  hypothesis would entail
tha t  rotatability o f  qA +, via rotatability o f  A,  implies rotatability o f  A +
Therefore a simpler version o f  our  hypothesis is that  rotatability o f  the fo rm qA
implies rotatability o f  the matrix A.

The following counterexample is adapted f rom Koll (1980).

Counterexample 7.3. For m = 2 we have k = 7. Define the 7 × 7 matrix

A ( e )  =

0

0

1

2

C

2

C

2

1

2

1 e e 1"
0 0

2 2 2 2

1 e 0 0 0 0

e 1 0 0 0 0

1
0 0 - 0 0 0

2

1 1
0 0 0 - - 0

4 4

1 1
0 0 0 - - 0

4 4

0 0 0 0 0 1
2_.

(7.7)

According to (6.29) the matrix A (0) is the Moore-Penrose inverse o f  the momen t
matr ix (6.14) with 22 = A4 = 1. Augment ing  some o f  its entries by e or  - e / 2  pro-
duces A(e) as shown in (7.7). Straightforward evaluation yields, for
X = (X 1 . . . . .  X7)' E 1~ 7,

2 (xl -x4)2 + 2 (xl (xt - x 5

+ (1-- e ) (X2 -i- X2) + e (X2 + X3)2 -i- ~ (~  -- C,) (Xs -k X6) 2 . (7.8)
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Hence if ee[0,~-] then A ( e )  is nonnegative definite, and since its nullspace is
spanned by the vector x e  •7 with components

x l = x z = x 3 = x 4 = x 7 = O  , x s = - x 6  , (7.9)

we see that  A (e) has the same range as P2 in (7.2).
All o f  the forms qA(c) are rotatable, as follows from

qa(~)(t) = qA(o)(t)+ 2etl tz-- 2etl t2 = qA(o)(t) (7.10)

and the rotatability o f  the matrix A (0). The latter is verified by inspection f rom
(6.1). In  the same way we see that  the matrices A ( e )  with ee(0,½] are not
rotatable. []

The problem is resolved by restricting attention to moment  matrices M, only.
Since the momen t  matrix property o f  M does not  tell us enough of  the structure
o f  M ÷ , we cannot  present a unified treatment as in the first order discussion of
Theorem 4.4. Instead we offer two separate derivations depending on whether we
assume rotatability o f  iM, or of  qM. The proof  o f  the converse o f  Theorem 7.2
is based on a matrix lemma.

Lemma 7.4. Let A be a nonnegative definite k × k  matrix. Then  A is idempotent
if and only if

trace A = trace A + = rank A . (7.11)

Proof" The direct part  is folklore. For the converse par t  let y~ . . . . .  Yr be the
positive eigenvalues o f  A,  repeated according to their multiplicities. Then (7.11)
entails

/ l"x
{Yi --" } = t r a c e A + t r a c e A  + = 2 r a n k A  = 2r  + @\ -  y j /j = l

(7.12)

Since for y > 0 the min imum of  y + 1/y equals 2 and is attained only at y = 1, it
follows from (7.12) that  y~ . . . . .  Yr = 1. Hence A is idempotent .  [ ]

Theorem 7.5. A momen t  matrix M of  rank ( m + l ) ( m + 2 ) / 2  is second order
rotatable if and only if the informat ion  surface i M or the variance surface Vu is
rotatable.
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Proof" The  direct  par t  is Theorem 7.2. For  the converse par t  fix a ro ta t ion
R e O r t h  (m)  and  def ine

A = M1/2Q'RM+ QRM 1/2 . (7.13)

There  is a design r which has m o m e n t  mat r ix  M. Rota tab i l i ty  o f  VM(t ) =
f ( t ) ' M +  f ( t )  entai ls

t race A = t race M Q ' ~ M  + QR
1 1

= ~ r ( t i ) f ( t i ) 'Q 'RM+QRf( t i )= ~ r ( t i ) f ( t i ) 'M+f( t i )
i = 1 i = I

= trace M M  ÷ = rank Pm , (7.14)

by  (7.3). Next we observe tha t  the  matr ices  QR and Pm commute ,  QRPm =
PmQR" This  is easily seen to be equivalent  to (R Q R ) I m ,  m = Im, m(R (~R) ,  and
the  la t ter  follows by pos tmul t ip ly ing  with vec A where A is an a rb i t r a ry  square
m x m matr ix :

(R ~ R)Im, m vec A = (R ® R )  vec (A ') = vec (RA  'R')

=Im, m vec (R A R')  =Im, m (e Q R ) v e c A  .

