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Abstract. The Mondex case study about the specification and refine-
ment of an electronic purse as defined in [SCJ00] has recently been pro-
posed as a challenge for formal system-supported verification. This paper
reports on the successful verification of the major part of the case study
using the KIV specification and verification system. We demonstrate that
even though the hand-made proofs were elaborated to an enormous level
of detail we still could find small errors in the underlying data refinement
theory as well as the formal proofs of the case study.

We also provide an alternative formalisation of the communication pro-
tocol using abstract state machines.

Finally the Mondex case study verifies functional correctness assuming a
suitable security protocol. Therefore we propose to extend the case study
to include the verification of a suitable security protocol.

1 Introduction

Mondex smart cards implement an electronic purse [MCI]. They have become
famous for having been the target of the first ITSEC evaluation of the highest
level E6 [CB99], which requires formal specification and verification.

The formal specification and proofs were done in [SCJ00] using the Z speci-
fication language [Spi92]. Two models of electronic purses were defined: an ab-
stract one which models the transfer of money between purses as elementary
transactions, and a concrete level that implements money transfer using a com-
munication protocol that can cope with lost messages using a suitable logging of
failed transfers. A suitable data refinement theory was developed in [CSW02].

Although the refinement proofs based on this theory were done manually
(with an auxiliary type checker) they were elaborated to the details of almost
calculus level. The Mondex case study has been recently proposed as a challenge
for theorem provers [Woo06].

In this paper we show that verifying the refinement mechanically using the
KIV theorem prover can be done within a few weeks of work. We verify the full
Mondex case study except for the operations that archive failure logs from a
smart card to a central archive. These are orthogonal to the protocol for money
transfer.



The proofs of the Mondex case study are too big to be presented completely
within a technical report ([SCJ00] has 240 pages, [CSW02] additional 54 pages,
the proof details of the mechanized proofs which are even more detailed could
easily fill hundreds of pages. Therefore, we will often refer to [SCJ00] for com-
parison. To view the details of the KIV proofs we have prepared and a Web
presentation of the full KIV specifications and of all proofs, which can be found
at [KIV]. The interested reader can find all details there.

Nevertheless we have tried to extract the core of the refinement problem and
to give a concise definition of the case study in section 2. To this purpose we
introduce the case study using abstract state machines (ASM, [Gur95], [BS03]).
Since the relational approach of Z is quite different from the operational de-
scription of ASMs this paper can also be used to compare the two specification
styles. To check the adequacy of the ASM formalization we have also verified the
central proof obligations of [SCJ00]: backward simulation and an invariant for
the concrete level. We discuss these proofs, their structure and the differences
to the original proof in section 3. Doing them was sufficient to uncover small
problems in the invariant of the concrete level.

While the proofs could be elaborated to a full ASM refinement proof which
would be our traditional verification approach ([BR95], [Sch01], [Bör03]), we
decided to mimic the data refinement proofs faithfully to succeed in verifying
the challenge. Therefore we formalized the underlying data refinement theory.
We report on a correction for this theory and an extension using invariants in
section 4.

Finally we instantiated the data refinement theory with the operations of
the Mondex case study. Our proofs improve the ones of [SCJ00] by using one
refinement instead of two. Section 5 also reports on the additional complexity
caused by using operations similar to Z instead of a simple ASM, and gives some
statistics of the effort required.

When we discovered the Mondex case study, we were astonished to find that
it has been given the highest security level ITSEC E6, when in fact the case
study assumes a suitable security protocol rather than proving it. Since the real
security protocol of Mondex smart cards has never been published, we discuss a
probable security protocol in section 6 and propose a refinement of the concrete
Mondex level to a specification, that includes such a security protocol as an
extension of the case study.

Finally, we conclude in section 7.

2 Two Simple ASMs for the Mondex Case Study

The Mondex case study is based on smart cards that are being used as electronic
purses. Each card has a balance and may be used to transfer money to other
cards. Unfortunately it is very hard to get a clear picture of their use in real life.
The original web site [MCI] says that the smart cards are used to transfer money
over the internet using a card reader on each end. [RE03] says one card reader
is used, the ‘from’ purse (where money is taken from) is first put in the card
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reader, then the ’to’ purse (which receives the money). This seems not really
compatible with the protocol given later on. Finally, the Mondex paper [SCJ00]
and the ITSEC evaluation [CB99] suggest an interface device, which seems to be
a card reader with two slots, where both cards can be inserted simultaneously.
It is also not clear how cryptography is used, [RSA04,CCW96] suggest, that this
was never disclosed, and that the Mondex card therefore is a classical example
of “security by obscurity”. Maybe this is the reason why a security protocol is
not considered in the Mondex case study.

The smart cards of the formal specification are specified on two levels: An
abstract level which defines transfer of money between purses as an atomic trans-
action, and a concrete level which defines a protocol to transfer money.

In this section we now give an alternative version of the Mondex refinement
problem using abstract state machines (ASMs, [Gur95], [BS03]) and algebraic
specifications as used in KIV [RSSB98].

The abstract state machines can also be found on the Web [KIV] in the
Mondex project as simple-AASM and simple-BASM. We have tried to stay as
close as possible to the notation of the original Mondex case study, but we have
removed all details that we thought were not essential to understand the problem
described by the Mondex refinement.

2.1 The Abstract Level

The abstract specification of a purse consists of a function balance from purse
names to their current balance. Since the transfer of money from one to another
purse may fail (due to the card being pulled abruptly from the card reader, or
for internal reasons like lack of memory) the state of an abstract purse also must
log the amount of money that has been lost in such failed transfers.

In the formalism of ASMs this means that the abstract state consists of two
dynamic functions

balance : name → IN
lost : name → IN

Purses may be faked, so we have a finite number of names which satisfy a
predicate authentic1. How authenticity is checked (using secret keys, pins etc.)
is left open on both levels of the specification, so the predicate is simply left
unspecified. We will come back to this point in section 6.

Transfer of money between authentic purses is done with the following simple
ASM rule2

1 In the original Z specification, authentic is defined to be the domain of partial
AbAuthPurse and ConAuthPurse functions. For simplicity, we use total functions in-
stead, and use authentic to restrict their domain.

2 By convention our rule names end with a # sign to distinguish them from predicates.
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ABTRANSFER#
choose fail?, value, from, to
with authentic(from) ∧ authentic(to) ∧ from 6= to ∧ value ≤ balance(from)
in if ¬ fail?

then balance(from) := balance(from) − value
balance(to) := balance(to) + value

else balance(from) := balance(from) − value
lost(from) := lost(from) + value

The rule nondeterministically chooses two different, authentic purses with
names from and to, and an amount value for which the from purse has enough
money and transfers it. The transfer may fail for internal reasons as indicated
by the randomly chosen boolean variable fail?. In this case the from purse logs
the lost money in its lost component.

This already completes the specification of the abstract level. Compared to
the Z specification in [SCJ00] we have left out the operation ABIGNORE# which
skips (i.e. does nothing): In data refinement such a skip operation is needed,
since every operation must be refined by a 1:1 diagram. ASM refinement directly
allows to use 0:1 diagrams, therefore such a skip operation is not needed.

