
Formal Derivation of Pointer Algorithms

Bernhard Möller

Abstract We show that the well-known unfold/fold transformation strategy also
is fruitful for the (formal) derivation of correct pointer algorithms. The key that
allows this extension is the algebra of partial maps which allows convenient
description and manipulation of pointer structures at the functional level.

1 Introduction

It is well-known that algorithms involving pointers are both difficult to write
and to verify. The reason is that, due to the implict connections through paths
within a pointer structure, the side effects of a pointer assignment are usually
much harder to survey than those of an ordinary assignment. With this paper
we want to show that these difficulties can be greatly reduced by making the
store, which is an implicit global parameter in procedural languages, into an
explicit parameter and by passing to an applicative treatment using a suitable
algebra of operations on the store.

The storage state of a von Neumann machine can be viewed as a total
mapping from addresses to certain values. A part of such a state that forms a
logical unit may then be represented by a partial submapping of that mapping.
This gives the possibility of describing the state in a modularized way as the
union of the submappings for its logical subunits. In the case of pointer struc-
tures this means that the usual “spaghetti” structure of the complete state
can be (at least partly) disentangled. Therefore we use the algebra of partial
maps as our tool for specifying and developing pointer algorithms in a formal
and yet convenient way.

We restrict ourselves here to the case of singly linked lists. However, the
approach is not limited to such simple structures: In [3] we have derived an
efficient and intricate garbage collection algorithm for a storage structure that
allows the representation of arbitrary graphs.

1

2 The Algebra of Partial Maps

The use of algebraic operations on maps for describing the effect of a program
dates back at least to [11]. The most useful operation in our setting, viz. map
union, however, seems to have been neglected until recently [3,10].

A (partial) map m from a set M to a set N is a subset of M ×N such
that (x, y) ∈ m ∧ (x, z) ∈ m ⇒ y ≡ z. Some of our notation derives from
this set view of maps. E.g., by ∅ we denote the empty partial map from M to
N . For finite maps we assume a boolean-valued equality test =. This is to be
distinguished from the semantic equivalence ≡ of expressions: we have

m = n ≡ true ⇔ m ≡ n .

Let m : P → Q be a partial map. We write ↓m, ↑m for domain and
range of m, resp. Moreover, we define

set(m)
def≡ ↓m ∪ ↑m .

For s ⊆ P , we denote by s↑m the image of s under m. Likewise, t↓m is
the inverse image of t ⊆ Q under m. Finally, [s 7→ y] is the constant map
{(x, y) |x ∈ s}. In using this notation we omit singleton set braces, i.e., we
write x↑m, y↓m, [x 7→ y] instead of {x}↑m, {y}↓m, [{x} 7→ y]. Note that [x 7→
y] ≡ {(x, y)}. To cope with partialities in an algebraically convenient way, we
define, for maps m,n and elements x, y ∈ P ,

[m(x) 7→ n(y)]
def≡ ∅

if x 6∈ ↓m or y 6∈ ↓n. Also, we set

m(x) ≡ n(y)
def⇔ x↑m ≡ y↑n .

This means that m(x), n(y) are both undefined or both defined and equal.
The restriction of a map m : M → N to a set s ⊆M is

m|s def≡ m ∩ (s×N) .

Moreover,

m	 s
def≡ m|s.

Here again we omit singleton set braces, i.e., we write m	x instead of m	{x}.
Note that both m|s ⊆ m and m	s ⊆ m. The following decomposition property
is the key to recursions over maps:

m ≡ m|s ∪ m	 s .

2

Two maps m,n : M → N are compatible if m|(↓m∩↓n) ≡ n|(↓m∩↓n).
This holds in particular if ↓m∩↓n ≡ ∅. For compatible m,n their union m∪n
is again a map. This generalizes to families (mi)i∈I of maps (I may even be
infinite) if the maps mi are pairwise compatible; we then write

⋃
i∈I

mi for the

union map. If I ≡ ∅, we set
⋃
i∈I

mi ≡ ∅ as well. It should be clear that ∅,

[. 7→ .], and
⋃

form a complete set of constructors for the set of partial maps,
since we have

m ≡
⋃

x∈↓m
[x 7→ m(x)] .

