
Programming with (Finite) Mappings

Peter Pepper Bernhard Möller

Abstract. We present a unified view of “mappings”, abstracting from their ap
pearance as “routines” (that is, objects that describe computations) or as “map
like data structures” (that is, objects that are stored and accessed via indices),
respectively. On the basis of suitably defined algebraic operations we are then
able to develop algorithms at a very high level of abstraction, without losing the
potential of implementing them efficiently in terms of arrays and loops. This is
demonstrated for a variety of array-based algorithms that are well-known from
the literature.

1. Introduction

Traditionally, programming with array-like structures exhibits two characteris
tics: intricate index calculations and selective alteration. In this context, “selec
tive alteration” means that our algorithms try - for the sake of space economy -
to overwrite existing arrays rather than to generate new ones.

This view clearly originates from the imperative programming paradigm,
and thus it is not surprising that array-like structures have hardly made then
way into applicative programming - by contrast to many other structures such
as sets, sequences, trees, and the like. The best that we can find in terms of ab
straction are the assertional treatments in the style of Dijkstra (1976) or Gries
(1980), sometimes enhanced by special operators (Jones 1980) or graphical sym
bolism (Reynolds 1981). First, tentative efforts to integrate array programs into
the applicative style have been made only recently, for instance by Bird (1989)
or Backhouse (1989).

Within the context of applicative programming, there is, admittedly, less
need for array-like structures, because they may well be viewed as special cases
of functions. Hence, in this area, programming with arrays is replaced by pro
gramming with higher-order functions.

Yet, this approach is satisfactory only from a theoretician’s viewpoint. For,
in practical applications, the distinction of special situations is a decisive feature.
Even though we want to free the programmer from the burden of fiddling around

with the technical details of overwriting and the thus enforced intricate index cal
culations, we do want to keep the potential for efficient implementations. Thus,
we encounter the need for array-like structures as a link between the too gen
eral concept of arbitrary higher-order functions and the too detailed concept of
machine-oriented arrays. Technically, this link is established by a few fundamen
tal transformation rules.

Moreover, even if we completely disregard the aspect of efficient implemen
tation, there is still a need for increased abstraction in programming with func
tions. For, there are many “standard” situations where a single powerful operator
(that is, a higher-order polymorphic function) can replace lengthy recursive func
tion declarations. However, when designing a collection of relevant operators, we
must be careful not to make this set too abundant, since, otherwise, there is the
danger of losing comprehensibility.

Summing up, we aim at high-level algebraic operations that enable us to
formulate specifications and algorithms as abstractly as possible. But we do this
with a view towards implementation problems, in particular towards selective
updating.

2. “Functions” and “Maps”

A “mapping” consists of three parts, the domain, the range (also called
codomain), and the graph, that is, a set of pairs (d, r) with d ∈ domain and
r ∈ range. As is well-known, the graph has to be “functional” (also called “left
unique”): no two pairs must share the same domain element d.

Given this basic definition, what distinguishes mappings in the mathematical
sense from mappings in the sense of data structures? To ease the discussion about
the differences, let us agree on the following phrasing: From now on, mappings
in the mathematical sense will be called functions, whereas mappings as data
structures will be called maps.

It is characteristic for a function that it is usually not defined extensionally
by listing its graph, but rather intensionally by giving an algorithm that computes
for any given argument x the corresponding result y. This algorithm usually is
represented by some kind of (recursive) “function declaration”, mostly written
with the help of lambda abstraction, or as a set of conditional equations. Con
sequently, for a function f, the domain and range are usually determined only
implicitly.

By contrast, a map is usually given extensionally by actually listing all pairs
in the graph. As a consequence, the domain and range are specified explicitly as
well. This extensional view entails the need for actually “generating” and “alter
ing” maps, which are rare activities for functions.

In general, we do not distinguish the two concepts in the remainder of this
paper, because the focus of our attention is the method of program development
using maps. Hence, we describe the underlying theory only informally here. But
we should point out that a rigorous semantic specification of the algebra of maps
has to cope with a number of subtleties, in particular concerning questions of
finiteness, definedness, strictness, and so forth. 1

1 Formal definitions will be given in a forthcoming extended version of this paper.
2 Since we merely want to give an informal sketch of the theory here, most of the subsequent

equations only refer to the “standard” situations, where all map expressions are well-defined.

3. Notations

Our notations are essentially drawn from the set-theoretic view of mappings, but
they are applicable under both the function view and the map view.2 Let M, N
be mappings, i,j be domain elements, and x,ybe range elements. Then we use
the following operations, which are all strict:

0 empty map.
J, M domain of M; (the “arguments” or “indices” of M).
#M cardinality of (domain of) M, that is, number of pairs in the map.
M i application of M to argument i, yielding the corresponding value y

(undefined if i 0 ∖,M).
M ∣ D restriction of M to the set D; this is defined by

(M∖D)i = Mi ifι∈D,
(M ∣ D) i undefined otherwise.
Note that we do not require D to be a subset of ∖,M.

M <— N “overwriting” of M by N; this is defined by the properties
(M<-N)i = Ni Hie IN,
(M<-N)i = Mi
Note that «— is associative and idempotent.

M W N “union” of M and N; this is the same as overwriting but restricted to
mappings which coincide on their intersection:
MVN = M <-N if M ∣ (IM∩ [N) = N ∣ (∣M∩ [N),
M ⅛) N undefined otherwise.
Note that “W” is associative, commutative, and idempotent.

M ∖∖ N constraining of M by N∙, defined by
M ∖∖ N = M ∣ (iM∖lN)

384 Peter Pepper Bernhard Möller

Using this operator, we can describe the overwriting operator con
cisely by
M <-N = (M∖∖N)UN

M o N composition of two maps; this is defined as usual by
(MoN)i = M(N i).