2.2 The Concrete Level

On the concrete level transferring money is done using a protocol with 5 steps.
To execute the protocol, each purse needs a status that indicates how far it has
progressed executing the protocol. The possible states a purse may be in are
given by the enumeration status = idle | epr | epv | epa. Compared to [SCJ00] we
have merged the two states eaFrom and eaTo into one idle state. The behavior
of a purse in eaTo state is exactly the same as that of a purse in eaFrom state,
so we saw no necessity to distinguish them.

Purses not participating in any transfer are in the idle state. To avoid replay
attacks each purse stores a sequence number nextSeqNo that can be used in the
next transaction. This number is incremented during any run of the protocol.
During the run of the protocol each purse stores the current payment details in
a variable pdAuth of type PayDetails. These are tuples consisting of the names
of the from and to purse, the transaction numbers these use for this transaction
and the amount of money that is transferred. In KIV we define a free data type
PayDetails =

mkpd(. .from : name; . .fromno : nat; . .to : name; . .tono : nat; . .value : nat)
with postfix selectors (so pd.from is the name of the from purse stored in payment
details pd). The state of a purse finally contains a log exLog of failed transfers
represented by their payment details. The protocol is executed sending messages
between the purses. The ether collects all messages that are currently available.
A purse receives a message by selecting a message from the ether. Since the
environment of the card is assumed to be hostile the message received may be
any message that has already been sent, not just one that is directed to the
card (this simple model of available messages is also used in many abstract
specifications of security protocols, e.g. the traces of [Pau98]). The state of the
concrete ASM therefore is:
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balance : name → IN
state : name → status
pdAuth : name → PayDetails
exLog : name → set(PayDetails)
ether : set(message)

The protocol is started by two messages startFrom(msgna, value,msgno) and
startTo(msgna, value,msgno) which are sent to the from and to purse respectively
by the interface device. These two messages are assumed to be always available,
so the initial ether already contains every such message. The arguments msgna
and msgno of startFrom(msgna, value,msgno) are assumed to be the name and
nextSeqNo of the to purse, value is the amount of value transfered. Similarly, for
startTo(msgna, value,msgno) msgna and msgno are the corresponding data of the
from purse.

On receiving a startFrom message msg from ether in the idle state a purse
named receiver3 executes the following step:

STARTFROM#
let msgna = msg.name, value = msg.value,msgno = msg.nextSeqNo
in if authentic(msgna) ∧ ¬ fail? ∧ receiver 6= msgna

∧ value ≤ balance(receiver)
then choose n with nextSeqNo(receiver) < n in

pdAuth(receiver) := mkpd(receiver, nextSeqNo(receiver),
msgna,msgno, value)

status(receiver) := epr
nextSeqNo(receiver) := n
outmsg := ⊥

else outmsg := ⊥

If the purse msgna which shall receive money is not authentic, the receiver
purse has not enough money or the transition fails due to internal reasons (a flag
fail? is used for this purpose just as on the abstract level), then the purse sim-
ply produces an empty output message ⊥ and does nothing else. Otherwise the
purse stores the requested transfer in its pdAuth component, using its current
nextSeqNo number as one component and proceeds to the epr state (“expect-
ing request”). Thereby it becomes the from purse of the current transaction.
nextSeqNo is incremented to make it unavailable in further transactions. An
empty output message ⊥ is generated in the success case too that will be added
to the ether (see the full ASM rule below).

The action for a purse receiving a startTo message in idle state is similar
except that it goes into the epv state (“expecting value”) and becomes the to
purse of the transaction. Additionally it sends a request message to the from
purse:

3 receiver is always a purse receiving a message. This can be a from purse sending
money as well as a to purse receiving money and should not be confused with the
latter.
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STARTTO#
let msgna = msg.name, value = msg.value,msgno = msg.nextSeqNo
in if authentic(msgna) ∧ ¬ fail ∧ receiver 6= msgna

then choose n with nextSeqNo(receiver) < n in
pdAuth(receiver) := mkpd(msgna,msgno, receiver,

nextSeqNo(receiver), value)
state(receiver) := epv seq
outmsg := req(pdAuth(receiver))
nextSeqNo(receiver) := n

else outmsg := ⊥

The request message req(pdAuth(receiver)) contains the payment details of
the current transaction. Although this is not modeled, the message is assumed to
be securely encrypted. Since an attacker can therefore never guess this message
before it is sent, it is assumed that the initial ether does not contain any request
message. When the from purse receives the request in state epr it executes

REQ#
if msg = req(pdAuth(receiver)) ∧ ¬ fail?
then balance(receiver) := balance(receiver) − pdAuth(receiver).value

state(receiver) := epa
outmsg := val(pdAuth(receiver))

else outmsg := ⊥

The message is checked to be consistent with the current transaction stored in
pdAuth and if this is the case the money is sent with an encrypted value message
val(pdAuth(receiver)). The state changes to epa (“expecting acknowledge”). On
receiving the value the to purse does

VAL#
if msg = val(pdAuth(receiver)) ∧ ¬ fail?
then balance(receiver) := balance(receiver) + pdAuth(receiver).value

state(receiver) := idle
outmsg := ack(pdAuth(receiver))

else outmsg := ⊥

It adds the money to its balance, sends an encrypted acknowledge message
back and finishes the transaction by going back to state idle. When this acknowl-
edge message is received the from purse finishes similarly:

ACK#
if msg = ack(pdAuth(receiver)) ∧ ¬ fail?
then state(receiver) := idle

outmsg := ⊥
else outmsg := ⊥

To put the steps together it finally remains to define the full ASM rule BOP#4

which executes all the steps above:

4 BOP# is called BSTEP# in the web presentation.
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BOP#
choose msg, fail?, receiver with msg ∈ ether ∧ authentic(receiver) in

if isStartTo(msg) ∧ state(receiver) = idle then STARTTO#
else if isStartFrom(msg) ∧ state(receiver) = idle then STARTFROM#
else if isreq(msg) ∧ state(receiver) = epr then REQ#
else if isval(msg) ∧ state(receiver) = epv then VAL#
else if isack(msg) ∧ state(receiver) = epa then ACK#
else ABORT#
seq ether := ether ++ outmsg

The ASM rule chooses an authentic receiver for some message msg from ether.
Like in the abstract ASM the fail? flag indicates failure due to internal reasons.
At the end of the rule the produced outmsg is added to the set ether of available
messages. Therefore our ASM corresponds to the “between” level as defined in
[SCJ00]. For the concrete level the ether is assumed to lose messages randomly
(due to an attacker or technical reasons like power failure). Therefore an ASM
that models the concrete level replaces the last assignment with

LOSEMSG#
choose ether′ with ether′ ⊆ ether ++ outmsg in ether := ether′

If a purse is sent an illegal message ⊥ or a message for which it is not in the
correct state the current transaction is aborted by

ABORT#
choose n with nextSeqNo(receiver) ≤ n in

LOGIFNEEDED#
state(receiver) := idle
nextSeqNo(receiver) := n
outmsg := ⊥

LOGIFNEEDED#
if state(receiver) = epa ∨ state(receiver) = epv
then exLog(receiver) := exLog(receiver) ++ pdAuth(receiver)

This action logs if money is lost due to aborting a transaction. The idea is
that the lost money of the abstract level can be recovered by comparing the two
logs of the from and to purse involved. Logging takes place if either the purse is
a to purse in the critical state epv or a from purse in critical state epa.

