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Abstract. We present a unified view of “mappings”, abstracting from their ap­
pearance as “routines” (that is, objects that describe computations) or as “map­
like data structures” (that is, objects that are stored and accessed via indices), 
respectively. On the basis of suitably defined algebraic operations we are then 
able to develop algorithms at a very high level of abstraction, without losing the 
potential of implementing them efficiently in terms of arrays and loops. This is 
demonstrated for a variety of array-based algorithms that are well-known from 
the literature.

1. Introduction

Traditionally, programming with array-like structures exhibits two characteris­
tics: intricate index calculations and selective alteration. In this context, “selec­
tive alteration” means that our algorithms try - for the sake of space economy - 
to overwrite existing arrays rather than to generate new ones.

This view clearly originates from the imperative programming paradigm, 
and thus it is not surprising that array-like structures have hardly made then­
way into applicative programming - by contrast to many other structures such 
as sets, sequences, trees, and the like. The best that we can find in terms of ab­
straction are the assertional treatments in the style of Dijkstra (1976) or Gries 
(1980), sometimes enhanced by special operators (Jones 1980) or graphical sym­
bolism (Reynolds 1981). First, tentative efforts to integrate array programs into 
the applicative style have been made only recently, for instance by Bird (1989) 
or Backhouse (1989).

Within the context of applicative programming, there is, admittedly, less 
need for array-like structures, because they may well be viewed as special cases 
of functions. Hence, in this area, programming with arrays is replaced by pro­
gramming with higher-order functions.

Yet, this approach is satisfactory only from a theoretician’s viewpoint. For, 
in practical applications, the distinction of special situations is a decisive feature. 
Even though we want to free the programmer from the burden of fiddling around 



with the technical details of overwriting and the thus enforced intricate index cal­
culations, we do want to keep the potential for efficient implementations. Thus, 
we encounter the need for array-like structures as a link between the too gen­
eral concept of arbitrary higher-order functions and the too detailed concept of 
machine-oriented arrays. Technically, this link is established by a few fundamen­
tal transformation rules.

Moreover, even if we completely disregard the aspect of efficient implemen­
tation, there is still a need for increased abstraction in programming with func­
tions. For, there are many “standard” situations where a single powerful operator 
(that is, a higher-order polymorphic function) can replace lengthy recursive func­
tion declarations. However, when designing a collection of relevant operators, we 
must be careful not to make this set too abundant, since, otherwise, there is the 
danger of losing comprehensibility.

Summing up, we aim at high-level algebraic operations that enable us to 
formulate specifications and algorithms as abstractly as possible. But we do this 
with a view towards implementation problems, in particular towards selective 
updating.

2. “Functions” and “Maps”

A “mapping” consists of three parts, the domain, the range (also called 
codomain), and the graph, that is, a set of pairs (d, r) with d ∈ domain and 
r ∈ range. As is well-known, the graph has to be “functional” (also called “left­
unique”): no two pairs must share the same domain element d.

Given this basic definition, what distinguishes mappings in the mathematical 
sense from mappings in the sense of data structures? To ease the discussion about 
the differences, let us agree on the following phrasing: From now on, mappings 
in the mathematical sense will be called functions, whereas mappings as data 
structures will be called maps.

It is characteristic for a function that it is usually not defined extensionally 
by listing its graph, but rather intensionally by giving an algorithm that computes 
for any given argument x the corresponding result y. This algorithm usually is 
represented by some kind of (recursive) “function declaration”, mostly written 
with the help of lambda abstraction, or as a set of conditional equations. Con­
sequently, for a function f, the domain and range are usually determined only 
implicitly.

By contrast, a map is usually given extensionally by actually listing all pairs 
in the graph. As a consequence, the domain and range are specified explicitly as 
well. This extensional view entails the need for actually “generating” and “alter­
ing” maps, which are rare activities for functions.



In general, we do not distinguish the two concepts in the remainder of this 
paper, because the focus of our attention is the method of program development 
using maps. Hence, we describe the underlying theory only informally here. But 
we should point out that a rigorous semantic specification of the algebra of maps 
has to cope with a number of subtleties, in particular concerning questions of 
finiteness, definedness, strictness, and so forth. 1

1 Formal definitions will be given in a forthcoming extended version of this paper.
2 Since we merely want to give an informal sketch of the theory here, most of the subsequent 

equations only refer to the “standard” situations, where all map expressions are well-defined.

3. Notations

Our notations are essentially drawn from the set-theoretic view of mappings, but 
they are applicable under both the function view and the map view.2 Let M, N 
be mappings, i,j be domain elements, and x,ybe range elements. Then we use 
the following operations, which are all strict:

0 empty map.
J, M domain of M; (the “arguments” or “indices” of M).
#M cardinality of (domain of) M, that is, number of pairs in the map.
M i application of M to argument i, yielding the corresponding value y 

(undefined if i 0 ∖,M).
M ∣ D restriction of M to the set D; this is defined by

(M∖D)i = Mi ifι∈D,
(M ∣ D) i undefined otherwise.
Note that we do not require D to be a subset of ∖,M.

M <— N “overwriting” of M by N; this is defined by the properties
(M<-N)i = Ni Hie IN,
(M<-N)i = Mi
Note that «— is associative and idempotent.