The “map comprehension” also follows our set-oriented view3; that is, we es
sentially describe the association of a value to each index.

j The notation is a straightforward extension of set-theoretic notations; it is also used by Jones
(1980).

4 This is very well elaborated by Bird (1987), but the theoretical foundation of this idea dates
back at least to the work of von Henke (1975). Many of these concepts are also found in the
language APL.

5 We will omit the “ ”, that is, just write f instead of f, whenever this kind of overloading can
be resolved within the given context.

[z ∣→ -El[[z]∣ ∣ i ∈ D] mapping M with domain D, defined by M i = EJt]] for
i ∈ D, where E[[i]] is an expression in which i possibly occurs.
Sometimes we also enumerate small mappings by listing all pairs ex
plicitly, in a form like [z f → 5,∣[z]], ...,j ∣→ El[[j]∣] θr> following math
ematical tradition, in the form of an indexed family [n⅛,..., xj∙].
This map comprehension differs from classical λ-abstraction essen
tially by its strictness: 5^[[z]] has to be defined for each i ∈ D; other
wise the whole map is undefined. In other words, we have the equation
[i ∣→ SOJ ∣ i e D] = ∣+∣ieβ[z h→ ∙
The map comprehension is probably one of the most important con
cepts in our approach. For, it allows us to specify mappings in a point
wise fashion, without having to care about any computational ordering
whatsoever.

Most approaches that strive for a more abstract and algebraic treatment of algo
rithms use a number of standard “homomorphism-oriented” operators4. In this
spirit, we adopt the following notations:

f M ,*lifting,,-operator5j the function f is applied to all elements of the
range of Μ. (This “pointwise application” corresponds to Bird’s
“apply-to-alT-operator for sets and sequences.)
f M = [i >→ f(M i) ∣ i ∈],Λf]
We extend this notation in a straightforward manner to situations
where the function f results from fixing one argument of a binary op
eration. For example, if fx ≡ a * x, then f M is simply written as
a*M (or just a * M, since we usually omit the lifting symbol).

Programming with (Finite) Mappings 385

∕ (M, N) “lifting”-operator generalized to binary operations. The usual prereq
uisite here is, of course, that the two mappings share the same domain,
but for the sake of flexibility we extend this operation also to the gen
eral case of non-fitting domains:
f(M, N) = [i → f(M i,Ni)∖ie ([M ∩ 11V)]

≡ ∖∖ N
VN∖∖M.

f ∕M “/-reduce” over all values in the range of M, where f is a binary,
commutative function. For instance, +∕M forms the sum of all values
in Μ.

In many application areas - notably in linear algebra - the domains of the map
pings are restricted to very special forms, namely to intervals [α..⅛] C Z, whereZ
is the set of integers. We then often speak (by a slight abuse of language) of vec
tors. When the domain is a product of such intervals, we speak of matrices. (To
ease readability, we adhere to the convention of denoting vectors by 5, b, δ,...
and matrices by A, B, C,...) For these special domains, some further operators
make sense:

ä φ b “juxtaposition”6 of vectors; the essential aspect is a proper shifting of

We borrow the notation of Bird (1989).

the indices of b such that b is appended “right” of ä. Let J,δ = [αl..α2]
and J.5 = [61..&2J; then:
(α fyt>)i = äi ifi ∈ ∣δ,
(δ j> b)i = b(i — bl + a2 + 1) otherwise.
Note that (although it is defined using indices) we mainly use this op
erator, when the concrete indices are of no relevance for the design of
an algorithm.

A^B “horizontal juxtaposition” of matrices A and B, that is, a renumber
ing of the columns of B.

A-e- B “vertical juxtaposition” of matrices', the rows of B need to be renum
bered such that they directly follow those of A, that is, B is put “below”
A.
In connection with matrices, that is, with mappings having direct prod
ucts as domains, two further operations become a major issue, namely
“Currying” and “transposing”. We describe both operations for a given
matrix A: D↑ × D^→ R.

CA is the “Curried” mapping A' : Dι → (Z>2 -* R) defined by
(A'i)j = A(i,j).

6

386 Peter Pepper Bernhard Möller

CA' is the “deCurried” map defined by
CA'(i, j) = (A i)j.

TA is the “transposed” matrix B : ∏2× → R, defined by
B(j,t) = A(i,j).
Note: Sometimes we want to “Curry with respect to the second, rather
than the first, component of the domain”. This can easily be achieved
by combining the two operators in the form CT A, since we then have
CTA j i = A(i,j). So we can easily express the two ways of viewing a
matrix, viz. the row-oriented “ALGOL-view” and the column-oriented
“FORTRAN-”view:
Rows A ⅞f CA

Cols A i= CTA.

7 The correctness of these rules can be shown by Hoare’s classical assertion logic or by the
proof technique of Möller (1989).

4. Implementation Issues

The operations and concepts presented in the previous chapter are oriented to
wards the design and development of high-level abstract algorithms. But we also
want to keep an eye on efficient implementability. For, it is our claim that the
elegance and clarity of applicative programs need not be in contrast with effi
cient execution. In the sequel we present a few transformation rules by which
abstract map-oriented programs are converted into low-level loops. These rules
are schematic enough to be used even in a fully automatic translation process.

The main task, here, consists in producing space-efficient code for allowing
“in situ,,-realizations of assignments M := ,E[[Λ∏ for map variables M; these
assignments arise in particular, when tail recursions are translated into loops. The
following transformation rules7 cover the majority of practically relevant cases.
In the description of these rules, we restrict ourselves, for the sake of readabil
ity, to expressions E with at most two different applications of the mapping Μ.
(For instance, the notation EfiM z]∣ shall indicate that no other applications of M
besides M i occur in the expression E.) The generalizations to more such appli
cations as well as to the case of simultaneous updatings of several map variables
are obvious.