This completes the description of the concrete level. It remains to summarize
the free data type of messages:

message =
startFrom(. .name : name; ..value : nat; . .nextSeqNo : nat; ) with isStartFrom

| startTo(. .name : name; . .value : nat; . .nextSeqNo : nat; ) with isStartTo
| req(. .pd : PayDetails)withisreq
| val(. .pd : PayDetails)withisval
| ack(. .pd : PayDetails)withisack
| ⊥

Compared to the Z specification we have done several simplifications and
modifications:
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– We have removed the global input. Since input must be from ether anyway,
it can be chosen from there directly. Of course we lose the correspondence
of inputs, but this does not really seem relevant.

– STARTFROM# and STARTTO# are prefixed with ABORT# in the origi-
nal specification: this is not really necessary since the ASM can execute an
ABORT# at any time by choosing an input ⊥ from ether. This simplification
is also motivated by the fact that invariance and backward simulation proofs
in [SCJ00] use the same lemma for ABORT# regardless whether it is used
as prefix of STARTFROM# or separately.

– STARTFROM#, STARTTO# execute an ABORT# in the else case: same
reason as for the previous simplification.

– All operations are in a disjunct with an IGNORE# operations in the original
specification, which does nothing. This seems necessary only since the Z
specification requires all operations to be total. While the ASM rule, which
essentially is equivalent to the disjunction of all Z operations is total too,
it is not necessary that each individual action is always applicable. If not,
the ASM simply chooses another case. To be fully equivalent we could add
a case that ignores the input message completely.

– The duplicate use of names as elements of the domain of ConAuthPurse as
well as as components of purses has been avoided.

– The ASM specification is defined using operational style rules instead of
relational style. From our point of view this is simpler: We have avoided to
use promotion to lift specifications of one purse to the specification of several
purses. We also avoided the numerous Z schemas which are necessary to say
that some variables do not change in an operation (frame problem).

3 Verification of Backward Simulation and Invariance for

the ASMs

The ASMs of the previous section were not intended to be a 1:1 representation
of the original Z operations. Rather they were intended as a concise description
of the essential refinement problem contained in the case study. To check this
we tried to prove the main theorems of the Mondex case study for these ASMs,
namely

– The concrete ASM preserves the invariant BINV, that is used to restrict the
“concrete” state to the “between” state ([SCJ00], sections 28-29).

– The concrete ASM satisfies the correctness condition of backward refinement
using a backward simulation ABINV ([SCJ00], sections 14-20).

This section reports on the results. The first thing we had to do is to extract
the properties of the invariants from the Z specification. We found that they are
distributed in 3 places:

– The property of payment details that requires pd.from 6= pd.to for every rel-
evant pd used (Section 4.3.2).
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– The properties of purses P-1 to P-4 (section 4.6).
– The properties B-1 to B-16 of the intermediate state that define an invariant

for the concrete state (section 5.3).

Collecting these properties and the required definitions of AuxWorld (section
5.2) results in the specification for BINV given in Appendix 8. These definitions
can also be found in the specification BINV in project Mondex on the web [KIV].

Compared to the original definitions there are the following minor differences:

– The properties have been grouped into predicates lifting out the universal
quantifiers. This allows to define rewrite rules for the predicates (to avoid
unfolding altogether) and to instantiate the universal quantifier of several
properties at once.

– The properties of state eaTo have been dropped altogether since this state
has been merged with idle.

– The predicates are not defined in the context of a Z schema. We have to
provide parameters explicitly.

The main interesting modification is that we had to strengthen properties
P-3 and P-4. We found that although the proofs of [SCJ00] are very detailed
they still contain minor flaws. The problems were detected when the proof for
invariance theorem BINV failed. This theorem is written using Dynamic Logic
[HKT00] and proved in KIV using sequent calculus:

BINV(cs) ⊢ 〈|BOP#(; cs)|〉 BINV(cs)

⊢ is the sequent arrow (semantics: the conjunction of antecedent formulas
before the sequent arrow implies the disjunction of succedent formulas after
the sequent arrow). cs is the vector of variables that denote the concrete state,
i.e. cs = balance, status, nextSeqNo, pdAuth, ether. 〈|BOP#(; cs)|〉 BINV(cs) states
that all runs of BOP# terminate in a state where BINV holds again. Using
wp-calculus this is wp(BOP#(; cs),BINV(cs)). Using relational calculus and a
relation BOP the property would be equivalent to

∀ cs. BINV(cs) → cs ∈ dom(BOP) ∧ ∀ cs′. BOP(cs, cs′) → BINV(cs′)

The first proof for the invariance theorem used the original properties P-3
and P-4. Specification BINV-orig on [KIV] contains a failed proof attempt. Its
first open premise is one of the subgoals for proving invariance of etherok in
the proof of VAL#. The case can be traced back to the original Mondex paper.
The problem is in section 29.4 in the proof of B-10 where it must be proved
that toInEpv ∨ toLogged ⇒ req ∧ ¬ ack for every payment details pd. Now the
problem is as follows: the implication can be proved for pdAuth(receiver), where
receiver is the (to) purse receiving the val message (to which it responds with an
ack message). But this is not sufficient: if it would be possible that receiver is
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different from na := pdAuth(receiver).to but has status(na) = epv and pdAuth(na)
= pdAuth(receiver), then for this na the implication would be violated.

The open premise of the KIV proof shows exactly this situation5.

state(receiver) = epv, state(pdAuth(receiver).to) = epv,
pdAuth(receiver) = pdAuth(pdAuth(receiver).to),
authentic(pdAuth(receiver).from), authentic(receiver),
val(pdAuth(receiver)) ∈ ether, receiver 6= pdAuth(receiver).to,
ack(pdAuth(receiver)) 6∈ ether, . . . ⊢

The solution to this problem is obvious: add pdAuth(receiver).to = receiver
when status(receiver) = epv to P-3.

A similar problem also exists for status(receiver) = epa (property P-4) where
pdAuth(receiver).from = receiver has to be known (second open goal in the proof).
Finally, we had to add the fact that every val(pd) message in the ether has
authentic(pd.from). Like property authentic(pd.to) (B-1) is needed to make the
application of partial function ConAuthPurse to pd.to defined in B-2, this prop-
erty is needed in order to have a determined value for ConAuthPurse pd.from in
B-3 (the proof of BINV in BINV-orig already has this property added).

We also added the requirement that pdAuth(receiver).to resp. .from must be
authentic to P-3 and P-4. In early proof attempts this seemed necessary since
these lacked the authentic clauses in the definition of the predicates toInEpr,
toInEpv and toInEpa. After adding such clauses this addition to P-3 and P-4
may be redundant.