The operation of map union is the key tool in obtaining a modular descrip-
tion of pointer structures, since it allows viewing a (total) storage state as the
union of those of its (partial) substates that form logical units. This aspect of
modularization is reflected by a large number of distributive laws that allow
propagation of operations to substates of a state. For the operations introduced
so far we have:

s↓(m ∪ n) ≡ s↓m ∪ s↓n
↓(m ∪ n) ≡ ↓m ∪ ↓n
(m ∪ n)|s ≡ m|s ∪ n|s

t↑(m ∪ n) ≡ t↑m ∪ t↑n
↑(m ∪ n) ≡ ↑m ∪ ↑n

(m ∪ n)	 s ≡ m	 s ∪m	 s .

Another important operation is map overwriting (see e.g. [6]): Given
maps m,n : M → N we define

m /− n
def≡ (m	 ↓n) ∪ n .

Hence,
(m /− n)(x) ≡ if x ∈ ↓n then n(x) elsem(x) fi.

In other words, m/− n results from m by changing the values according to the
prescription of n (if any). For example, m /− [x 7→ y] sets the value of x to
y. This operation will be our main tool for describing selective updating. Its
most important properties for our purposes are the following ones:

1. Monoid properties:
∅ /−m ≡ m /− ∅ ≡ m
(l /−m) /− n ≡ l /− (m /− n)

2. Overwriting and union:
m /− n ≡ n /−m iff m and n are compatible.
In this case, m /− n ≡ m ∪ n.

3

3. Domain properties:
↓(m /− n) ≡ ↓m ∪ ↓n
m /− n ≡ n ⇔ ↓m ⊆ ↓n

4. Overwriting and submaps:
m /− n ≡ m ⇔ n ⊆ m

5. Sequentialization:
l /− (m ∪ n) ≡ (l /−m) /− n
provided m and n are compatible.

6. Annihilation:
m ⊆ l ⇒ l /− (m ∪ n) ≡ l /− n
provided m and n are compatible. This is an immediate consequence of
the sequentialization and submap properties.

7. Distributivity:
(l ∪m) /− n ≡ (l /− n) ∪ (m /− n)
provided l and m are compatible.

8. Localization:
↓l ∩ ↓n ≡ ∅ ⇒ (l ∪m) /− n ≡ l ∪ (m /− n)
provided l and m are compatible. This property allows localizing side
effects to that part of a store they really affect.

A thorough discussion of the properties of /− can be found in [5].
A map m is injective if ∀x, y ∈ ↓m : m(x) = m(y) ⇒ x = y. Then its

inverse m−1 is given by m−1 ≡
⋃

x∈↓m
[m(x) 7→ x] and satisfies

s↓m−1 ≡ s↑m
↓m−1 ≡ ↑m

t↑m−1 ≡ t↓m
↑m−1 ≡ ↓m .

Moreover,
(m ∪ n)−1 ≡ m−1 ∪ n−1

provided m ∪ n is injective.
The map operations introduced enjoy a vast number of further useful al-

gebraic laws. Some of them can be found in [3].

3 Chains

3.1 Basic Notions

As an example of how to describe pointer structures within the algebra of
maps we now study singly linked lists. We abstract from the concrete contents

4

of the records in such a list and consider only their interrelationship through
the pointers, since this is the only source of problems in pointer algorithms.
Then a state simply is a finite partial map m : cell → cell where cell is the
set of storage cells; the set of states is denoted by state.

The idea of following the pointers in a singly linked list within a state m
is captured by considering m as a relation and passing to its transitive closure
m+: For x, y ∈ set(m),

xm+ y
def≡ y ∈

⋃
i∈N\{0}

x↑mi

where

m0 def≡ id set(m)

mi+1 def≡ m ◦mi ,

and ◦ denotes the usual composition of partial maps. Hence xm+ y iff y can
be reached from x following the links of m (at least once). We also need the
reflexive transitive closure m∗ of m given by

xm∗ y
def≡ y ∈

⋃
i∈N

x↑mi .

We call m a chain, if m+ is a linear strict-order on set(m), i.e., iff the
predicate ischain(m) holds where

ischain(m)
def≡ ∀x, y, z ∈ set(m) :
¬xm+ x (irreflexivity)

∧ x 6= y ⇒ (xm+ y ∨ y m+ x) (linearity).