The following rules shall give the principal ideas. Specific target languages
may require specific additional constraints such as D C [Μ. (For instance,
ALGOL68 arrays are more permissive than, say, Pascal arrays.)

Programming with (Finite) Mappings 387

Transformation Tl: If the new value associated with each index i depends only
on the old value M i, then the new mapping can be generated by suc
cessive (or parallel) overwriting:

M -M ^-[iy→ E^M ⅛]] ∣ i ∈ -D]
---------------------- ψ-----------------------
for all i in D do M[i] := E([M f] od

(Note that the loop can be executed in arbitrary order, even in parallel.)

Transformation T2: If the new value associated with index i depends only on
the old value M i and some other value M a, then the new mapping
can be generated by successive (or parallel) overwriting, provided that
M a remains invariant:

M := M ÷- [i ∣→ Ef[M i, M α]] ∣ i ∈ Z>]
---------------------------4--------------------------- {E[[M a,Ma⅛=M a
for all i in D do M[i] := Ef[M i, M α]] od8

8 Alternatively, we could take a out of the domain of the loop; but this frequently makes the
code even more costly, in particular in connection with parallel implementations.

Transformation T3: If the new value associated with index i depends only on old
values that belong to larger (smaller) indices, then the new mapping
can be generated by ordered successive overwriting:

M := M <— [ι ∏→ E([Λf ?, M jU ∣ i ∈ [α..δ]]
----------------------------JJ.-----------------------------{a <b Λj >i
for all i in [α..δ] do M[z] := E^M i, M jj od

We have, thus, reached a state where we can stop our developments at a very
high algebraic level, because the remainder of the code generation process can be
left to an optimizing compiler. As a matter of fact, we may even stop as soon as
the applicability conditions of the above transformations are met. Hence, our pro
gram derivations should be geared towards meeting the applicability conditions
of these transformations.

5. Simple Exercises in Linear Algebra

A methodology for dealing with finite maps should, in particular, be able to cope
with the classical matrix operations from linear algebra, such as scalar product,

388 Peter Pepper Bernhard Möller

matrix multiplication, Gaussian elimination, and so forth. So we start by review
ing some of these standard operations in our context.

5.1 Basic Operations

1. The simplest operator in linear algebra is the scalar product of two vectors,
which we denote here by the infix symbol ,∙ ’. Its mathematical definition is tran
scribed into our notation as pointwise multiplication (note that we omit the lifting
symbol ‘ ^ ’) and a subsequent +-reduce:

δ∙5 = +∕(δ*fe) (=^2α∙*⅛) (1∙1)
2

Note that this operator is associative and commutative and, moreover, associates
with the normal multiplication operator:

x * (δ ∙ S) = (x * ä) ■ b (1∙2)

2. Slightly more complex is the matrix product9, which we denote here by the
infix operator ‘ ×’. In linear algebra, it is usually described as follows: Let two
matrices A and B be given such that j,(Co⅛ A) = J,(Λowr B). Then the product
is a new matrix each element of which is the scalar product of the ?-th row of A
and the j -th column of B. In our notation this reads

Boyle (1980) gives a derivation of these algorithms within the classical algebra of matrices.

d∙ I
A×B = [(i,j) ∖→ Rows Ai∙ColsB j 1i e J,(Λows A),j ∈ ∖,(ColsB)](2.1)

3. Unfortunately, in many cases this definition is not very efficient as a program
(namely within assignments of the kind A := A × B), because none of the trans
formations from Section 4 is applicable. Fortunately, however, we can transform
the definition of matrix multiplication further, such that transformation Tl be
comes applicable. The trick lies in a suitable Currying:

Rows(A × B) = Rows[(i,j) ι→ Rows A i ■ Cols B j ∣ i ∈ |(7?ows A),
j ∈ [(Cols 5)]

= [I ∙→ [j >→ Rows A i ■ Cols B j ∣ j ∈ [(Cols B)] ∣

i ∈ J,(Λows A)]
= [zh→ Rows A i ^ Cols B ∣ i ∈ l(∕tows A)] . (3.1)

Here, every row of A is multiplied with all columns of B, yielding the correspond
ing row of the result matrix. To this version, transformation Tl is applicable,
leading to the classical program for matrix multiplication.

9

Programming with (Finite) Mappings 389

5.2 LU-Partitioning by Gaussian Elimination

Next we should check, whether slighly more intricate algorithms can be treated
as well. As a matter of fact, we show in this section that our approach renders also
intricate numerical algorithms much more amenable to high-level programming
concepts.

A standard algorithm in the area of numerical linear algebra is the solution of
a system of linear equations by the method of Gauss.10 Every mathematician or
programmer working in this area is well familiar with the (quite ugly) FORTRAN
programs that solve this problem. It is in particular the deep nesting of DO-loops
in concert with the corresponding index calculations that makes these programs
so hard to read, to verify, and to modify. So the question immediately comes to
mind, whether this algorithm could not be programmed as nicely as it is explained
in (good) textbooks. In order to keep the treatment brief, we demonstrate only a
simplified version without pivot search.

10 We got th© idea of using this example for the demonstration of our algebraic approach from
a presentation given by Jim Boyle during the meeting of EFIP WG 2.1 in January 1989.

1. The problem can be stated quite briefly: Given a matrix A, find a lower trian
gular matrix L and an upper triangular matrix U such that

A = L×U.

2. The key to space efficiency here is that the constant parts of both matrices
L and U can be omitted such that the relevant values can “share” one matrix
layout. This is illustrated in the following diagram, where L and Ü denote the
non-constant triangles of L and U, respectively:

How can we realize this idea in our algebraic setting? A pair of mappings
with disjoint domains is isomorphic to the union of these mappings, in the sense

390 Peter Pepper Bernhard Möller

that we can reconstruct each of the original mappings, provided that we still know
their domains. Formally11:

11 By the symbol ‘ /1 ’ we denote the disjointness predicate.
12 We content ourselves with a graphical description of the partitionings, since they can be

trivially defined using our restriction operator.