Therefore  we ob ta in

QRMI/2M+ I/2 Q'R = QRPmQ'R =Pm • (7.15)

Hence  the Moore -Penrose  inverse o f  A is easily verif ied to be

A + = M + I / Z Q k M Q R M  +1/2 (7.16)

Wi th  Q k  = QR' the  invar iance o f  vM yields,  as in (7.14),

trace A + = trace M Q R M  + Q~ = trace M M  + = rank Pm • (7.17)

F r o m  QR'Pm =Pm QR' and  nons ingu la r i ty  o f  QR' we get
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rank A = rank M I/2 Q'RM + l/2 = rank M + I/2MI/2 Q'RM + 1 / 2 M t / 2

= rank PmQ'RP m = rank Pm • (7.18)

Thus (7.14), (7.17), and (7.18) verify (7.11) whence A is idempotent.
Inserting (7.13) into A 2 =  A we get

MI/2Q'RM+ QRMQ'R M+ QR M1/2 = M1/2Q'RM+ QR M1/2 . (7.19)

In view of  (7.15) this simplifies by pre- and postmultiplication with QRM +1/1
and M + 1/2 Qk, respectively,

M + QRMQ'RM + = M + (7.20)

Finally we pre- and postmultiply by M. Becaue of M M  + QR = Pm QR = QRPm
we obtain QRMQ'R = M. Since R~Or th  (m) is arbitrary, M is rotatable. []

Our final result shows that rotatability of the form qM implies rotatability of
M provided M is a moment matrix.

Theorem 7.6. A moment matrix M is second order rotatable if and only if the
form qM of (7.6) is rotatable.

Proof" If  M is rotatable then from (6.14) we get qM(t)= 1 +3~.2t ' t+324(t ' t )  2
which is clearly rotatable.

Conversely let qM be rotatable, and fix a transformation Qn. Then we have

trace Q ' R M Q R f ( t ) f ( t ) ' = t r a c e M f ( t ) f ( t ) ' ,  for all t e l .  (7.21)

This means that, relative to the inner product U I , B ) =  traceAB, the matrix
' M  QR Q n - M i s  orthogonal to all matr ices f ( t ) f ( t ) '  with t e J .  Denoting by ~,°the

subspace of symmetric matrices that is generated by f ( t ) f ( t ) '  with t e f , ,  we get

Q'RMQR - M  ± ~/'. (7.22)

On the other hand there is a design z which has M for its moment matrix, leading
to
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1
M = ~ r ( t i ) f ( t i ) f ( t i ) ' ~ ,

i = 1
1

Q'RMQR = ~ r ( t i ) f ( R ' t i ) f ( R ' t i ) ' ~  9~.
i = 1

Hence Q ' R M Q R - M  itself is a member of ~. Because of (7.22) then Q'~MQR =
M. Since R~Orth  (m) is arbitrary, M is invariant. []

8 Second Order Rotatability of Experimental Designs

Can one actually obtain second order rotatable experimental designs? The answer
is yes, and there are many published examples available. First of all, it is always
possible to find measure designs (designs whose support does not necessarily con-
sist of finitely many points, but of measure allocated to points or regions). For
a discussion see, for example, Neumaier and Seidel (1990), or Kiefer (1985).
Discrete point designs can be achieved by combining sets of points on concentric
spheres. For a general discussion, see Seymour and Zaslavsky (1984). In practical
experimental work, the emphasis is on designs with a relatively small number of
points; for point sets, see Coxeter (1963, pp. 292-295). For specific designs see,
for example, Box and Carter (1959), Box and Draper (1959), Box and Behnken
(1960a, b), Box and Hunter (1957), Draper (1960), Draper and Herzberg (1968),
Herzberg (1967), Huda (1981), Nigam (1977), Nigam and Das (1966), Nigam and
Dey (1970), Raghavarao (1963), and Singh (1979). In general, any specified
rotatable matrix can be achieved by a design consisting of a combination of sym-
metric sets of design points on concentric spheres.