M W N “union” of M and N; this is the same as overwriting but restricted to 
mappings which coincide on their intersection:
MVN = M <-N if M ∣ (IM∩ [N) = N ∣ (∣M∩ [N), 
M ⅛) N undefined otherwise.
Note that “W” is associative, commutative, and idempotent.

M ∖∖ N constraining of M by N∙, defined by
M ∖∖ N = M ∣ (iM∖lN)
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Using this operator, we can describe the overwriting operator con­
cisely by
M <-N = (M∖∖N)UN

M o N composition of two maps; this is defined as usual by
(MoN)i = M(N i).

The “map comprehension” also follows our set-oriented view3; that is, we es­
sentially describe the association of a value to each index.

j The notation is a straightforward extension of set-theoretic notations; it is also used by Jones 
(1980).

4 This is very well elaborated by Bird (1987), but the theoretical foundation of this idea dates 
back at least to the work of von Henke (1975). Many of these concepts are also found in the 
language APL.

5 We will omit the “ ”, that is, just write f instead of f, whenever this kind of overloading can 
be resolved within the given context.

[z ∣→ -El[[z]∣ ∣ i ∈ D] mapping M with domain D, defined by M i = EJt]] for 
i ∈ D, where E[[i]] is an expression in which i possibly occurs.
Sometimes we also enumerate small mappings by listing all pairs ex­
plicitly, in a form like [z f → 5,∣[z]], ...,j ∣→ El[[j]∣] θr> following math­
ematical tradition, in the form of an indexed family [n⅛,..., xj∙].
This map comprehension differs from classical λ-abstraction essen­
tially by its strictness: 5^[[z]] has to be defined for each i ∈ D; other­
wise the whole map is undefined. In other words, we have the equation 
[i ∣→ SOJ ∣ i e D] = ∣+∣ieβ[z h→ ∙
The map comprehension is probably one of the most important con­
cepts in our approach. For, it allows us to specify mappings in a point­
wise fashion, without having to care about any computational ordering 
whatsoever.

Most approaches that strive for a more abstract and algebraic treatment of algo­
rithms use a number of standard “homomorphism-oriented” operators4. In this 
spirit, we adopt the following notations:

f M ,*lifting,,-operator5j the function f is applied to all elements of the 
range of Μ. (This “pointwise application” corresponds to Bird’s 
“apply-to-alT-operator for sets and sequences.)
f M = [i >→ f(M i) ∣ i ∈ ],Λf]
We extend this notation in a straightforward manner to situations 
where the function f results from fixing one argument of a binary op­
eration. For example, if fx ≡ a * x, then f M is simply written as 
a*M (or just a * M, since we usually omit the lifting symbol).
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∕ (M, N) “lifting”-operator generalized to binary operations. The usual prereq­
uisite here is, of course, that the two mappings share the same domain, 
but for the sake of flexibility we extend this operation also to the gen­
eral case of non-fitting domains:
f(M, N) = [i → f(M i,Ni)∖ie ([M ∩ 11V)]

≡ ∖∖ N 
VN∖∖M.

f ∕M “/-reduce” over all values in the range of M, where f is a binary, 
commutative function. For instance, +∕M forms the sum of all values 
in Μ.

In many application areas - notably in linear algebra - the domains of the map­
pings are restricted to very special forms, namely to intervals [α..⅛] C Z, whereZ 
is the set of integers. We then often speak (by a slight abuse of language) of vec­
tors. When the domain is a product of such intervals, we speak of matrices. (To 
ease readability, we adhere to the convention of denoting vectors by 5, b, δ,... 
and matrices by A, B, C,...) For these special domains, some further operators 
make sense:

ä φ b “juxtaposition”6 of vectors; the essential aspect is a proper shifting of

We borrow the notation of Bird (1989).

the indices of b such that b is appended “right” of ä. Let J,δ = [αl..α2] 
and J.5 = [61..&2J; then:
(α fyt>)i = äi ifi ∈ ∣δ,
(δ j> b)i = b(i — bl + a2 + 1) otherwise.
Note that (although it is defined using indices) we mainly use this op­
erator, when the concrete indices are of no relevance for the design of 
an algorithm.

A^B “horizontal juxtaposition” of matrices A and B, that is, a renumber­
ing of the columns of B.

A-e- B “vertical juxtaposition” of matrices', the rows of B need to be renum­
bered such that they directly follow those of A, that is, B is put “below” 
A.
In connection with matrices, that is, with mappings having direct prod­
ucts as domains, two further operations become a major issue, namely 
“Currying” and “transposing”. We describe both operations for a given 
matrix A: D↑ × D^→ R.

CA is the “Curried” mapping A' : Dι → (Z>2 -* R) defined by
(A'i)j = A(i,j).

6
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CA' is the “deCurried” map defined by 
CA'(i, j) = (A i)j.

TA is the “transposed” matrix B : ∏2× → R, defined by
B(j,t) = A(i,j).
Note: Sometimes we want to “Curry with respect to the second, rather 
than the first, component of the domain”. This can easily be achieved 
by combining the two operators in the form CT A, since we then have 
CTA j i = A(i,j). So we can easily express the two ways of viewing a 
matrix, viz. the row-oriented “ALGOL-view” and the column-oriented 
“FORTRAN-”view:
Rows A ⅞f CA

Cols A i= CTA.

7 The correctness of these rules can be shown by Hoare’s classical assertion logic or by the 
proof technique of Möller (1989).