We did not copy the elaborated proof structure of [SCJ00], which uses a
lot of lemmata (some of which require the state eaTo to be present). Rather
the standard heuristics and automation features of KIV (simplifier rules and
problem specific patterns to guide the proof search) as described in [RSSB98]
were sufficient for the proof. Nevertheless, in some situations where it was not
clear why our proof got stuck it was helpful to cross-check details in the original
proofs. The resulting proof structure is shown in Fig. 3.

1. The proof starts with goal (1) and symbolic execution of BOP#. This builds
up a proof tree of sequent calculus (with the root being the initial goal at
the bottom, expanding leaves to give simpler and simpler goals). We get
a number of subgoals of the form (2), one for each case as defined by the
control structure of the operation. Γ0 contains the information about the
current case. cs′ contains the appropriately modified state after execution of
BOP#.

2. Now both definitions of BINV are unfolded, and after splitting cases we get 4
goals of the form (3), one for each predicate pj = purseok, etherok, exLogok,
logsfin. If the relevant arguments of these predicates are identical the goal is
closed immediately. The goal for logsfin is always closed immediately using
some rewrite rules.

5 for better readability we only show some of the formulas and moved formulas in the
succedent to the antecedent negating them.
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3. For the remaining goals both definitions of p are unfolded. These defini-
tion all have the form p(x) ↔ ∀ y.ϕ(x, y) (where y is either some payment
details or the name of a purse). In the succedent the quantifier becomes a
new variable, the quantifier on the left is instantiated with the same vari-
able. Since another instance of this quantifier is never needed it is discarded
immediately, resulting in goal (4). Γ1 contains the remaining predicates pi.

4. Up to this point the proof has been completely automatic and after some
case splits we basically arrive at the level, where single properties have to be
proved, comparable to the goals in sections 16–29 of [SCJ00].

5. Many of the goals are now proven automatically using simple rewrite rules6

like

fromInEpa(pd, pdAuth[receiver; pd0], state[receiver; stat])
↔ ( pd.from = receiver ∧ authentic(receiver)

⊃ stat = epa ∧ pd0 = pd; fromInEpa(pd, pdAuth, state))

Some however need some additional interactions to unfold some of the other
predicates from Γ1.

(1)

(2)

(3)

(4)

BINV(cs), Γ0 ⊢ BINV(cs′)

∀ y′.ϕ(cs, y′), Γ0, Γ1 ⊢ ϕ(cs′, y)

p1(cs), . . . , pi(cs), Γ0 ⊢ p1(cs
′) ∧ . . . ∧ pi(cs

′)

BINV(cs) ⊢ 〈|BOP#(; cs)|〉 BINV(cs)

p1(cs), . . . , pi(cs), Γ0 ⊢ pj(cs
′)

ϕ1(cs, y), ϕ2(cs, y), . . . , ϕk(cs, y), Γ0, Γ1

⊢ ϕ1(cs
′, y) ∧ ϕ2(cs

′, y) ∧ . . . ∧ ϕk(cs
′, y)

ϕ(cs, y), Γ0, Γ1 ⊢ ϕ(cs′, y)

Fig. 1. Proof structure for BINV

After this proof we verified the backward simulation condition:
6 ϕ ⊃ ψ; χ is if-then-else on formula level and f[x; y] modification of a dynamic

function (i.e. a function variable). They can be viewed as abbreviations for
ϕ ∧ ψ ∨ ¬ ϕ ∧ χ and λ z. x = z ⊃ y; f(x)
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ABINV(as′, cs′),BINV(cs), 〈BOP#(cs)〉 cs = cs′

⊢ ∃ as.ABINV(as, cs) ∧ (〈AOP#(as)〉 as = as′ ∨ as = as′)

ABINV(as, cs) is the backward simulation defined in Appendix 8. The defini-
tion is basically identical to the simulation relation defined in [SCJ00]. The only
technical difference is, that we modified the maybeLost predicate (and similarly
the definitelyLost predicate) to ensure that the payment details which satisfy it
are always a finite set. This set is called maybelost with lower case letters in our
maybeLost predicate.

The meaning of 〈BOP#(cs)〉 cs = cs’ is that BOP# called with cs terminates
and yields cs′. This is equivalent to COP(cs, cs′). The proof obligation for ASM
refinement allows a 1:1 diagram, where the concrete rule BOP# operation re-
fines an abstract operation AOP# as well as a 0:1 diagram, where the concrete
operation refines skip (second disjunct).

The proof structure of this proof is very similar to the invariant proof above,
with ABINV taking the role of BINV. BOP# is now symbolically executed in
the antecedent instead of the succedent (we assume termination and a suitable
execution of BOP# here, instead of proving termination for every execution).
There are two differences: After symbolic execution of BOP# we first have to
instantiate the existential quantifier in the succedent, i.e. we have to find suitable
values for as = balance, lost. In most cases BOP# does not transfer money, so
we simply choose as′. The only exceptions are REQ# and the case of ABORT#,
where logging takes place. The second difference is that while unfolding BINV
in the invariance proof simply gives a conjunction of properties, we now get
a quantified formula over the sets maybelost, chosenlost and definitelylost. All
three sets denote a set of payment details of transactions which are in progress:
maybelost contains those transactions which may still succeed. chosenlost is the
subset that will fail to transfer money in the rest of the run (since the simulation
proceeds backwards this set is known). definitelylost are transactions where one
party has already aborted during the critical phase of the protocol when the value
message is in transit. How these sets change (backwards!) through each transition
is the core of the proof and we have to give appropriate sets to instantiate the
quantifier interactively. Unfortunately how the sets change is distributed in the
proof structure of [SCJ00], so we summarize it here:

– None of the three sets changes in STARTFROM# and STARTTO# since
aborting directly after these transitions will not lose money. Dually, the sets
remain unchanged in ACK#, since the money has already been transfered
successfully.

– When REQ#, VAL# or ACK# receive illegal input (the negative case of their
conditional is executed) nothing changes.

– When REQ# executes successfully when receiving a request message, there
are two cases to consider: either the to purse who sent the request is still in
state epv: then the payment details of the request message enter maybelost
and possibly chosenlost. Reasoning backwards the payment details must be
deleted from both sets. Otherwise the to purse has already aborted the trans-
action after sending the request, so reasoning backwards the payment details
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must be deleted from definitelylost. The two cases correspond to the two cases
of successful and failed transaction in AOP# (all other operations refine
skip).

– Successful execution of VAL# means that the payment details of the message
leave maybelost, so reasoning backwards they must be added to maybelost.

– For ABORT# there are three cases to consider: First, if the purse does not
log (in LOGIFNEEDED#), then no critical transaction is in progress and all
sets remain unchanged. Second, if the purse logs and is in state epv, and if
the corresponding from purse is either in state epa or has already logged the
payment details, then aborting moves the payment details from maybelost
and chosenlost to definitelylost. Reasoning backwards the payment details
must be added to maybelost and chosenlost, and deleted from definitelylost.
In the remaining third case the payment details are already in definitelylost
and all sets remain unchanged.