Irreflexivity excludes the existence of cycles within the list, whereas linear-
ity implies that the list is connected, i.e, that, given two distinct cells in the
list, one of them can be reached from the other following the links of the list.

Lemma 3.1 Let m be a chain.
(1) m is injective.
(2) Assume x, y ∈ set(m). If xm+ y then ¬ y m+ x.

Proof.
(1) Let m(x) ≡ m(y) ≡ z and assume x 6≡ y. Then w.l.o.g. xm+ y. Since m

is a map, it follows that xmzm∗ y mz, i.e., z m+ z, a contradiction.
(2) Assume xm+ y and y m+ x. By transitivity then xm+ x contradicting

the irreflexivity of m+.

5

ut
Property (1) means that each cell in a chain is referred to by at most one

cell, i.e., absence of sharing, whereas (2) again means absence of cycles.
The following lemma states a property that is very useful for treating

combinations of chains:

Lemma 3.2 Let m and n be maps such that ↑n ∩ ↓m ≡ ∅. Then (m ∪ n)+ ≡
m+ ∪ m+ n+ ∪ n+, where m+ n+ is the relational product of m+ and n+ (in
diagrammatic order).

Proof. From ↑n ∩ ↓m ≡ ∅ it follows that nm ≡ ∅. Now a straightforward
induction shows

(m ∪ n)i ≡
i⋃

k=0

mi−k nk .

From this the claim is immediate. ut
Chains are usually parts of a larger state and are distinguished by header

cells. Hence we define, for arbitrary m : state and x ∈ cell,

from(x,m)
def≡ m|{y |xm∗ y} (≡ m|(

⋃
i∈N

x↑mj)) .

Then from(x,m) is the linked list within m that starts from x (inclusive of x),
if any. Note that this list need not be a chain, since it may contain a cycle.

Lemma 3.3
(1) from(x,m) ≡

⋃
i∈N

[mi(x) 7→ mi+1(x)].

(2) x 6∈ ↓m ⇒ from(x,m) ≡ ∅.
Proof.

(1) from(x,m) ≡ m|(
⋃
i∈N

x ↑mi) ≡
⋃
i∈N

m|(x ↑mi) ≡⋃
i∈N

[mi(x) 7→ m(mi(x))] ≡
⋃
i∈N

[mi(r) 7→ mi+1(r)].

(2) is immediate from the definition.
ut

As a first example for reasoning about linked lists we now prove that
overwriting at the beginning of a list does not influence the rest of the list,
provided the list itself is not a cycle:

Lemma 3.4 Assume that ¬xm+ x. Then for arbitrary y we have

from(m(x),m) ≡ from(m(x),m /− [x 7→ y]) .

6

Proof. We show by induction on i ∈ N that (m /− [x 7→ y])i ≡ mi(z) for all z
such that xm+ z. The base case i ≡ 0 is trivial. Assume now that the assertion
holds for i and consider an arbitrary z with xm+ z. Since ¬xm+ x we know
z 6≡ x. Hence (m/− [x 7→ y])(z) ≡ m(z). Moreover, xm+m(z) provided m(z)
is defined. Now

(m /− [x 7→ y])i+1(z)
≡ (m /− [x 7→ y])i(m /− [x 7→ y])(z))
≡ (m /− [x 7→ y])i(m(z))
≡ (by induction hypothesis resp. undefinedness)

mi(m(z)
≡ mi+1(z).

This concludes the induction. Now we have
from(m(x),m)

≡ (by the previous lemma)⋃
i∈N

[mi(m(x)) 7→ mi+1(m(x))]

≡
⋃
i∈N

[(m /− [x 7→ y])i(m(x)) 7→ (m /− [x 7→ y])i+1(m(x))]

≡ from(m(x),m /− [x 7→ y]).
ut

This property will be useful in reversing a chain.

3.2 Anchored Chains

We now turn to the special case of terminating chains. These are cycle-free
singly linked lists in which each element has only finitely many successors.
Formally, a chain m is terminating if m ≡ 0 or set(m) contains a greatest
element last(m) w.r.t. m+ .