4. Implementation Issues

The operations and concepts presented in the previous chapter are oriented to­
wards the design and development of high-level abstract algorithms. But we also 
want to keep an eye on efficient implementability. For, it is our claim that the 
elegance and clarity of applicative programs need not be in contrast with effi­
cient execution. In the sequel we present a few transformation rules by which 
abstract map-oriented programs are converted into low-level loops. These rules 
are schematic enough to be used even in a fully automatic translation process.

The main task, here, consists in producing space-efficient code for allowing 
“in situ,,-realizations of assignments M := ,E[[Λ∏ for map variables M; these 
assignments arise in particular, when tail recursions are translated into loops. The 
following transformation rules7 cover the majority of practically relevant cases. 
In the description of these rules, we restrict ourselves, for the sake of readabil­
ity, to expressions E with at most two different applications of the mapping Μ. 
(For instance, the notation EfiM z]∣ shall indicate that no other applications of M 
besides M i occur in the expression E.) The generalizations to more such appli­
cations as well as to the case of simultaneous updatings of several map variables 
are obvious.

The following rules shall give the principal ideas. Specific target languages 
may require specific additional constraints such as D C [Μ. (For instance, 
ALGOL68 arrays are more permissive than, say, Pascal arrays.)
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Transformation Tl: If the new value associated with each index i depends only 
on the old value M i, then the new mapping can be generated by suc­
cessive (or parallel) overwriting:

M -M ^-[iy→ E^M ⅛]] ∣ i ∈ -D] 
---------------------- ψ-----------------------  
for all i in D do M[i] := E([M f] od

(Note that the loop can be executed in arbitrary order, even in parallel.)

Transformation T2: If the new value associated with index i depends only on 
the old value M i and some other value M a, then the new mapping 
can be generated by successive (or parallel) overwriting, provided that 
M a remains invariant:

M := M ÷- [i ∣→ Ef[M i, M α]] ∣ i ∈ Z>] 
---------------------------4--------------------------- {E[[M a,Ma⅛=M a 
for all i in D do M[i] := Ef[M i, M α]] od8

8 Alternatively, we could take a out of the domain of the loop; but this frequently makes the 
code even more costly, in particular in connection with parallel implementations.

Transformation T3: If the new value associated with index i depends only on old 
values that belong to larger (smaller) indices, then the new mapping 
can be generated by ordered successive overwriting:

M := M <— [ι ∏→ E([Λf ?, M jU ∣ i ∈ [α..δ]] 
----------------------------JJ.-----------------------------{a <b Λj >i 
for all i in [α..δ] do M[z] := E^M i, M jj od

We have, thus, reached a state where we can stop our developments at a very 
high algebraic level, because the remainder of the code generation process can be 
left to an optimizing compiler. As a matter of fact, we may even stop as soon as 
the applicability conditions of the above transformations are met. Hence, our pro­
gram derivations should be geared towards meeting the applicability conditions 
of these transformations.

5. Simple Exercises in Linear Algebra

A methodology for dealing with finite maps should, in particular, be able to cope 
with the classical matrix operations from linear algebra, such as scalar product, 
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matrix multiplication, Gaussian elimination, and so forth. So we start by review­
ing some of these standard operations in our context.

5.1 Basic Operations

1. The simplest operator in linear algebra is the scalar product of two vectors, 
which we denote here by the infix symbol ,∙ ’. Its mathematical definition is tran­
scribed into our notation as pointwise multiplication (note that we omit the lifting 
symbol ‘ ^ ’) and a subsequent +-reduce:

δ∙5 = +∕(δ*fe) (=^2α∙*⅛) (1∙1)
2

Note that this operator is associative and commutative and, moreover, associates 
with the normal multiplication operator:

x * (δ ∙ S) = (x * ä) ■ b (1∙2)

2. Slightly more complex is the matrix product9, which we denote here by the 
infix operator ‘ ×’. In linear algebra, it is usually described as follows: Let two 
matrices A and B be given such that j,(Co⅛ A) = J,(Λowr B). Then the product 
is a new matrix each element of which is the scalar product of the ?-th row of A 
and the j -th column of B. In our notation this reads

Boyle (1980) gives a derivation of these algorithms within the classical algebra of matrices.

d∙ I
A×B = [(i,j) ∖→ Rows Ai∙ColsB j 1i e J,(Λows A),j ∈ ∖,(ColsB)](2.1)

3. Unfortunately, in many cases this definition is not very efficient as a program 
(namely within assignments of the kind A := A × B), because none of the trans­
formations from Section 4 is applicable. Fortunately, however, we can transform 
the definition of matrix multiplication further, such that transformation Tl be­
comes applicable. The trick lies in a suitable Currying:

Rows(A × B) = Rows[(i,j) ι→ Rows A i ■ Cols B j ∣ i ∈ |(7?ows A),
j ∈ [(Cols 5)]

= [I ∙→ [j >→ Rows A i ■ Cols B j ∣ j ∈ [(Cols B)] ∣

i ∈ J,(Λows A)]
= [zh→ Rows A i ^ Cols B ∣ i ∈ l(∕tows A)] . (3.1)

Here, every row of A is multiplied with all columns of B, yielding the correspond­
ing row of the result matrix. To this version, transformation Tl is applicable, 
leading to the classical program for matrix multiplication.