The proof for the simulation condition has 655 proof steps and 197 inter-
actions. Compared to the invariance proof, which has 447 proof steps with 71
interactions it is somewhat harder to automate, since the etherok property is
needed many times, often indirectly: From the fact that e.g. the to purse is state
epv conclude (with etherok) that some message is in ether and from this, conclude
(using etherok again) that the from purse has some property. We have not tried,
but it might be possible to get a better automation by improving the structuring
of these properties.

The proofs can be found in project Mondex in the web presentation [KIV].
Specification BINV contains the proof for invariance (theorem BINV ), spec-
ification Mondex-ASM-refine contains the proof for the simulation condition
(theorem correctness).

4 Specifying the Data Refinement Theory

The data refinement theory underlying the Mondex case study is defined in
[CSW02] in 3 steps: first, the general data refinement theory of [HHS86] is given
(section 2). Second the contract embedding [WD96] of partial relations is defined
and corresponding proof rules for forward and backward simulation are derived
(section 3). Third the embedding of input and output into the state is discussed
in Sect. 4.

We have formalised the first two parts of the theory already for [Sch05]. The
corresponding algebraic specifications in KIV are available in the project named
DataRef on the Web [KIV]. For the third part we have done the same in theory
Z-refinement.

The central specification construct used in these projects (apart from stan-
dard constructs like enrichment, union, actualisation and renaming as present in
all algebraic specification languages with lose semantics, e.g. CASL [CoF04]) is
specification instantiation. Instantiation is an extended version of actualisation.
Morphisms (called mappings) are used which which allow to map abstract sorts
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like state to a tuple of dynamic functions (or variables) forming the concrete
state. Mappings also allow to instantiate functions with arbitrary expressions.
Another extension not used here allows to map types to subtypes or quotient
types, similar to what is allowed in the modules defined in [Rei92]. Specification
instantiation is very similar to theory interpretation in the IMPS system [Far94].

A specification SPEC = instantiate PSPEC < GSPEC with ASPEC by σ in-
stantiates a subspecification PSPEC (the parameter) of a generic specification
GSPEC with an actual specification ASPEC using a mapping σ. To prove correct-
ness of the instantiation the instantiated axioms σ(Ax(PSPEC)) of PSPEC have
to be proved over ASPEC. The resulting theory is σ(GSPEC) with σ(PSPEC)
replaced by ASPEC. Therefore all theorems of ASPEC may be used. Instantiated
specifications are used for 5 purposes:

– in project DataRef to prove that forward simulation implies refinement. Here
PSPEC is the union of two theories ADT and CDT defining two data types
used in the refinement. GSPEC extends this theory by the axiom stating that
this is a correct refinement. ASPEC also extends PSPEC by axioms stating
the conditions of forward simulation. SPEC uses the identity mapping, so it
has to be proved that existence of a forward simulation implies refinement
correctness.

– in project DataRef to prove that backward simulation is the dual of for-
ward simulation: we instantiate all relations of forward simulation with their
inverse relations and prove a) that the forward simulation conditions are ex-
actly the backward simulation conditions for inverted relations and b) that
the refinement theorem for inverted relations is equivalent to the original
refinement theorem.

– in project DataRef to prove correctness of the proof obligations for backward
simulation in the contract approach: this is done by instantiating the type of
(abstract and concrete) states with states that include ⊥, and instantiating
partial operations with their totalised versions over this extended state space.

– in project Z-Refinement to instantiate the state space used in backward
simulation and refinement (imported from DataRef ) with states that in-
clude input and output as defined in Section 4.4 of [CSW02]. Additionally
invariants are added for both data types (see below).

– in project Mondex to instantiate the theory defined in project Z-Refinement
with the concrete data types used in the Mondex case study. As an example,
the abstract state astate is mapped to the tuple balance, lost.

The specifications and proofs in project DataRef mimic the ones of chap-
ter 2 and 3 of [CSW02], except that we have not restricted initialisation and
finalisation operations of data types to be total. Instead we have added totality
requirements in the proof obligations for forward and backward simulations only
where necessary. For finalisation this means that we get two proof obligations,
similar to correctness and applicability for operations. The motivation for this
generalisation was the comparison with ASM refinement we did in [Sch05]: ASMs
do not have a total finalisation relation (which would mean that the computation
of an ASM might be finished at any time), but a specific set of final states.
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The proof obligations in Z-refinement are different from the ones in [CSW02].
First we found, that the embedding used is not correct: input and output se-
quences are embedded into the initialisation and finalisation relation using an
empty[X,Y] relation (e.g. empty[GO,CO] in section 4.4.1 to embed output in
initialisation). This relation is defined in Appendix A.4 as the relation that com-
prises only a pair of empty sequences. But this is not a total relation, and would
imply a partial initialisation relation. The correct definition should relate every
sequence to the empty sequence (e.g. for empty[GO,CO] every global output GO
present in the initial global state is discarded, so that the initial concrete state
has empty output CO) just as it has been done in the closely related approach
of [DB01], Definition 4.4.1 and p. 232.

With this corrected definition some of the proofs in Section 4.4 must be
modified. This results in an additional proof obligation (from the finalisation
proof) that every concrete input must be related to some abstract input (via
relation ιb in section 4.4, RIn in Appendix C.2; our web presentation calls this
relation IT using the notation of [DB01], which we formalised earlier). At first
it seems that this condition might be avoided using a partial finalisation where
states are final only when there is no more input available. But this is not
true: when proving the applicability condition of backward simulation for some
operations COP and AOP we have to construct a state as such that a diagram
commutes with some cs and as′ = cs′ = ⊥ (i.e. we have cs 6∈ dom(COP) and have
to find as 6∈ dom(COP)). In the concrete scenario cs and as contain input that
must be related with IT which imposes the requirement of IT to be total. Totality
of IT is also required in theorem 10.5.2 of [DB01]. Adding the proof obligation
it can be proved that backward simulation implies refinement correctness.

In the Mondex case study the proof obligations are applied restricting the
state space of the concrete level to those states for which an invariant holds:
this implies that all refinement proof obligations can assume the invariant for
every concrete state. While this is adequate for the total operations of Mondex
it seems there is a problem when using invariants to restrict the state space
for the general case of partial operations. . Consider e.g. abstract states con-
sisting of two variables x, y and an invariant x < y. Assume we have proven
that x < y ∧ AOP(x, y, x′, y′) → x′ < y′ i.e. that operations preserve the invariant
whenever they are defined. Now for a partial operation AOP with (1, 2) 6∈ dom(AOP)
the contract embedding says that any implementation of the operation should
be allowed for this input (either abort to ⊥ or choose an arbitrary next state). If
the state space consists of states only that satisfy the invariant this will restrict
the freedom of implementing the operation: a defined implementation will have
to return a state that satisfies the invariant. An implementation of AOP with
COP that relates the state (1, 2) to (1, 1) is no longer possible. But it is not neces-
sary to restrict the state space and thereby the potential implementations: proof
obligations that simply add the invariants as assumptions can still be shown to
be sufficient for refinement correctness even if we allow the full state space.