M 0 ∣B => (A ⅛l B) I M = A,
M 0 IB => (A ü B) I ∣B = B.

■i

Hence, we can develop our algorithm for LU-partitioning based on the union of
matrices rather than on their pairing.

3. The simplest version (from the point of view of understandability) of Gaussian
elimination is illustrated by Figure 5.2 below, which reflects the following idea:
We partition each matrix into four submatrices, namely the left upper element,
the remaining first column, the remaining first row, and the remaining lower right
matrix. Moreover, in L and U we ignore the constant parts that consist of 0’s and
Γs only.12

A = L×U
P ⅛f LtiÜ

P'⅛fZ'⅛P'

1 0

I L'

υ u'

0 U'

a a'

a A'

V u'

I P'

(3.1)

(3∙2)

(3.3)

Figure 5.2

4. Our task is to find an algorithm lup that meets the specification
~ ~ dpf

lup(A) = lup{L ×U) = L∖tfU = P (4.1)

5. By standard matrix multiplication we can calculate for the above partitionings

L×U =
V u'

l*v l×u'+ L'× U'

α a'

a A'

Programming with (Finite) Mappings 391

This entails the individual equations

v — a
u' = a'
ι 1 1

13 An overview of such transformations as well as historical references can be found in the
textb∞k by Bauer and Wössner 1982.

' = -*α = -*α
v a

L' ×U' = A' -I ×u' = A' -I ×a'.

For the triangular matrices L' and U' equation (4.1) yields again

L' W U' = lup(L' × U') = lup(A' - I × a').

(5.1)
(5.2)

(5.3)

(5.4)

(5.5)

6. The equations (5.1)-(5.5) determine the fragments from which the solution
matrix P = lup(A) is built up (for A y 0):

lup(A) = α ⅛∣ α' ⅛J ∕ ⅛ lup(A' - I × a')
where I = - * a .a

For the termination case A = 0 we obtain, of course:

lup(0) = 0 .

(6.1)

(6.2)

7. Since “W” is an associative (and commutative) operation with 0 as neutral
element, the standard transformations for recursion removal are applicable.13
They result in the following version of our program:

lup{A) = lupλ{A,<Z>) (7.1)
∕iφ1(0,B) = B (7.2)

∣A 0 => ∕wp1(A, B) = lupγ(A! - I × a', B W a Ö a' W I) (7.3)

where I = - + a .a

8. For this new function, we can immediately prove that the following invariant
holds:

invariant ∣[lup1(A, -B)]] : J. A 0 ∖,B .

That is, the domains of the two parameters are always disjoint. Hence, we can
apply the “isomorphism” between pairing and union again and merge the two
parameters into a single one while keeping the domain of A as a parameter in
order to still enable the termination test.

Again, we have thus reached a stage, where an advanced optimizing com
piler could take over and produce the efficient imperative code that is well-known
from the FORTRAN programs in the pertinent libraries for linear algebra.

5.3 Polynomial Interpolation^

In textbooks on numerical analysis there is a relatively simple algorithm for
polynomial interpolation, which has been designed by Aitken and Neville. The
essence of this algorithm - from the point of view of numerical mathematics - is
captured by a nice recursive equation. The tricky point is to program the evalu
ation of this equation in an efficient manner. For the sake of brevity, we merely
sketch the idea of the algorithm here, concentrating on the essentials of the map-
related developments rathef than on the details of the numerical computations.

1. The essence of polynomial interpolation is given by a recursive function of the
kind

P : nat × nat → real

which is specified by the equations

P(i, 0) = y i for ? ∈ [0. .TV];
P(i, ⅛) = e(P(t, k - 1), P(i -l,k- 1)) for k ∈ [1..TV], i ∈ [⅛..2V] .

Here, y represents a collection of real values yQ,...,yκ, and e is some complex
numerical expression (the detailed nature of which is of no relevance for our
considerations here).

The following diagram illustrates the basic principle of this computation:

Figure 53

k

2. Since the second parameter function can be nicely inverted from k — 1 to k +1,
we can, again, apply a standard transformation rule for recursion removal. Hence,
we prepare this transformation by Currying with respect to the second argument.

14 Pepper (1981,1984) already demonstrates a transformational development of this algorithm.
Now, we want to show that more abstract algebraic operations can improve such developments.

This is achieved formally by introducing a new function

P↑ : nat → (nat → real)

with the definition

P1 =CTP =ColsP .

From this definition we can, then, deduce a directly recursive definition of P↑:

Pj 0 i = y i for i ∈ [0. .√V];
Plki = e(P↑(k - l)(i),Pl(k - l)(i - 1)) for k ∈ [1.JV],(∈ [⅞..2V] .

Rewriting into map comprehension yields the form

Pl 0 = y,
Plk≈[i*→ e(Pι(k - l)(i),Pγ(k - l)(i - 1)) ∣ i ∈ [⅛..7V]].

3. Applying the aforementioned transformation rule leads to a tail-recursive ver
sion of our function, which has the functionality

P2 : nat × (nat → real) → (nat → real).
∕

This function is defined by the equations:

P1W = P2(0,y)
P2(fc, P) = Pl(k + 1, [i >→ e(p(i),p(i - 1)) ∣i ∈ [⅛ + 1..7V]]) for 0 ≤ k < N
P2(N,p)=p.

The map in the second equation allows the application of the transformation rule
T3, because i — I <i.

Again, we have reached a stage, where a compiler is able to produce an
efficient imperative program that essentially consists of two nested loops.