9
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5.2 LU-Partitioning by Gaussian Elimination

Next we should check, whether slighly more intricate algorithms can be treated 
as well. As a matter of fact, we show in this section that our approach renders also 
intricate numerical algorithms much more amenable to high-level programming 
concepts.

A standard algorithm in the area of numerical linear algebra is the solution of 
a system of linear equations by the method of Gauss.10 Every mathematician or 
programmer working in this area is well familiar with the (quite ugly) FORTRAN 
programs that solve this problem. It is in particular the deep nesting of DO-loops 
in concert with the corresponding index calculations that makes these programs 
so hard to read, to verify, and to modify. So the question immediately comes to 
mind, whether this algorithm could not be programmed as nicely as it is explained 
in (good) textbooks. In order to keep the treatment brief, we demonstrate only a 
simplified version without pivot search.

10 We got th© idea of using this example for the demonstration of our algebraic approach from 
a presentation given by Jim Boyle during the meeting of EFIP WG 2.1 in January 1989.

1. The problem can be stated quite briefly: Given a matrix A, find a lower trian­
gular matrix L and an upper triangular matrix U such that

A = L×U.

2. The key to space efficiency here is that the constant parts of both matrices 
L and U can be omitted such that the relevant values can “share” one matrix 
layout. This is illustrated in the following diagram, where L and Ü denote the 
non-constant triangles of L and U, respectively:

How can we realize this idea in our algebraic setting? A pair of mappings 
with disjoint domains is isomorphic to the union of these mappings, in the sense 
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that we can reconstruct each of the original mappings, provided that we still know 
their domains. Formally11:

11 By the symbol ‘ /1 ’ we denote the disjointness predicate.
12 We content ourselves with a graphical description of the partitionings, since they can be 

trivially defined using our restriction operator.

M 0 ∣B => (A ⅛l B) I M = A,
M 0 IB => (A ü B) I ∣B = B.

■i

Hence, we can develop our algorithm for LU-partitioning based on the union of 
matrices rather than on their pairing.

3. The simplest version (from the point of view of understandability) of Gaussian 
elimination is illustrated by Figure 5.2 below, which reflects the following idea: 
We partition each matrix into four submatrices, namely the left upper element, 
the remaining first column, the remaining first row, and the remaining lower right 
matrix. Moreover, in L and U we ignore the constant parts that consist of 0’s and 
Γs only.12

A = L×U 
P ⅛f LtiÜ 

P'⅛fZ'⅛P'

1 0

I L'

υ u'

0 U'

a a'

a A'

V u'

I P'

(3.1)

(3∙2)

(3.3)

Figure 5.2

4. Our task is to find an algorithm lup that meets the specification
~ ~ dpf

lup(A) = lup{L ×U) = L∖tfU = P (4.1)

5. By standard matrix multiplication we can calculate for the above partitionings

L×U =
V u'

l*v l×u'+ L'× U'

α a'

a A'
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This entails the individual equations

v — a
u' = a'
ι 1 1

13 An overview of such transformations as well as historical references can be found in the 
textb∞k by Bauer and Wössner 1982.

' = -*α = -*α
v a

L' ×U' = A' -I ×u' = A' -I ×a'.

For the triangular matrices L' and U' equation (4.1) yields again

L' W U' = lup(L' × U') = lup(A' - I × a').

(5.1)
(5.2)

(5.3)

(5.4)

(5.5)

6. The equations (5.1)-(5.5) determine the fragments from which the solution 
matrix P = lup(A) is built up (for A y 0):

lup(A) = α ⅛∣ α' ⅛J ∕ ⅛ lup(A' - I × a') 
where I = - * a .a

For the termination case A = 0 we obtain, of course:

lup(0) = 0 .

(6.1)

(6.2)

7. Since “W” is an associative (and commutative) operation with 0 as neutral 
element, the standard transformations for recursion removal are applicable.13 
They result in the following version of our program:

lup{A) = lupλ{A,<Z>) (7.1)
∕iφ1(0,B) = B (7.2)

∣A 0 => ∕wp1(A, B) = lupγ(A! - I × a', B W a Ö a' W I) (7.3)

where I = - + a .a

8. For this new function, we can immediately prove that the following invariant 
holds:

invariant ∣[lup1(A, -B)]] : J. A 0 ∖,B .

That is, the domains of the two parameters are always disjoint. Hence, we can 
apply the “isomorphism” between pairing and union again and merge the two 
parameters into a single one while keeping the domain of A as a parameter in 
order to still enable the termination test.

Again, we have thus reached a stage, where an advanced optimizing com­
piler could take over and produce the efficient imperative code that is well-known 
from the FORTRAN programs in the pertinent libraries for linear algebra.



5.3 Polynomial Interpolation^

In textbooks on numerical analysis there is a relatively simple algorithm for 
polynomial interpolation, which has been designed by Aitken and Neville. The 
essence of this algorithm - from the point of view of numerical mathematics - is 
captured by a nice recursive equation. The tricky point is to program the evalu­
ation of this equation in an efficient manner. For the sake of brevity, we merely 
sketch the idea of the algorithm here, concentrating on the essentials of the map- 
related developments rathef than on the details of the numerical computations.