For the proof obligations of forward simulations the proof that this can be
done is simple: add invariants for the abstract and concrete data type as con-
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juncts to the simulation relation. The simulation proof will then carry the in-
variants with it (see Theorem 2.4.2 in [DB01]). For backwards simulation such
a proof cannot be done by instantiating the contract approach, since invariants
do not propagate backwards through operations.

Therefore we derived a backward simulation theorem that allows invariants
directly by instantiating the original approach of [HHS86].

We could prove the following two theorems for the contract approach without
and with IO. The first is given here with the slight simplification of having total
initialisation and finalisation using relational notation. The second is given in
purely algebraic form, not using relational notation. While we used relational
operators like ⊳, −⊳ a lot in the specifications of project DataRef we found that
they only caused overhead since nearly every proof has to unfold their definition.
Therefore we avoided them in later specifications. The proof obligations can
also be found as axioms in the theories conbackward-INV in project DataRef
(standard contract approach) and IOconbackward-INV in project Z-refinement :

Theorem 1. (Backward Simulation using Invariants)
Given an abstract data type ADT = (AINIT,AIN,AOP,AFIN,AOUT) with total
AINIT ⊆ GS × AS, AOPi ⊆ AS × AS, total AFIN ⊆ AS × GS, a similar data type
CDT = (CINIT,CIN,COP,CFIN,COUT) which uses states from CS instead of
AS, a backward simulation T ⊆ CS × AS and two invariants AINV ⊆ AS and
CINV ⊆ CS, then the refinement is correct using the contract approach provided
the following proof obligations hold:

– CINIT ⊆ CINV,AINIT ⊆ AINV (initially invariants)
– ran(AINV ⊳ AOP) ⊆ AINV, ran(CINV ⊳ COP) ⊆ CINV (invariance)
– (CINIT ⊲ CINV) o

9 T ⊆ AINIT (initialisation)
– (CINV ⊳ CFIN) ⊆ T o

9 (AINV ⊳ AFIN) (finalisation)
– dom(COPi) −⊳ CINV ⊆ dom((T ⊳ AINV) −⊳ dom(AOPi)) (applicability)
– dom(T −⊳ dom(AOPi)) −⊳ (COPi

o
9 T) ⊆ T o

9 (AINV ⊳ AOPi) (correctness)

Instead of the usual embedding of the contract approach
◦

T= T ∪ {⊥} × AS⊥

the proof uses
◦

T= (T ⊲ AINV) ∪ {CS⊥ \ CINV} × AS⊥. The idea is that the con-
crete states that do not satisfy the invariant behave like the undefined ⊥ state
and therefore get mapped to every abstract state. The proof proceeds as usual
by eliminating ⊥ from the resulting proof obligations.

Theorem 2. (Backward Simulation with IO using Invariants)
Assume an abstract data type ADT = (AINIT,AIN,AOP,AFIN,AOUT) where

– AINIT ⊆ AS (the set of initial states)
– AIN ⊆ GI × AI, (inputs initialised from global inputs)
– AOPi ⊆ AI × AS × AS × AO (abstract operations read an input, modify the

state and produce output)
– AFIN ⊆ AS × GS (finalising a local state gives a global state)
– AOUT ⊆ AO × GO (finalising output to global output)
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together with an invariant AINV ⊆ AS and a similar concrete data type CDT =
(CINIT,CIN,COP,CFIN,COUT) with invariant CINV ⊆ CS which uses the same
global data GI,GS,GO but different local data CI,CS,CO are given. Then a back-
ward simulation consisting of IT ⊆ CI × AI, T ⊆ CS × AS and OT ⊆ CO × AO
proves correctness of the refinement (in the same sense as in [CSW02]), if the
following proof obligations can be verified:

– Initialisation (state)
CINIT(cs),T(cs, as) ⊢ AINIT(as)

– Initialisation (input)
CIN(gin, cin), IT(cin, ain′) ⊢ AIN(gin, ain′)

– Applicability
CINV(cs), (cin, cs) 6∈ dom(COPi)

⊢ ∃ as, ain. T(cs, as) ∧ AINV(as) ∧ IT(cin, ain) ∧ (ain, as) 6∈ dom(AOPi)
– Correctness

CINV(cs),COPi(cin, cs, cs′, cou′),T(cs′, as′),AINV(as′),OT(cou′, aou′),
∀ as, ain. T(cs, as) ∧ AINV(as) ∧ IT(cin, ain) → (ain, as) ∈ dom(AOPi)

⊢ ∃ as, ain. IT(cin, ain) ∧ T(cs, as) ∧ AINV(as) ∧ AOPi(ain, as, as′, aou′)
– Finalisation (state)

CINV(cs),CFIN(cs, gs) ⊢ ∃ as. AINV(as) ∧ T(cs, as) ∧ AFIN(as, gs)
– Finalisation (output)

COUT(cou, gou′) ⊢ ∃ aou. OT(cou, aou) ∧ AOUT(aou, gou′)
– Totality of finalisation (state)

CINV(cs) ⊢ ∃ gs′. CFIN(cs, gs′)
– Totality of finalisation (output)

⊢ ∃ gou′. COUT(cou, gou′)
– Totality of input

⊢ ∃ ain. IT(cin, ain)
– Totality of initialisation (state)

∃ cs. CINIT(cs)
– Totality of initialisation (input)

∃ cin′.CIN(gin, cin′)
– Initially abstract invariant

AINIT(as) ⊢ AINV(as)
– Initially concrete invariant

CINIT(cs) ⊢ CINV(cs)
– Abstract invariant preserved

CINV(cs),COPi(cin, cs, cs′, cou′) ⊢ CINV(cs′)
– Concrete invariant preserved

AINV(as),AOPi(ain, as, as′, aou′) ⊢ AINV(as′)

The proof of this theorem uses the corrected empty-relation and instantiates
the previous theorem, but otherwise proceeds routinely like the one in [CSW02].

5 Verification of the Data Refinement

Our specification of the operations of the two data types used for the Mondex
refinement is based on two ASMs in specifications AASM and CASM. These
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two ASMs try to mimic the semantics of the data types as faithfully as possible
(see [Sch05] for the general translation). We have not used these ASMs directly
(so the top level ASM rules may still have flaws), but we have used parts of
the ASM rules to define the individual operations of the data type by axioms in
specifications Mondex-AOP and Mondex-COP like

COP(cs, cs′) ↔ 〈RULE#(cs)〉 cs = cs′

This equivalence defines the COP(cs, cs′) to hold if and only if ASM rule
RULE# started with cs has a terminating run that computes cs′ as its result.
We could have defined the operations without referring to an ASM altogether,
doing so has the advantage that the principle of symbolic execution can still be
used to automate proofs.

Apart from the auxiliary use of operational definitions instead of pure re-
lations the specification mimics the structure of the Z specifications faithfully:
STARTFROM# is now prefixed with ABORT#, input is read from a list of in-
puts, disjunctions with IGNORE# operations that skip have been added etc.