Lemma 3.5 Let m 6≡ ∅ be a terminating chain. Then
(1) ↓m ≡ set(m)\{last(m)}.
(2) ↑m ⊆ ↓m ∪ {last(m)}.
(3) ↑m\↓m ≡ {last(m)}.

Proof.
(1) (⊆) ↓m ⊆ set(m) holds by definition. Assume last(m) ∈ ↓m and let

y ≡ m(last(m)). Then y ∈ set(m) and last(m)m+ y 6≡ last(m),
contradicting the fact that last(m) is the greatest element of set(m).

(⊇) Let x ∈ set(m)\{last(m)}. Then xm+ last(m), since last(m) is the
greatest element of set(m). But then x ∈ ↓m, since otherwise all
sets x↑mi (i > 0) would be empty.

7

(2) By definition, ↑m ⊆ set(m). But by (1), set(m) ≡ ↓m ∪ {last(m)}.
(3) Using (1) we get
↑m\↓m ≡ ↑m\(set(m)\{last(m)}) ≡
↑m\set(m) ∪ ↑m ∩ {last(m)} ≡ {last(m)}) .

ut
Frequently one uses a special chain terminator common to all chains con-

sidered (e.g., nil in Pascal). Let therefore 2 ∈ cell be a distinguished element,
called the anchor. The elements of cell\{2} are called proper cells. In the
sequel we require 2 6∈ ↓m for all states m considered.

We define the predicate

isanchored(m)
def≡ ischain(m)∧

(m = ∅ ∨. last(m) = 2) ,

where ∨· is the sequential or conditional disjunction evaluated from left to right.
Thus, a nonempty chain is anchored iff it is terminated by 2.

For a nonempty anchored chain the last element but one is the last “proper”
element. Therefore we define, for anchored m,

{lbo(m)} def≡ if m = ∅ then {2} else2↓m fi .

3.3 Well-Founded Chains

Dually to terminating chains we also consider chains with starting elements.
Call a chain m well-founded if m ≡ ∅ or set(m) contains a least element
first(m) w.r.t. m+.

Lemma 3.6 Let m 6≡ ∅ be a well-founded chain. Then
(1) ↑m ≡ set(m)\{first(m)}.
(2) ↓m ⊆ ↑m ∪ {first(m)}.
(3) ↓m\↑m ≡ {first(m)}.

Proof. Dual to that of the previous lemma. ut
We set, for well-founded m 6≡ ∅,

rest(m) ≡ m	 first(m) .

These operations again show useful properties:

Lemma 3.7 Let m 6≡ ∅ be a well-founded chain. Then
(1) m ≡ [first(m) 7→ m(first(m))] ∪ rest(m).

8

(2) rest(m) 6≡ ∅ ⇒ first(rest(m)) ≡ m(first(m)).
(3) If m is also anchored, rest(m) ≡ ∅ ⇔ m(first(m)) ≡ 2.

Proof.
(1) is immediate from the decomposition property of maps.
(2) {first(rest(m))} ≡ ↓rest(m)\↑rest(m) ≡

(↓m\{first(m)}) ∪ (↑m\{m(first(m)}) ≡
(↓m\{first(m)}\↑m) ∪ (↓m\{first(m)} ∩ {m(first(m))}) ≡
(↓m\↑m\{first(m)}) ∪ {m(first(m))} ≡
({first(m)}\{first(m)}) ∪ {m(first(m))} ≡ {m(first(m))} .

(3)(⇒) By (1), m ≡ [first(m) 7→ m(first(m))]. Hence 2 ≡ last(m) ≡
m(first(m)).

(⇐) We have set(m) ≡
⋃
i∈N

first(m)↑mi. However, first(m)↑m ≡ {2}

implies first(m)↑mi ≡ ∅ for i > 2, since 2 6∈ ↓m. Hence we
have set(m) ≡ {first(m),2} and m ≡ [first(m) 7→ 2]. Therefore
rest(m) ≡ ∅.

ut

Corollary 3.8 If from(x,m) 6≡ ∅ is a well-founded chain, we have

first(from(x,m)) ≡ x and rest(from(x,m)) ≡ from(m(x),m) .

If, moreover, from(x,m) is anchored,

from(x,m) ≡ if m(x) = 2 then [x 7→ 2] else [x 7→ m(x)]∪ from(m(x),m) fi .