1. The essence of polynomial interpolation is given by a recursive function of the 
kind

P : nat × nat → real

which is specified by the equations

P(i, 0) = y i for ? ∈ [0. .TV];
P(i, ⅛) = e(P(t, k - 1), P(i -l,k- 1)) for k ∈ [1..TV], i ∈ [⅛..2V] .

Here, y represents a collection of real values yQ,...,yκ, and e is some complex 
numerical expression (the detailed nature of which is of no relevance for our 
considerations here).

The following diagram illustrates the basic principle of this computation:

Figure 53

k

2. Since the second parameter function can be nicely inverted from k — 1 to k +1, 
we can, again, apply a standard transformation rule for recursion removal. Hence, 
we prepare this transformation by Currying with respect to the second argument.

14 Pepper (1981,1984) already demonstrates a transformational development of this algorithm. 
Now, we want to show that more abstract algebraic operations can improve such developments.



This is achieved formally by introducing a new function

P↑ : nat → (nat → real)

with the definition

P1 =CTP =ColsP .

From this definition we can, then, deduce a directly recursive definition of P↑:

Pj 0 i = y i for i ∈ [0. .√V];
Plki = e(P↑(k - l)(i),Pl(k - l)(i - 1)) for k ∈ [1.JV],( ∈ [⅞..2V] .

Rewriting into map comprehension yields the form

Pl 0 = y,
Plk≈[i*→ e(Pι(k - l)(i),Pγ(k - l)(i - 1)) ∣ i ∈ [⅛..7V]].

3. Applying the aforementioned transformation rule leads to a tail-recursive ver­
sion of our function, which has the functionality

P2 : nat × (nat → real) → (nat → real).
∕

This function is defined by the equations:

P1W = P2(0,y)
P2(fc, P) = Pl(k + 1, [i >→ e(p(i),p(i - 1)) ∣i ∈ [⅛ + 1..7V]]) for 0 ≤ k < N 
P2(N,p)=p.

The map in the second equation allows the application of the transformation rule 
T3, because i — I <i.

Again, we have reached a stage, where a compiler is able to produce an 
efficient imperative program that essentially consists of two nested loops.

6. Fast Fourier Transformation

Evaluating a polynomial

z x def 2 v_ip(x) = ao + a-[x+a2x +... + aN_]X"

of degree N — 1 at a specific point zq requires O(N) operations. But many appli­
cations even need to evaluate p at N distinct points x q , .... x n  _ j. which entails - 
if done naively - O(N2) operations. The algorithm of Cooley and Tukey (1965) 
reduces these costs to O(N log N) operations. It achieves this effect, however, 
only if the polynomial is to be evaluated at very specific points rQ,...,rN_i
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(to which we will come in a moment). Thus, our task is to compute the values 
y0, ∙ ∙ ∙, Un - 1 defined by the equations

def , . 2 t v—1
t/0 = P(Γ0> = α0 + αlr0 + a2rQ + ■■■ + αΛr-lr0

: < (0.1)

def . . 2 N—l
VN-1 = P(r7V-l) = α0 + αlrJV-l +α2rτv-1 ÷-∙ + α∕√-1 r7√ _ ι

for given vectors f = [γq , ..., rw_iJ of arguments and ä = [oq , ..., aw_j] of 
coefficients.

1. Algebraic properties from complex arithmetic. As usual, the actual pro­
gramming has to be preceded by an analysis of the application domain, in our 
case trigonometric interpolation. The key concept, here, are the so-called “N-th 
roots of unity", which are complex numbers z having the property z n  = 1. It is 
known that for any N there are exactly N such numbers, one of which is called 
the “principal root of unity” and denoted here as root(N). Even though it is not 
necessary for our purposes, we note in passing that the principal root is obtained 
as root(N) = ei2π∕7v = cos(^5) + i sin(^), where i denotes the imaginary unit, 
that is, i2 = —1. Then, all N roots are obtained by raising this principal root to 

def

2. Now, we choose the 7V-th roots of unity as the evaluation points for our poly­
nomial. That is, the argument vector in (0.1) is just

r ⅛f [r0,..., r7v-1], where N = #ä and r = root(N). (2.1)

More generally, we define the vectors (for 0 ≤ j < N):

the powers 0,..., N - 1, that is, rj∙ = r3 * *. For later use, we record the following
properties of the roots of unity:

defLet r = root(N)∙, then:

r° = l; (1.1)

rN = 1; (1.2)
rfc√l forO<⅛<lV. (1.3)

For even N, that is, N = 2M, we have moreover

rM=-l; (1.4)
rM+t = _rk. (1.5)

? defr =s where s = root(M). (1.6)
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Now the original system of equations (0.1) can be written more compactly by 
using appropriate scalar products:

yo = ä ∙ f0

(2.3)

t/jv-1 - α ∙ rN_i

3. If we introduce analogous vectors s and sj for the Λ∕-th root of unity s = 
root(M), where N = 2M and 0 < j < M, then properties (1.5) and (1.6) 
entail important relationships between the vectors fj and si. To this end, we need 
auxiliary operations even and odd that split a given vector into its even-indexed 
and odd-indexed components, respectively.15

15 This corresponds to a rearrangement of the original polynomial into the form 

p(x) = (αθ + ∏2≈2 +... + aN_2X^r~2) + χ * (α1 + ajx2 +... + aN_ 1 x n ~2)

Now (1.5) and (1.6) immediately establish the relationships (for 0 < j < M), 
where we omit - as usual - the lifting operator for the multiplication:

even r,- = 5,∙ odd f,∙ = r,∙ * s,∙
- - .z,- _ (3∙1)

even γ m+j  = sj odd r^+j - ~Γj * Sj

Note, how much we gain from properties (1.4)-(1.6), when N is an even number. 
Therefore, “in order to reap that benefit all through the computation, we shall 
restrict ourselves to the case that N is a power of 2” (Dijkstra 1984). Hence, 
from now on, we assume N = 2π for some n.