The use of auxiliary operational definitions has the effect that the main
proof obligations for data refinement, “Correctness” and “Concrete invariant
preserved”, have proofs which are nearly identical to the ones we did for ASM
refinement (see the proofs of theorems correctness and cinv-ok in specification
Mondex-refine in project Mondex on the web [KIV]). The only important dif-
ferences are that instead of one proof for the full ASM rule we now have several
proof obligations for the individual operations corresponding to cases in the ASM
proof (lemmas ABORT-ACINV, REQ-ACINV etc. for correctness, ABORT-
CINV, REQ-CINV etc. for invariance) and that the lemmas for ABORT# and
IGNORE# are used several times, since several operations now refer to it.

We have decided to merge the two refinements of the Mondex case study into
one, so each operation calls LOSEMSG# at the end, just as described for the
ASM at the end of section 2.

This means that our concrete invariant cannot be BINV since the properties
of the ether which have been specified with a predicate etherok(ether, . . .) that is
part of the definition of BINV (see Appendix 8 for the exact definitions) do not
hold for an ether where messages have been dropped. Instead we replace the old
definition of etherok with

newetherok(ether, . . .) ↔ ∃ fullether. ether ⊆ fullether ∧ etherok(fullether, . . .)

The new predicate7 claims the existence of fullether, where no messages have
been dropped, such that fullether has the properties specified in the old etherok
predicate. fullether does not change during LOSEMSG#, otherwise it is modified
just like ether. The new definition of etherok is used in the definition of the new

7 The web presentation [KIV] uses the modified etherok definition given in specification
Mondex-CINV, not a new predicate.
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invariant CINV for the concrete level. The backward simulation ABINV is left
unchanged. It is just renamed to ACINV.

Summarizing, there is a little extra work required to cope with the redun-
dancy of operations and the lossy ether, but essentially proofs are done by
“copy-paste” from the ASM proofs. Of course a little additional effort is also
needed to prove the remaining proof obligations (like totality of operations) and
the security properties NoValueCreated and AllValueAccounted of the abstract
specification. These are proved in specification Mondex-Secprop).

Summarizing, the effort to do the full case study was as follows

– 1 week was needed to get familiar with the case study and to set up the
initial ASMs (Section 2).

– 1 week was needed to prove the essential proof obligations “correctness” and
“invariance” for the ASM refinement as shown in (Section 3).

– 1 week was needed to specify the Mondex refinement theory of [CSW02] and
to generalize the proof obligations to cope with invariants (Section 4).

– Finally, 1 week was necessary to prove the data refinement and to polish the
theories for the web presentation (this section).

Of course the time needed to do the verification is influenced by the level of
expertise with formal verification in general and with the KIV system in partic-
ular. Getting the work done in 4 weeks was helped by having a (nearly) correct
simulation relation. Usually most of the time is not needed to verify the correct
solution, but to find invariants and simulation relations incrementally. On the
other hand, sticking to ASM refinement would have shortened the verification
time. The main data refinement proofs for the Mondex refinement consist of
1839 proof steps with 372 interactions.

The effort required can be compared to the effort required for refinement
proofs from another application domain which we did at around the same time
as the original Mondex case study: verification of a compiler that compiles Prolog
to code of the Warren abstract machine ([SA97], [SA98], [Sch99], [Sch01]). This
case study required 9 refinements, and the statistical data ([Sch99], Chapter 19)
show that each refinement in this case study needed on average about the same
number of proof steps in KIV as the Mondex case study.

The ratio of interactions to proof steps is somewhat better in the WAM case
study, since automation of refinement proofs increases over time: investing time
to improve automation by adding rewrite rules becomes more important when
similar steps are necessary in several refinements and when developing simulation
relations iteratively. Summarizing, the Mondex case study is a medium-sized case
study and a good benchmark for interactive theorem provers.

6 A Security Model for Mondex Purses

Although the Mondex case study was the basis of an ITSEC E6 certification
([CB99]), the formal model abstracts away an important part of the security of
the application. As the cryptographic protocols used to realize the value transfer
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were and are still, to our knowledge, undisclosed ([RSA04],[CCW96]) the formal
model assumes the existence of unforgeable messages for requesting, transferring
and acknowledging the transfer of a value. To complete the analysis of the appli-
cation a model based on a theory of messages with abstract representations of
the used cryptographic mechanisms should be specified and used to proof that
the ‘dangerous’ messages actually cannot be forged.

The Mondex application is prepared to use different cryptographic algorithms
in the value transfer protocol. It is generally assumed that DES and RSA were
used to authenticate the value transfer ([DFG98],[CB99]). It is not too difficult
to come up with a cryptographic protocol that ensures that its messages have
the properties that are required for the abstract messages req, val and ack. Using
DES as cryptographic algorithm a shared secret key is used for authentication of
messages ([BGJY98]). A possible protocol written in a commonly used standard
notation for cryptographic protocols ([Car94])is:
1. to → from : {REQ,pdAuth(to)}KS

2. from → to : {VAL,pdAuth(from)}KS

3. to → from : {ACK,pdAuth(to)}KS

In this protocol KS : key denotes a secret key shared between all valid Mondex
cards. REQ, VAL and ACK are pairwise distinct constants used to distinguish
the three message types.

Using RSA makes things somewhat more complicated since individual key
pairs and digital certificates should then be used. To ensure security for the next
years keys with at least 1024 Bit length must be used. Given this key size the
public key and the associated certificate of a Mondex card and the payload of
the protocol messages cannot be transferred to the smart card in one step, due
to restrictions of the communication interface of smart cards. Therefore some of
the steps that are atomic on the concrete level of Mondex would have to be split
up into several steps on the implementation level. This further complicates the
refinement.

Assuming the DES-based protocol, the challenge to be solved is to verify
the security of the Mondex application with this real cryptographic protocol
instead of the special messages postulated as unforgeable in the Mondex case
study in Z. Possible approaches generally used in the verification of crypto-
graphic protocols are model-checking ([Low96], [BMV03]) or interactive verifica-
tion ([Pau98],[Eva03]). Paulson’s inductive approach has proven to be especially
powerful by tackling complex industrial protocols ([Pau01]). We plan to use
our ASM-based model for cryptographic protocols ([HGRS05]) for verification.
Particularly interesting is the question whether the protocol with cryptographic
operations can be proven to be a refinement of the concrete protocol of the orig-
inal Mondex case study. We think such a refinement is possible, and the Mondex
case study shows an elegant way to separate functional correctness and security
into two refinements.
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7 Conclusion and Further Work

We have specified and formally verified the full communication protocol of the
Mondex case study with the KIV system. We have slightly improved the protocol
to use one idle instead of two eaFrom and eaTo states. We have improved the
theory of backward simulation in the contract approach to include invariants for
the data types. Using the improved theory, the correctness proof for Mondex
could be done as one refinement instead of two. We feel that the effort to do this
was rather small compared to the effort we assume it has taken to write down
proofs in [SCJ00] at nearly calculus level. Despite this great detail we were still
able to find two small flaws: one in the underlying data refinement theory, where
a proof obligation was missing and one in the invariant, where we had to add a
totality property. Therefore we feel justified to recommend doing machine proofs
as a means to increase confidence in the results.

As a second contribution we gave an alternative, concise specification of the
refinement problem using ASMs. The fact that the main proofs are nearly iden-
tical to those for the original refinement indicates, that the ASMs are a good
starting point to further improve the invariant and the verification technique.