It can be shown that a chain is both well-founded and terminating iff it
is finite as a set of argument/value pairs. For finite anchored chains we now
want to derive a recursive version of the function lbo defined in the previous
section. Assume m 6≡ ∅. We calculate

{lbo(m)}
≡ 2↓m
≡ (by Lemma 3.7(1))

2↓([first(m) 7→ m(first(m))] ∪ rest(m))
≡ 2↓[first(m) 7→ m(first(m))] ∪2↓rest(m)
≡ if m(first(m)) = 2 then 2↓[first(m) 7→ m(first(m))] ∪2↓rest(m)

else 2↓[first(m) 7→ m(first(m))] ∪2↓rest(m) fi
≡ (definition, Lemma 3.7(3))

if m(first(m)) = 2 then {first(m)} ∪2↓∅
else ∅ ∪2↓rest(m) fi

9

≡ (simplification, fold lbo)
if m(first(m)) = 2 then {first(m)}

else {lbo(rest(m))} fi .
Hence, for m 6≡ ∅,

lbo(m) ≡ if m(first(mn)) = 2 then first(m) else lbo(rest(m)) fi .

Termination of this recursion is obvious.

4 Concatenation of Chains

In the sequel, concerning semantics and notation we closely follow the language
CIP-L [1,2]. In addition, we use the notation

B � E

as an abbreviation for the expression

if B then E else error fi

which is equivalent to E if the precondition B is satisfied and undefined oth-
erwise. See [9] for a more detailed discussion of this construct. An analogous
construction applies to statements.

4.1 Specification and First Explicit Solution

We now want to specify and develop an algorithm for concatenating two non-
overlapping anchored chains “in situ”. (The case of empty chains is trivial and
would only lead to tedious case distinctions.) As an auxiliary notion we need
the restriction of a relation R to a set s, viz.

R||s def≡ R ∩ s× s .

Our specification then reads

concpc(m,n)
def≡ m 6= ∅ ∧ n 6= ∅ ∧.

isanchored(m) ∧ isanchored(n) ∧ ↓m ∩ ↓n = ∅
conc(m,n)

def≡ concpc(m,n) � some state l :
(1) isanchored(l)∧
(2) ↓l = ↓m ∪ ↓n∧
(3) l+||↓m = m+||↓m ∧ l+||↓n = n+||↓n∧
(4) ∀x ∈ ↓m : ∀ y ∈ ↓n : x l+ y .

10

Let us explain the particular form of the specification. It is an attempt to
characterize the concatenation of two chains solely in terms of the orderings
they induce on the cells involved. The precondition concpc requires the inputs
to be anchored chains the sets of proper cells of which do not overlap. (1)
states that the result should again be an anchored chain. (2) actually is the
requirement that the concatenation should be performed “in situ”, since it
stipulates that the proper cells of the result chain should be exactly the same
as those of the component cells; no “new” cells may be used. (3) states that
the ordering of the cells within the component chains must not be disturbed
by the concatenation. (4), finally, requires all proper cells of the first argument
to occur in the concatenation before all proper cells of the second argument.

To obtain an explicit version of cone, draw some conclusions from the
specification, i.e., we derive necessary conditions for a map to be a solution
of our problem. The hope is to derive more explicit conditions than the ones
given.

Requirement (4) implies lbo(m) l+ first(n). However, since by (2) and (3)
lbo(m) is maximal w.r.t. l+ in ↓m and first(n) is minimal in ↓n w.r.t. l+ , there
cannot be any element z ∈ ↓m ∪ ↓n with lbo(m) l+ z l+ first(n), so that we
must have lbo(m) l first(n), i.e., [lbo(m) 7→ first(n)] ⊆ l. Moreover, (2) and
(3) require that l should be “almost” the union of m and n. Since, however,
m(lbo(m)) ≡ 2, we need to adjust m at that point. This suggests the choice

l ≡ (m /− [lbo(m) 7→ first(n)]) ∪ n.