We derive the algorithm in two steps: First we deduce - based on the above 
properties - a recursive solution with the desired complexity of O(N log N) op­
erations. Then, we implement this recursive algorithm iteratively, which entails 
an elaborate indexing of array elements in order to obtain a program that works 
‘in situ’.

6.1 A Recursive Solution for the Fast Fourier Transform

4. The Fast Fourier Transform works for arbitrary polynomials p, and these poly­
nomials are fully characterized by their coefficient vectors δ. On the other hand, 
the argument vector f derived from the N-th roots of unity is typical for the Fast 
Fourier Transform. Hence, we define the function fft that computes the result 
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vector y = [⅛q , ..., yN_1] of (0.1) and (2.3), respectively, for a given coefficient 
vector a = [<zq , ..., c in -1J, based on r = root(N):

fft(a) *=f U’ ∙→ ä ■ fj ∣ 0 ≤ j < TV] where N =#a . (4.1)

The essential gain of the Fast Fourier transform results from the application of a 
typical divide-and-conquer strategy. To realize this, we look for common subex­
pressions in the evaluation of (4.1), based, of course, on the above properties
(3.1) . To this end, let us consider the 7'-th equation; using the relationships in
(3.1) we obtain for 0 ≤ j < M = y:

fft(a)j =a∙fj
= (even ä ■ even fj) + (odd ä ■ odd fj)
= (even ä ■ sj) + rj * (odd ä ■ Sj)
=fft(even a)j + rj *fft(odd a)j . (4.2)

An analogous derivation for the “other half* of points yields

fft(δ,)(M + j) =fft(even a)(M + j) - rj *fft(odd a)(M + j). (4.3)

With the help of the juxtaposition operator we can combine these individual equa­
tions into the compact form

#t(ä) = (fft(even α) + f' * fft(odd a)) f (fft(even a) —f' * fft(odd a)) (4.4)
where f'= [ro,∙∙∙.rw-ll ∙

Hence, fft has the recursion structure

fft(a) = h(fft(even a),fft(odd a)), (4.5)

where the expression h is defined by

h(ü, v) = (ü + f' * v) $(ü — f' * v) .

The common subexpressions fft(even a) andfft(odd ä) entail the desired gain in 
complexity. Note also that the recursive calls of fft work on vectors that are half 
as long as the given argument vector.

Some further optimizations are possible, here. For instance, f' is based on 
the TV-th root of unity r = root(N), where N = #a. Since the computation of root 
is a costly process, we should use the relationship (1.6) in order to replace this 
operation by a cheaper one.16 To this end, we simply add an additional parameter 
r to the function fft that invariantly has the value r = root(#a).

! ” This technique is known in optimizing compilers as “strength reduction”; in connection with 
program transformation it has been baptized “finite differencing”.
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5. For the termination case, that is, for #a = 1, we obtain from definition (0.1) the 
equation

#<([«0]) = [flθl ∙ (5.1)

Yet, for the sake of further optimization it is recommendable to stop the recursion 
one step earlier, that is, for #a = 2. For, here we need not compute the actual root 
r, since we merely use it in the form r0 = 1.

J0⅛([αo,αll) = [j/0,1/1] where y0 = a0 + al (5.2)

Dl = α0 - al ∙

This concludes the derivation of the recursive solution of the Fast Fourier Trans­
form, since the function has the envisaged complexity of O(N log N) operations.

62 An Efficient Iterative Implementation

The envisaged computational complexity can only be achieved if we “memoize” 
the values of the recursive calls instead of recomputing them repeatedly.

The above equations entail the following computational process: Initially, 
we need to calculate the values of one polynomial (at N points); in the next stage, 
we have to evaluate two polynomials (at ⅛ points each); then four polynomials 
(at γ points each); then eight;... and so forth. Consider, for instance, the compu­
tation tree of fft(H) for the case N = 8, which is depicted in Figure 6.1 below. The 
left side indicates the even/odd rearrangement of the coefficient vectors, starting 
from the original vector δ, “on the way down into the recursion”, whereas the 
right side shows the construction of the (intermediate) result vectors, using the 
operation h, “on the way back up from the recursion”.