9 Equivalence of Second Order Regression Functions

In models for a second order polynomial fit the regression function f :  IR m ~ R k
can be expressed in at least three distinct ways, using the Kronecker product nota-
tion, the Schl~iflian notation, or the Box-Hunter minimal set of  monomials:



                                    159

It l t l l  k = ½ ( m + l ) ( m + 2 )f s ( t )  = [z '

fBH( t )  (1, t l , .  tm ' t 2 , . .  2 = . . ,  . , tm ,  t t t 2 , . . . , t m _ l t m )  , k =  ~ (m+l ) (m+2)  .
(9.1)

Let the corresponding moment matrices be M j  = ~ r(t)fs(t)fs(t)', for J =
K, S, B H .  t 6 s u p p  r

L e m m a  9.L We have rankMr = ( m +  l ) ( m +  2 ) /2  if and only if M s is positive
definite if and only if Msn is positive definite. In this case the three correspond-
ing variance surfaces all coincide:

f l ( ( t ) ' M x f l ~ ( t )  = f m - i ( t ) ' M ~ i f m 4 ( t )  = f s ( t ) ' M s  l f s ( t )  , (9.2)

as do the three corresponding information surfaces.

Proof." The three different expressions for the regression functions in (9.1) lead to
the following respective differences in the portions of (9.2) related to the intersec-
tion of cross-product columns and rows in the moment matrices:

k4 2 \ t i t j /  ' t t t 2 ~ / 2 ( 2 2 4 ) - 1 t ~ t 2 V ~ '  t l t 2 ( 2 4 ) - l t l t 2  .

These portions are orthogonal to all other pieces of (9.2) and the other pieces are
identical for all representations. The second and third portions of (9.3) are ob-
viously identical, and equal to t2 t2 /24  . By Lemma 7.3, any generalized inverse
can be used in the first portion. Two obvious choices are

41A4C 11) and 21(10 00) ,

both of which, again, give t2t2/A4 . []

The implication of Lemma 9.1 is that rotatability is the same whether defined
in the Kronecker calculus using Mx, in the Schlt/flian calculus M s, or in the Box-
Hunter calculus MBH. Another way of establishing Lemma 9.1 is furnished by
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r e p a r a m e t r i z a t i o n  a r g u m e n t s  as in G a f f k e  (1987), re -express ing  f K, fs, a n d  fBH as
l inear  t r a n s f o r m a t i o n s  o f  one  ano ther .

As  an  as ide  we m e n t i o n  t h a t  the  o r ig in  o f  t he  t e r m  " S c h l ~ f l i a n  m a t r i x "  re-
m a i n s  u n c l e a r  to  us. Refe rence  to  Sch la f l i ' s  w o r k  m a y  o r ig ina t e  wi th  M u i r  (1911,
pp.  5 2 -  53) w h o  q u o t e s  Sch la f l i  (1851) wi th  a t h e o r e m  on  d e t e r m i n a n t s  t h a t  re la te
to  p o l y n o m i a l s  o f  degree  r. T h e  t e r m  " S c h l a f l i a n  m a t r i x "  is used  in A i t k e n  (1949,
p. 60), b u t  n o t  in A i t k e n  (1951, p. 137f).

In  m a t r i x  a lgeb ra  o t h e r  n a m e s  prevail .  W e d d e r b u r n  (1934, p. 75) speaks  o f
" i n d u c e d  o r  power  ma t r i ces" .  M a r c u s  a n d  M i n c  (1964, p. 20) a n d  M i n c  (1978, p.
87) use  t h e  t e r m  " i n d u c e d  ma t r i x " .  T h e  a p p r o a c h  in t hose  b o o k s  does  n o t  readi ly
reveal  t he  p rope r t i e s  t ha t  are  n e e d e d  in o u r  s ta t i s t ica l  con tex t ;  the  c loses t  we cou ld
f ind  is t he  f o r m u l a  on  the  t o p  o f  p a g e  90 in M i n c  (1978).
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