This is a version many a reader probably would have written down immedi-
ately without bothering to come up with a specification like our original one.
However, the explicit version does not in any way reflect that concatenation of
two chains “in situ” is intended; it merely corresponds to an assignment that
redirects one pointer. Therefore we think that our implicit original specifica-
tion is more adequate as far as understanding of the task is concerned; the
price we have to pay is that we now need to verify that the explicit version
actually meets the implicit specification. Fortunately, it turns out that this is
not too hard using the algebraic properties we have at hand.

For abbreviation we set

p
def≡ m /− [lbo(m) 7→ first(n)] .

We have
↑n ∩ ↓p

≡ ↑n ∩ ↓m

11

≡ (↓n\first(n) ∪ {2}) ∩ ↓m
≡ ∅ .

Therefore Lemma 3.2 applies and we have

l+ ≡ p+ ∪ p+ n+ ∪ n+ .

Furthermore, p ≡ m	 lbo(m) ∪ [lbo(m) 7→ first(n)] and
↑[lbo(m) 7→ first(n)] ∩ ↓m	 lbo(m)

≡ ↑{first(n)} ∩ (↓m\{lbo(m)})
≡ ∅ ,

so that, again by Lemma 3.2,
p+

≡ (m	 lbo(m))+ ∪
(m	 lbo(m))+ [lbo(m) 7→ first(n)]+ ∪
[lbo(m) 7→ first(n)]+

≡ (m	 lbo(m))+ ∪
(m	 lbo(m))+ [lbo(m) 7→ first(n)] ∪
[lbo(m) 7→ first(n)]

≡ (m	 lbo(m))+ ∪
[↓m 7→ first(n)] .

Hence
l+

≡ p+ ∪ p+ n+ ∪ n+

≡ (m	 lbo(m))+ ∪ [↓m 7→ first(n)] ∪
(m	 lbo(m))+ ∪ [↓m 7→ first(n)])n+ ∪ n+

≡ (m	 lbo(m))+ ∪ [↓m 7→ first(n)] ∪
(m	 lbo(m))+ n+ ∪ [↓m 7→ first(n)]n+ ∪ n+

≡ (m	 lbo(m))+ ∪ [↓m 7→ first(n)] ∪
[↓m 7→ first(n)]n+ ∪ n+ .

Now l+||n ≡ n+||n is immediate. Moreover,
l+||↓m

≡ (m	 lbo(m))+

≡ m+||↓m ,
so that (3) is satisfied. (2) is straightforward. (4) follows from (3) together
with p+ n+ ⊆ l. Finally we show (1). Suppose x l+ x for some x ∈ ↓m ∪ ↓n.
Since x p+ n+ x is not possible by ↓p ∩ ↑n ≡ ∅, this would mean x p+ x or
xn+ x contradicting isanchored(m) ∧ isanchored(n). Linearity of l follows
from (4) together with that of m+ and n+. Assume now x ∈ ↓m. Then
x p∗ lbo(m) l first(m)n+

2 so that last(l) ≡ 2.

12

4.2 A Version with Overwriting

Next, we want to derive a version of the function that works with header
cells of chains within a larger storage rather than with the chains themselves.
Moreover we overwrite the concatenated chain onto the part of the memory
that contained the component chains. This can be specified as follows:

owconc(l, x, y)
def≡ concpc(from(x, l), from(y, l))�

l /− conc(from(x, l), from(y, l)) .

For the further development we assume concpc(from(x, l), from(y, l)) ≡ true
and set

m
def≡ from(x, l) ,

n
def≡ from(y, I) .

Then m and n by definition are restrictions of l so that we have m,n ⊆ l. Now
we can simplify:

l /− conc(m,n)
≡ l /− (m	 lbo(m) ∪ [lbo(m) 7→ first(m)] ∪ n)
≡ (by Corollary 3.8)

l /− (m	 lbo(m) ∪ [lbo(m) 7→ y] ∪ n)
≡ (annihilation, commutativity of ∪)

l /− [lbo(m) 7→ y]
Next we introduce an auxiliary function for computing this expression:

owlbo(l, x, y)
def≡ l /− [lbo(from(x, l)) 7→ y] .

We have
owconc(l, x, y) ≡ owlbo(l, x, y) .