Figure 6.1

6. This is a tree-like recursion pattern that is amenable to general rules for recur­
sion removal. (Since the pertinent rule is not found in the standard textbooks, we 
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present it in the Appendix.) The equations (4.4) and (5.1) are an instance of the 
scheme

∕(fc)(τ) = Φ(∕<*-1>(α x), fk~1∖β x)) for k > 0

f<-0∖x) = Px.

if we interpret x as ä, a x as even ä, β x as odd ä, Φ ash, k as log N for N = #ä, 
k -1 as log(y), and Ψ as id. Hence, the transformation from the Appendix yields 
the program (for TV = #ä):

ffi(a) = Ck oSk(A) (6.1)

where A = [0 >→ δ]
S = Split(even, odd)
C = Comp(h) 
k = log(TV)

That is, we first perform log TV even/odd splittings to the argument (as it is il­
lustrated on the left-hand side of Figure 6.1) and then we perform equally many 
compositions using the expression h (as it is illustrated on the right-hand side of 
Figure 6.1)

Note, by the way, that the transformation rule from the Appendix converts 
the argument of the original function into a vector in the new function (in order 
to perform the “memoization”). Since the argument of fft is already a vector, we 
obtain through the transformation a vector of vectors, that is, a matrix. Moreover, 
the even/odd-splitting doubles the number of components of the given vector, but 
at the same time halves the size of each component vector, such that the overall 
size of the matrix remains invariant.

7. Implementation of Sk(A). The next important observation now is that we 
can perform the first half of the computation (“down into the recursion”) in one 
single step. It is easily seen that each element a l∙ ends up at a position p, the binary 
representation of which is just that of i read backwards. (For instance, in Figure 
6.1 the element α3 ends up at position 6, and 32 = ‘011’ and 62 = ‘110’.)

The inductive pr∞f of this fact depends on the following observation: Con­
sider the map of maps A as a matrix, stored row-wise. Then the bitstring rep­
resentation of the position of each element is of the form (where ‘HI-’ denotes 
concatenation of strings)

((row number)) HI- ((column number)).

The odd/even splitting performed by the operation Split then moves the last bit 
of the column number to the end of the row number (thus doubling the number of 
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rows of the matrix and halving the number of columns). Ultimately, this process 
reverts each bitstring.17

17 Dijkstra (1984) uses these considerations about the matrix A as the framework for the deriva­
tion of the recurrence relations underlying the Fast Fourier Transform. But we feel that a clean sep­
aration of problem solving and implementation issues improves comprehensibility considerably.
18 We follow here the principles of the earlier presentation by Broy and Pepper (1981), but now 

based on a considerably more abstract view.

Hence, Sk( A) simply can be realized by swapping all pairs of elements α,∙ <→ 
aj for which the binary representations of the indices i and j are the reverses of 
each other. This eliminates the need for recursion completely.

8. Implementation of Ck. Now we have to consider the “way back up from the 
recursion”. But this simply means the iterated application of the operation Comp 
and, thus, of the operation h. Here, we observe from the definition (4.5) that h 
essentially maps a pair of two vectors (of size M each) into the union of two 
vectors (of size M each). This renders the generalized version of Transformation 
Tl applicable.

Hence, we have again reached a state, where a compiler could take over.

7. Transitive Closure of a Graph

Our method applies not only to linear algebra but to any area that makes use of 
mappings. A particularly nice example for demonstrating this effect is WarshalΓs 
algorithm for computing the transitive closure of a graph.18

1. We suppose that a directed graph over a fixed set N of nodes is given by a 
function

edge : node × node → bool.

This function is reflexive, that is, edge(n, n) = true for all nodes n. Moreover, 
we use a predicate path that determines whether a given nonempty sequence of 
nodes is a path:

pathp = ∖∕i ∈ [l..length(p) — 1] : edge(p(i — l),p(z)).

The following derivation also works, if we restrict ourselves to cycle-free paths. 
(Actually, some deductions become even simpler.)

2. Our task is to design a function

trans : node × node → bool
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that determines for any given pair of nodes, whether they are connected by a path 
in the given graph. So the specification of trans simply is (where denotes 
concatenation of sequences and nodes)

trans(x, y) = Ξp : sequ node ∣ path(x ■ p∙ y).

3. The underlying idea of the solution is to designate a set of “admissible paths”. 
Initially, this set merely consists of the original edges, and then it is successively 
enriched until it contains all paths. The set of admissible paths in each stage is 
essentially controlled by the set of nodes that are allowed as “inner nodes” of the 
paths. This idea leads to the embedding into a new function

tc : set node → node × node → bool.

This function is specified by

tc(S)(x,y) = Ξp : sequ node ∣ path(x ∙ p∙ y) Λ set(p) Q S . (3.0)

From this specification we can deduce the essential properties of tc (where ,+, 
denotes addition of an element to a set; that is, S + a = S U {α}, with a £ S'):

tc(0)(x,y) = edge(x,y) (3.1)
tc(S + a)(x, y) = tc(S)(x, y) V (tc(S)(x, a) Λ tc(S)(a, y)). (3.2)

These two equations (which are easily provable from the specification, as is for­
mally shown by Broy and Pepper, 1981) determine a terminating recursive algo­
rithm. This algorithm solves the initially given problem, as is expressed by the 
following equation

tc(N)(x, y) = trans(x, y) where N = ((set of all nodes)) . (3.3)

Before we develop this algorithm further, we will, however, point out two imme­
diate consequences of (3.2) that are helpful later on:

tc(S + a)(x, a) = tc(S)(x,a) (3.4)
tc(S + α)(α, y) = tc(S)(a, y). (3.5)

4. At this stage, we want to emphasize the viewpoint that tc(S) has a whole matrix 
as its result, and that this matrix is repeatedly overwritten during the evaluation 
process. Accordingly, we rewrite equations (3.1) and (3.2) into the equivalent 
forms (where we omit, for the sake of brevity, the domains of all maps, since 
they always are TV × N):

tc(0) = [x,y>→ edge(x, y)]
tc(S + a) = ha(tcS) where

haT ⅛f [*, y h→ T(x, y) V (Γ(x, a) Λ T(a, y))]

(4.1)
(4.2)
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5. From equations (3.4) and (3.5) we obtain the following properties for ha:

ha(T)(x,a) = T(x,a) 
ha{T)(a,y) - T(a,y)

(5.1)
(5.2)

This is precisely the enabling condition for transformation T2. Hence, the func­
tion ha will lead to a loop, in which T is successively updated. And this loop is 
embedded into an encompassing loop that results from the function tc by appli­
cation of some standard transformations for recursion removal (called “function 
inversion” by Bauer and Wössner 1982, because we start from the empty set 0 
and successively add elements until the full set N is reached).