One idea for further work is therefore to take the ideas of [HGRS05] to do
a proper ASM refinement proof (that probably would use generalized forward
simulation [Sch01] instead of backward simulation).

Another idea contained in the Mondex case study that we will try to address
is that functional correctness and a security protocol as proposed Section 6 may
be verified independently as two separate refinements.

Acknowledgement We like to thank Prof. Börger for pointing out the Mon-
dex challenge to us.
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8 Appendix: Definition of the Invariant and the

Simulation Relation

The backward simulation used in the ASM proofs as well as in the data refine-
ment proof is ACINV = ABINV, the invariant used in the ASM refinement proof
is BINV. The invariant CINV for the data refinement proof is derived from BINV
as described in Section 5. The definitions are copied from the specifications BINV
and Mondex-ASM-refine in project Mondex on the Web [KIV]. Remarks at the
end of the line give the correspondence to the properties of [SCJ00]: PD is the
payment details property of section 4.3.2, P-1 to P-4 are the purse properties
of section 4.6, and B-1 to B-16 are the invariants of section 5.3. Property B-14
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and B-15 are the only properties that refers to logs that have been moved to a
central archive, so it was left off. Property B-16 is implied by B-10 and B-12 and
therefore removed.

BINV(balance, exLog, state, nextSeqNo, pdAuth, ether)
↔ purseok(balance, state, nextSeqNo, pdAuth)

∧ etherok(exLog, state, nextSeqNo, pdAuth, ether)
∧ exLogok(exLog, state, nextSeqNo, pdAuth)
∧ logsfin(exLog) B-13

purseok(balance, state, nextSeqNo, pdAuth)
↔ ∀ na. authentic(na)

→ ( state(na) = epr
→ pdAuth(na).from = na

∧ pdAuth(na).from 6= pdAuth(na).to PD
∧ pdAuth(na).value ≤ balance(na) P-2
∧ pdAuth(na).fromno < nextSeqNo(na)) P-2

∧ ( (state)(na) = epv
→ pdAuth(na).to = na added to P-3

∧ pdAuth(na).from 6= pdAuth(na).to PD
∧ pdAuth(na).tono < nextSeqNo(na) P-3
∧ authentic((pdAuth)(na).from)) added to P-3

∧ ( (state)(na) = epa
→ pdAuth(na).from = na added to P-4

∧ pdAuth(na).from 6= pdAuth(na).to PD
∧ pdAuth(na).fromno < nextSeqNo(na) P-4
∧ authentic(pdAuth(na).to)) added to P-4

etherok(exLog, state, nextSeqNo, pdAuth, ether)
↔ ∀ pd. ( req(pd) ∈ ether

→ pd.tono < (nextSeqNo)(pd.to) B-2
∧ authentic(pd.to)) B-1

∧ ( val(pd) ∈ ether ∨ ack(pd) ∈ ether
→ pd.fromno < (nextSeqNo)(pd.from) B-3, B-4

∧ pd.tono < (nextSeqNo)(pd.to) B-3, B-4
∧ authentic(pd.to) added to B-3, B-4
∧ authentic(pd.from)) added to B-3, B-4

∧ ( fromInEpr(pd, pdAuth, state)
→ ¬ val(pd) ∈ ether ∧ ¬ ack(pd) ∈ ether) B-9

∧ ( req(pd) ∈ ether ∧ ¬ ack(pd) ∈ ether
↔ toInEpv(pd, pdAuth, state)
↔ ∨ toLogged(pd, exLog)) B-10

∧ ( val(pd) ∈ ether ∧ toInEpv(pd, pdAuth, state)
→ fromInEpa(pd, pdAuth, state)

∨ fromLogged(pd, exLog)) B-11
∧ ( fromInEpa(pd, pdAuth, state)

∨ fromLogged(pd, exLog)
→ req(pd) ∈ ether) B-12
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exLogok(exLog, state, nextSeqNo, pdAuth)
↔ ∀ pd, na. ( fromLogged(pd, exLog)

→ pd.fromno < (nextSeqNo)(pd.from) B-5
∧ ( state(pd.from) = epr

∨ state(pd.from) = epa
→ pd.fromno < pdAuth(pd.from).fromno)) B-7

∧ ( toLogged(pd, exLog)
→ pd.tono < nextSeqNo(pd.to) B-6

∧ ( state(pd.to) = epv
→ pd.tono < pdAuth(pd.to).tono)) B-8

∧ ( authentic(na) ∧ pd ∈ exLog(na)
→ (pd.to = na ∨ pd.from = na) P-1

∧ pd.to 6= pd.from) PD

fromLogged(pd, exLog)
↔ authentic(pd.from) ∧ pd ∈ exLog(pd.from)

toLogged(pd, exLog)
↔ authentic(pd.to) ∧ pd ∈ exLog(pd.to)

fromInEpa(pd, pdAuth, state)
↔ authentic(pd.from) ∧ pd = pdAuth(pd.from)

∧ state(pd.from) = epa

fromInEpr(pd, pdAuth, state)
↔ authentic(pd.from) ∧ pd = pdAuth(pd.from)

∧ state(pd.from) = epr

toInEpv(pd, pdAuth, state)
↔ authentic(pd.to) ∧ pd = pdAuth(pd.to) ∧ state(pd.to) = epv

logsfin(exLog)
↔ (∃ pds. ∀ pd. toLogged(pd, exLog) ↔ pd ∈ pds)

ABINV(balance, lost, balance0, exLog, state,
nextSeqNo, pdAuth, ether, outmsg)

↔ ∃ maybelost, chosenlost, definitelylost.
maybeLost(exLog, pdAuth, state, maybelost)

∧ definitelyLost(exLog, pdAuth, state, definitelylost)
∧ chosenlost ⊆ maybelost
∧ balandlostok(balance, lost, balance0, chosenlost,

definitelylost, maybelost)

25



maybeLost(exLog, pdAuth, state, maybelost)
↔ ∀ pd. pd ∈ maybelost

↔ toInEpv(pd, pdAuth, state)
∧ ( fromLogged(pd, exLog)

∨ fromInEpa(pd, pdAuth, state))

definitelyLost(exLog, pdAuth, state, definitelylost)
↔ ∀ pd. pd ∈ definitelylost

↔ toLogged(pd, exLog)
∧ ( fromLogged(pd, exLog)

∨ fromInEpa(pd, pdAuth, state))

balandlostok(balance, lost, balance0,
chosenlost, definitelylost, maybelost)

↔ ∀ na. authentic(na)
→ (lost)(na) = Σ filter(λ pd. pd.from = na,

definitelylost ∪ chosenlost)
∧ (balance)(na)

= (balance0)(na) +
Σ filter(λ pd. pd.to = na, maybelost \ chosenlost)

Σ ∅ = 0

Σ(pds ++ pd) = pd ∈ pds ⊃ Σ pds; Σ pds + pd.value

filter(Ppd, ∅) = ∅

filter(Ppd, pds ++ pd) = (Ppd)(pd) ⊃ filter(Ppd, pds) ++ pd;
filter(Ppd, pds)
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