6. Fast Fourier Transformation

Evaluating a polynomial

z x def 2 v_ip(x) = ao + a-[x+a2x +... + aN_]X"

of degree N — 1 at a specific point zq requires O(N) operations. But many appli
cations even need to evaluate p at N distinct points x q , x n _ j. which entails -
if done naively - O(N2) operations. The algorithm of Cooley and Tukey (1965)
reduces these costs to O(N log N) operations. It achieves this effect, however,
only if the polynomial is to be evaluated at very specific points rQ,...,rN_i

394 Peter Pepper Bernhard Möller

(to which we will come in a moment). Thus, our task is to compute the values
y0, ∙ ∙ ∙, Un - 1 defined by the equations

def , . 2 t v—1
t/0 = P(Γ0> = α0 + αlr0 + a2rQ + ■■■ + αΛr-lr0

: < (0.1)

def . . 2 N—l
VN-1 = P(r7V-l) = α0 + αlrJV-l +α2rτv-1 ÷-∙ + α∕√-1 r7√ _ ι

for given vectors f = [γq , ..., rw_iJ of arguments and ä = [oq , ..., aw_j] of
coefficients.

1. Algebraic properties from complex arithmetic. As usual, the actual pro
gramming has to be preceded by an analysis of the application domain, in our
case trigonometric interpolation. The key concept, here, are the so-called “N-th
roots of unity", which are complex numbers z having the property z n = 1. It is
known that for any N there are exactly N such numbers, one of which is called
the “principal root of unity” and denoted here as root(N). Even though it is not
necessary for our purposes, we note in passing that the principal root is obtained
as root(N) = ei2π∕7v = cos(^5) + i sin(^), where i denotes the imaginary unit,
that is, i2 = —1. Then, all N roots are obtained by raising this principal root to

def

2. Now, we choose the 7V-th roots of unity as the evaluation points for our poly
nomial. That is, the argument vector in (0.1) is just

r ⅛f [r0,..., r7v-1], where N = #ä and r = root(N). (2.1)

More generally, we define the vectors (for 0 ≤ j < N):

the powers 0,..., N - 1, that is, rj∙ = r3 * *. For later use, we record the following
properties of the roots of unity:

defLet r = root(N)∙, then:

r° = l; (1.1)

rN = 1; (1.2)
rfc√l forO<⅛<lV. (1.3)

For even N, that is, N = 2M, we have moreover

rM=-l; (1.4)
rM+t = _rk. (1.5)

? defr =s where s = root(M). (1.6)

Programming with (Finite) Mappings 395

Now the original system of equations (0.1) can be written more compactly by
using appropriate scalar products:

yo = ä ∙ f0

(2.3)

t/jv-1 - α ∙ rN_i

3. If we introduce analogous vectors s and sj for the Λ∕-th root of unity s =
root(M), where N = 2M and 0 < j < M, then properties (1.5) and (1.6)
entail important relationships between the vectors fj and si. To this end, we need
auxiliary operations even and odd that split a given vector into its even-indexed
and odd-indexed components, respectively.15

15 This corresponds to a rearrangement of the original polynomial into the form

p(x) = (αθ + ∏2≈2 +... + aN_2X^r~2) + χ * (α1 + ajx2 +... + aN_ 1 x n ~2)

Now (1.5) and (1.6) immediately establish the relationships (for 0 < j < M),
where we omit - as usual - the lifting operator for the multiplication:

even r,- = 5,∙ odd f,∙ = r,∙ * s,∙
- - .z,- _ (3∙1)

even γ m+j = sj odd r^+j - ~Γj * Sj

Note, how much we gain from properties (1.4)-(1.6), when N is an even number.
Therefore, “in order to reap that benefit all through the computation, we shall
restrict ourselves to the case that N is a power of 2” (Dijkstra 1984). Hence,
from now on, we assume N = 2π for some n.

We derive the algorithm in two steps: First we deduce - based on the above
properties - a recursive solution with the desired complexity of O(N log N) op
erations. Then, we implement this recursive algorithm iteratively, which entails
an elaborate indexing of array elements in order to obtain a program that works
‘in situ’.

6.1 A Recursive Solution for the Fast Fourier Transform

4. The Fast Fourier Transform works for arbitrary polynomials p, and these poly
nomials are fully characterized by their coefficient vectors δ. On the other hand,
the argument vector f derived from the N-th roots of unity is typical for the Fast
Fourier Transform. Hence, we define the function fft that computes the result

396 Peter Pepper Bernhard Möller

vector y = [⅛q , ..., yN_1] of (0.1) and (2.3), respectively, for a given coefficient
vector a = [<zq , ..., c in -1J, based on r = root(N):

fft(a) *=f U’ ∙→ ä ■ fj ∣ 0 ≤ j < TV] where N =#a . (4.1)

The essential gain of the Fast Fourier transform results from the application of a
typical divide-and-conquer strategy. To realize this, we look for common subex
pressions in the evaluation of (4.1), based, of course, on the above properties
(3.1) . To this end, let us consider the 7'-th equation; using the relationships in
(3.1) we obtain for 0 ≤ j < M = y:

fft(a)j =a∙fj
= (even ä ■ even fj) + (odd ä ■ odd fj)
= (even ä ■ sj) + rj * (odd ä ■ Sj)
=fft(even a)j + rj *fft(odd a)j . (4.2)

An analogous derivation for the “other half* of points yields

fft(δ,)(M + j) =fft(even a)(M + j) - rj *fft(odd a)(M + j). (4.3)

With the help of the juxtaposition operator we can combine these individual equa
tions into the compact form

#t(ä) = (fft(even α) + f' * fft(odd a)) f (fft(even a) —f' * fft(odd a)) (4.4)
where f'= [ro,∙∙∙.rw-ll ∙

Hence, fft has the recursion structure

fft(a) = h(fft(even a),fft(odd a)), (4.5)

where the expression h is defined by

h(ü, v) = (ü + f' * v) $(ü — f' * v) .

The common subexpressions fft(even a) andfft(odd ä) entail the desired gain in
complexity. Note also that the recursive calls of fft work on vectors that are half
as long as the given argument vector.