As in all previous developments, this is a stage where we can leave the rest to the 
compiler.

Remark. The proofs in our derivation use only a few properties of the Boolean 
operations ‘A’ and ‘V’, namely those of a closed semi-ring (cf. Aho et al., 1974). 
Hence, the development can be “parametrized” by the kind of underlying data 
type. For instance, it works analogously for the pair of operations ‘IT and *+’ 
(where l∏, yields the minimum of two numbers and *+’ is addition), thus leading 
to an algorithm for shortest paths.

8. Conclusion

Programming with arrays, matrices, and the like has been regarded for a long time 
as that part of programming where the imperative style is, by necessity, superior 
to the applicative style. This view was justified as long as the attempts to program 
with such structures applicatively merely consisted in mimicking the imperative 
loops by tail-recursive functions. In that approach, the selective updating was 
only very clumsily represented by corresponding applicative operations.

However, as we have shown in this paper, a more radical transition to alge­
braic concepts immediately changes the situation in favor of the applicative style. 
By using a set of carefully chosen and powerful algebraic operators, we are able 
to program virtually all map-based programs in a much more compact and ab­
stract manner than can be done in the imperative style. Above all, we get rid of the 
nitty-gritty index calculations that are so typical for this class of FORTRAN-like 
programs (which remain FORTRAN-like even when they are coded in Pascal or 
Ada).

However, the other extreme of “avoiding indices at all costs” (as it is done, 
for instance, in the approach of R. Bird, 1987, 1988) is, by our experience, not 
adequate either - at least in many applications. Hence, we have tried to find a 
proper balance between compact algebraic operators and explicit indexing.
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A very important programming paradigm is “memoization”, that is, the stor­
ing of calculated values instead of their recomputation. Our unified view of 
functions (as computations) and maps (as data structures) allows in particular 
a smooth transition between both concepts. Moreover, the high applicative level 
makes the derivation of parallel and sequential implementations equally natural 
and easy.

As a test for the usefulness of our approach, we have applied it in this paper 
to a wide variety of map-oriented programming problems. Most of these prob­
lems are standard in the literature19, and some of them we had already treated 
by formal transformations in earlier papers. But, we feel that for all of them our 
present treatments are much better than the earlier ones - which demonstrates 
that high-level algebraic concepts constitute a decisive progress also in this area 
of programming.

19 Note that, in common textbooks, many examples that work on arrays are actually problems 
for sets or sequences. The arrays only creep in as a superficial implementation of these sets and 
sequences.

Appendix: A Special Rule For Recursion Removal

Consider a tree-like recursion scheme of the kind

f<-k∖x) = Φ(f<∙k~1∖a x), fk~l∖β x)) for k > 0,

∕0∖ff) = Φ x ,

which leads to a balanced calling tree.
We can convert this tree-like recursion into a linear recursion by collecting 

all the nodes of each level into a vector. This leads to a computational process as 
illustrated below (for k = 3):
Here we have, for instance, x ∣2' = βa(x) and y® - f(x ∣2^) = f(βa(x)).

On the “way down into the recursion” we produce the argument vectors, 
and on the “way back up from the recursion” we produce the intermediate result 
vectors. The former activity is performed by the operation

fief
Split(cx. β)x = [2k f → a(x k), 2fc + 1 ⅛→ β(x k) ∣ 0 ≤ k < #äj] ,

the latter activity by the operation

Comp(Φ')y ⅛f [⅛ ∏→ Φ(y(2k), y(2k + 1)) ∣ 0 ≤ k < ⅛] .

Obviously, Split doubles the size of its input vector, whereas Comp halves it.
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If we, now, introduce the definitions (for given k)

5(0) = [01→ x]

j(≈+l) i= Split(a, β')χ('i forO < i< k 

^)⅛f^-(fc)

y(i) ⅛f Comp(Φ)y^i+1'> for 0 ≤ i < k

we can immediately show the following relationships 

^(∙) = ∕≠).

This, in turn, means that

yV> = fχW

= (CkoΦo S,fc)5<°) 

where S - Split(a, β)
C = Comp(Φ).

Since each vector χ(*> and has exactly 2* elements, we have in particular that 

y(θ) = [0 l → y ∣ and = [0 ∣→ z] with y = f<∙k∖x).

In other words, we start by embedding the argument x into the singleton vector 
[0 ∣→ x], apply k times the operation Split(a, β), once the (pointwise lifting 
of) the operation Φ, and again k times the operation Comp(Φ). The result is a 
singleton vector consisting of the desired result y = f(kβx).
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