Some further optimizations are possible, here. For instance, f' is based on
the TV-th root of unity r = root(N), where N = #a. Since the computation of root
is a costly process, we should use the relationship (1.6) in order to replace this
operation by a cheaper one.16 To this end, we simply add an additional parameter
r to the function fft that invariantly has the value r = root(#a).

! ” This technique is known in optimizing compilers as “strength reduction”; in connection with
program transformation it has been baptized “finite differencing”.

Programming with (Finite) Mappings 397

5. For the termination case, that is, for #a = 1, we obtain from definition (0.1) the
equation

#<([«0]) = [flθl ∙ (5.1)

Yet, for the sake of further optimization it is recommendable to stop the recursion
one step earlier, that is, for #a = 2. For, here we need not compute the actual root
r, since we merely use it in the form r0 = 1.

J0⅛([αo,αll) = [j/0,1/1] where y0 = a0 + al (5.2)

Dl = α0 - al ∙

This concludes the derivation of the recursive solution of the Fast Fourier Trans
form, since the function has the envisaged complexity of O(N log N) operations.

62 An Efficient Iterative Implementation

The envisaged computational complexity can only be achieved if we “memoize”
the values of the recursive calls instead of recomputing them repeatedly.

The above equations entail the following computational process: Initially,
we need to calculate the values of one polynomial (at N points); in the next stage,
we have to evaluate two polynomials (at ⅛ points each); then four polynomials
(at γ points each); then eight;... and so forth. Consider, for instance, the compu
tation tree of fft(H) for the case N = 8, which is depicted in Figure 6.1 below. The
left side indicates the even/odd rearrangement of the coefficient vectors, starting
from the original vector δ, “on the way down into the recursion”, whereas the
right side shows the construction of the (intermediate) result vectors, using the
operation h, “on the way back up from the recursion”.

Figure 6.1

6. This is a tree-like recursion pattern that is amenable to general rules for recur
sion removal. (Since the pertinent rule is not found in the standard textbooks, we

398 Peter Pepper Bernhard Möller

present it in the Appendix.) The equations (4.4) and (5.1) are an instance of the
scheme

∕(fc)(τ) = Φ(∕<*-1>(α x), fk~1∖β x)) for k > 0

f<-0∖x) = Px.

if we interpret x as ä, a x as even ä, β x as odd ä, Φ ash, k as log N for N = #ä,
k -1 as log(y), and Ψ as id. Hence, the transformation from the Appendix yields
the program (for TV = #ä):

ffi(a) = Ck oSk(A) (6.1)

where A = [0 >→ δ]
S = Split(even, odd)
C = Comp(h)
k = log(TV)

That is, we first perform log TV even/odd splittings to the argument (as it is il
lustrated on the left-hand side of Figure 6.1) and then we perform equally many
compositions using the expression h (as it is illustrated on the right-hand side of
Figure 6.1)

Note, by the way, that the transformation rule from the Appendix converts
the argument of the original function into a vector in the new function (in order
to perform the “memoization”). Since the argument of fft is already a vector, we
obtain through the transformation a vector of vectors, that is, a matrix. Moreover,
the even/odd-splitting doubles the number of components of the given vector, but
at the same time halves the size of each component vector, such that the overall
size of the matrix remains invariant.

7. Implementation of Sk(A). The next important observation now is that we
can perform the first half of the computation (“down into the recursion”) in one
single step. It is easily seen that each element a l∙ ends up at a position p, the binary
representation of which is just that of i read backwards. (For instance, in Figure
6.1 the element α3 ends up at position 6, and 32 = ‘011’ and 62 = ‘110’.)

The inductive pr∞f of this fact depends on the following observation: Con
sider the map of maps A as a matrix, stored row-wise. Then the bitstring rep
resentation of the position of each element is of the form (where ‘HI-’ denotes
concatenation of strings)

((row number)) HI- ((column number)).

The odd/even splitting performed by the operation Split then moves the last bit
of the column number to the end of the row number (thus doubling the number of

Programming with (Finite) Mappings 399

rows of the matrix and halving the number of columns). Ultimately, this process
reverts each bitstring.17

17 Dijkstra (1984) uses these considerations about the matrix A as the framework for the deriva
tion of the recurrence relations underlying the Fast Fourier Transform. But we feel that a clean sep
aration of problem solving and implementation issues improves comprehensibility considerably.
18 We follow here the principles of the earlier presentation by Broy and Pepper (1981), but now

based on a considerably more abstract view.

Hence, Sk(A) simply can be realized by swapping all pairs of elements α,∙ <→
aj for which the binary representations of the indices i and j are the reverses of
each other. This eliminates the need for recursion completely.

8. Implementation of Ck. Now we have to consider the “way back up from the
recursion”. But this simply means the iterated application of the operation Comp
and, thus, of the operation h. Here, we observe from the definition (4.5) that h
essentially maps a pair of two vectors (of size M each) into the union of two
vectors (of size M each). This renders the generalized version of Transformation
Tl applicable.

Hence, we have again reached a state, where a compiler could take over.

7. Transitive Closure of a Graph

Our method applies not only to linear algebra but to any area that makes use of
mappings. A particularly nice example for demonstrating this effect is WarshalΓs
algorithm for computing the transitive closure of a graph.18

1. We suppose that a directed graph over a fixed set N of nodes is given by a
function

edge : node × node → bool.

This function is reflexive, that is, edge(n, n) = true for all nodes n. Moreover,
we use a predicate path that determines whether a given nonempty sequence of
nodes is a path:

pathp = ∖∕i ∈ [l..length(p) — 1] : edge(p(i — l),p(z)).

The following derivation also works, if we restrict ourselves to cycle-free paths.
(Actually, some deductions become even simpler.)

2. Our task is to design a function

trans : node × node → bool

400 Peter Pepper Bernhard Möller

that determines for any given pair of nodes, whether they are connected by a path
in the given graph. So the specification of trans simply is (where denotes
concatenation of sequences and nodes)

trans(x, y) = Ξp : sequ node ∣ path(x ■ p∙ y).

3. The underlying idea of the solution is to designate a set of “admissible paths”.
Initially, this set merely consists of the original edges, and then it is successively
enriched until it contains all paths. The set of admissible paths in each stage is
essentially controlled by the set of nodes that are allowed as “inner nodes” of the
paths. This idea leads to the embedding into a new function

tc : set node → node × node → bool.

This function is specified by

tc(S)(x,y) = Ξp : sequ node ∣ path(x ∙ p∙ y) Λ set(p) Q S . (3.0)

From this specification we can deduce the essential properties of tc (where ,+,
denotes addition of an element to a set; that is, S + a = S U {α}, with a £ S'):

tc(0)(x,y) = edge(x,y) (3.1)
tc(S + a)(x, y) = tc(S)(x, y) V (tc(S)(x, a) Λ tc(S)(a, y)). (3.2)

These two equations (which are easily provable from the specification, as is for
mally shown by Broy and Pepper, 1981) determine a terminating recursive algo
rithm. This algorithm solves the initially given problem, as is expressed by the
following equation

tc(N)(x, y) = trans(x, y) where N = ((set of all nodes)) . (3.3)

Before we develop this algorithm further, we will, however, point out two imme
diate consequences of (3.2) that are helpful later on:

tc(S + a)(x, a) = tc(S)(x,a) (3.4)
tc(S + α)(α, y) = tc(S)(a, y). (3.5)

4. At this stage, we want to emphasize the viewpoint that tc(S) has a whole matrix
as its result, and that this matrix is repeatedly overwritten during the evaluation
process. Accordingly, we rewrite equations (3.1) and (3.2) into the equivalent
forms (where we omit, for the sake of brevity, the domains of all maps, since
they always are TV × N):

tc(0) = [x,y>→ edge(x, y)]
tc(S + a) = ha(tcS) where

haT ⅛f [*, y h→ T(x, y) V (Γ(x, a) Λ T(a, y))]

(4.1)
(4.2)

Programming with (Finite) Mappings 401

5. From equations (3.4) and (3.5) we obtain the following properties for ha:

ha(T)(x,a) = T(x,a)
ha{T)(a,y) - T(a,y)

(5.1)
(5.2)

This is precisely the enabling condition for transformation T2. Hence, the func
tion ha will lead to a loop, in which T is successively updated. And this loop is
embedded into an encompassing loop that results from the function tc by appli
cation of some standard transformations for recursion removal (called “function
inversion” by Bauer and Wössner 1982, because we start from the empty set 0
and successively add elements until the full set N is reached).

As in all previous developments, this is a stage where we can leave the rest to the
compiler.

Remark. The proofs in our derivation use only a few properties of the Boolean
operations ‘A’ and ‘V’, namely those of a closed semi-ring (cf. Aho et al., 1974).
Hence, the development can be “parametrized” by the kind of underlying data
type. For instance, it works analogously for the pair of operations ‘IT and *+’
(where l∏, yields the minimum of two numbers and *+’ is addition), thus leading
to an algorithm for shortest paths.

8. Conclusion

Programming with arrays, matrices, and the like has been regarded for a long time
as that part of programming where the imperative style is, by necessity, superior
to the applicative style. This view was justified as long as the attempts to program
with such structures applicatively merely consisted in mimicking the imperative
loops by tail-recursive functions. In that approach, the selective updating was
only very clumsily represented by corresponding applicative operations.

However, as we have shown in this paper, a more radical transition to alge
braic concepts immediately changes the situation in favor of the applicative style.
By using a set of carefully chosen and powerful algebraic operators, we are able
to program virtually all map-based programs in a much more compact and ab
stract manner than can be done in the imperative style. Above all, we get rid of the
nitty-gritty index calculations that are so typical for this class of FORTRAN-like
programs (which remain FORTRAN-like even when they are coded in Pascal or
Ada).

However, the other extreme of “avoiding indices at all costs” (as it is done,
for instance, in the approach of R. Bird, 1987, 1988) is, by our experience, not
adequate either - at least in many applications. Hence, we have tried to find a
proper balance between compact algebraic operators and explicit indexing.

402 Peter Pepper Bernhard Möller

A very important programming paradigm is “memoization”, that is, the stor
ing of calculated values instead of their recomputation. Our unified view of
functions (as computations) and maps (as data structures) allows in particular
a smooth transition between both concepts. Moreover, the high applicative level
makes the derivation of parallel and sequential implementations equally natural
and easy.

As a test for the usefulness of our approach, we have applied it in this paper
to a wide variety of map-oriented programming problems. Most of these prob
lems are standard in the literature19, and some of them we had already treated
by formal transformations in earlier papers. But, we feel that for all of them our
present treatments are much better than the earlier ones - which demonstrates
that high-level algebraic concepts constitute a decisive progress also in this area
of programming.

19 Note that, in common textbooks, many examples that work on arrays are actually problems
for sets or sequences. The arrays only creep in as a superficial implementation of these sets and
sequences.

Appendix: A Special Rule For Recursion Removal

Consider a tree-like recursion scheme of the kind

f<-k∖x) = Φ(f<∙k~1∖a x), fk~l∖β x)) for k > 0,

∕0∖ff) = Φ x ,

which leads to a balanced calling tree.
We can convert this tree-like recursion into a linear recursion by collecting

all the nodes of each level into a vector. This leads to a computational process as
illustrated below (for k = 3):
Here we have, for instance, x ∣2' = βa(x) and y® - f(x ∣2^) = f(βa(x)).

On the “way down into the recursion” we produce the argument vectors,
and on the “way back up from the recursion” we produce the intermediate result
vectors. The former activity is performed by the operation

fief
Split(cx. β)x = [2k f → a(x k), 2fc + 1 ⅛→ β(x k) ∣ 0 ≤ k < #äj] ,

the latter activity by the operation

Comp(Φ')y ⅛f [⅛ ∏→ Φ(y(2k), y(2k + 1)) ∣ 0 ≤ k < ⅛] .

Obviously, Split doubles the size of its input vector, whereas Comp halves it.

Programming with (Finite) Mappings 403

x®
0

x(0)λ o

7V
χ(') X 1) x<,> v0yo > yιυχ v , χ' , v' , v' 'p o IxI ∣yp ∣ y 1zz∣ ⅛∖ Λ↑ l∣ ∖√C) x0 X® x 1 X® X® x3 yop> y(2) y(2) y?>xδ IxΓI x⅛ I x⅛ I ∣yp Pi lyΓ∣yΓ

Figure Al

7 (3)
a 0

X® xι 7® x2 7 (3) λ 3 7® x4 X®
λ 5

√p>
λ 6

6√ IX y0w y? v<3>>2 VP) >3 v<3>
J 4 V<3) y5 v(3)

j 6 y7p)
∕

If we, now, introduce the definitions (for given k)

5(0) = [01→ x]

j(≈+l) i= Split(a, β')χ('i forO < i< k

^)⅛f^-(fc)

y(i) ⅛f Comp(Φ)y^i+1'> for 0 ≤ i < k

we can immediately show the following relationships

^(∙) = ∕≠).

This, in turn, means that

yV> = fχW

= (CkoΦo S,fc)5<°)

where S - Split(a, β)
C = Comp(Φ).

Since each vector χ(*> and has exactly 2* elements, we have in particular that

y(θ) = [0 l → y ∣ and = [0 ∣→ z] with y = f<∙k∖x).

In other words, we start by embedding the argument x into the singleton vector
[0 ∣→ x], apply k times the operation Split(a, β), once the (pointwise lifting
of) the operation Φ, and again k times the operation Comp(Φ). The result is a
singleton vector consisting of the desired result y = f(kβx).

404 Peter Pepper Bernhard Möller

Acknowledgement. The ideas presented here were strongly influenced by many
discussions with members of IFIP WG 2.1, notably with R. Bird, L. Meertens,
and J. Boyle. We are grateful to U. Berger and E Erhard for helpful comments.
We also enjoyed clarifying disputes with Μ. Broy on variations of the algebra of
maps.

References

Aho, A.V, Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Read
ing: Addison-Wesley 1974.

Backhouse, R.: Making Formality Work For Us. Bulletin of the EAΓCS 38, June 1989,219-247.
Bauer, F.L., Wössner, H.: Algorithmic Language and Program Development. Berlin: Springer

1982.
Bird, R.S: An Introduction to the Theory of Lists. In: Broy, Μ. (ed.): Logic of Programming

and Calculi of Discrete Design. Proc. Int. Summer School, Marktoberdorf 1986, NATO ASI
Series F, Vol. 36, Berlin: Springer 1987,5-42.

Bird, R.S.: Costructive Functional Programming. In: Working Material, Int. Summer School on
Constructive Methods in Computing Science, Marktoberdorf 1988.

Bird, R.S., Wadler, P.: An Introduction to Functional Programming. Englewood Cliffs: Prentice-
Hall 1987.

Boyle, J.: Towards Automatic Synthesis of Linear Algebra Programs. In: Hennell, M.A., Delves,
L.M. (eds.): Production and Assessment of Numerical Software. London: Academic Press,
1980,223-245.

Broy, Μ., Pepper, P.: Program Development as aFormal Activity. IEEE Transactions on Software
Engineering SE-7,1 (1981), 14-22.

Burstall, R.M., Darlington, J.: A Transformation System for Developing Recursive Programs.
J.ACM 24 (1977), 44-67.

Cooley, J.W., Tukey, J.W.: An Algorithm for the Machine Calculation of Complex Fourier Series.
Math. Comput 19 (1965), 297-301.

Dijkstra, E.W.: A Discipline of Programming. Englewood Cliffs: Prentice-Hall 1976.
Dijkstra, E.W.: The Fast Fourier Transform and the Perfect Shuffle. In: Working Material, Int.

Summer School on Control Flow and Data Flow, Marktoberdorf, 1984.
Gries, D: The Science of Programming. New York: Springer 1980.
von Henke, F.W.: On Generating Programs from Types: An Approach to Automatic Program

ming. In: Huet, G., Kahn, G. (eds.): Construction, Amelioration et Verification des Pro
grammes. Colloques IRIA 1975,57-69.

Jones, C.B.: Software Development: A Rigorous Approach. Englewood Cliffs: Prentice-Hall
1980.

Möller, B.: Applicative Assertions. Proc. Int. Conf, on Mathematics of Program Construction,
Groningen 1989.

Pepper, P.: Specification Languages and Program Transformation. In: Reid, J.K.(ed.): Relation
ship between Numerical Computation and Programming Languages. Proc. IMP WG 2.5
Conf., Boulder 1981. Amsterdam: North-Holland 1982,331-346.

Pepper, P.: Inferential Techniques for Program Development. In: Pepper, P. (ed.): Program Trans
formation and Programming Environments. NATO ASI Series F, Vol. 8. Berlin: Springer
1984, 275-290.

Pepper, P. (ed.): The Programming Language Opal. Internal report, Technische Universität Berlin
1991.

Programming with (Finite) Mappings 405

Reynolds, J.C.: The Craft of Programming. Englewood Cliffs: Prentice-Hall 1981.
Smith, D.R.: KIDS - A Knowledge-Based Software Development System. In: Proc, of the Work

shop on Automating Software Design, AAAI 1988.