Now we derive a recursion equation for owlbo. Let again m ≡ from(x, l). Then
owlbo(l, x, y)

≡ (unfold owlbo)
l /− [lbo(m) 7→ y]

≡ (by the recursion for lbo)
if m(first(m)) = 2 then l /− [first(m) 7→ y]

else l /− [lbo(rest(m)) 7→ y] fi
≡ (by Corollary 3.8)

if l(x) = 2 then l /− [x 7→ y]
else l /− [lbo(from(l(x), l)) 7→ y] fi

≡ (fold owlbo)

13

if l(x) = 2 then j /− [x 7→ y]
else owlbo(l, l(x), y) fi .

Termination of this recursion is obvious. It is quite reassuring that the fun-
damental unfold/fold technique for deriving recursions also applies to pointer
algorithms in this setting.

Since we have even obtained a tail-recursive version, we are already very
close to an imperative program. To get there, we introduce a procedure speci-
fied by

proc powconc ≡ (var state l, cellx, y) :
concpc(l, from(x, l), from(y, l))�
l := owlbo(l, x, y)

Note that this clearly specifies l as a transient parameter, whereas x and y
are passed by value. Therefore the imperative version of powconc needs local
variables for x andy, whereas it may operate on l directly. This is described
by the following schematic rule for passing from a procedure that calls a tail-
recursive function to a procedure with a loop in its body:

proc p ≡ (var m a, n b) :
P (a, b) � a := f(a, b)

where
funct f ≡ (m a, n b) m :

if C(a, b) then T (a, b) else f(K(a, b), L(a, b)) fixy [NEW[[B]]

proc p ≡ (var m a, n B) :
P (a,B)�
d var n b := B ;

while ¬C(a, b) do (a, b) := (K(a, b), L(a, b)) od;
a := T (a, b) c .

Note that a, b, and B may stand for tuples of variables. The condition NEW[[B]]
states that B has to be a (tuple of) fresh identifier(s). Applying this rule we
obtain

proc powconc ≡ (var state l, cell X, Y) :
concpc(l, from(X, l), from(Y, l))�
d (var cell x, y) := (X, Y) ;

while l(x) 6= 2 do (l, x, y) := (l, l(x), y) od;
l := l /− [x 7→ y] c

14

Our final version results from eliminating useless assignments of the form z := z
as well as the variable y which never is changed:

proc powconc ≡ (var state m, cell X, Y) :
concpc(l, from(X, l), from(Y, l))�
d var cell x := X ;

while l(x) 6= 2 do x := l(x) od;
l := l /− [x 7→ Y] c .

If we write the assignment

l := l /− [x 7→ Y]

in a Pascal-like way as
x ↑ := Y ,

(where l now is an implicit parameter), we see that we actually have derived
a version with selective updating.

In the derivation we have not made use of any assumptions about absence
of sharing. Indeed, if in l there are pointers from other data structures to
(parts of) the lists headed by x and y, there will be indirect side effects on
these pointers. However, since by the specification we know the value of the
complete store after execution of our procedure, we can calculate these effects
using our algebraic laws. Also, one can easily write stronger preconditions that
exclude sharing if this is desired.

5 Chain Reversal

5.1 Specification and First Explicit Solution

Next we want to derive a procedure for reversing a non-empty chain “in situ”.
Again we first specify a purely applicative version. The reverse of a chain
should contain exactly the same proper cells as the original chain, however, in
reverse order of traversal.

We can express this as follows:

revpc(m)
def≡ m 6≡ ∅ ∧ isanchored(m),

rev(m)
def≡ revpc(m) � some state n :
(1) isanchored(n)∧
(2) ↓n = ↓m∧
(3) n+ ||↓m = (m+)−1||↓m .

15

Here, (m+)−1 is the converse of the relation m+ .
Let us now derive an explicit form of rev(m). First we observe that

(m+)−1 ≡ (m−1)+ ,

where m−1 again is a map, since by Lemma 3.1 m is injective. Hence (3) can
be satisfied if we can choose n in such a way that

n||↓m ≡ m−1||↓m .

Therefore we now first calculate m−1||↓m. We have, using Lemmas 3.5 and
3.6, that

↓m
≡ ↑m\{2} ∪ {first(m)}
≡ ↓m−1\{2} ∪ {first(m)}
≡ ↓(m−1 	2) ∪ {first(m)} .

Moreover,
m−1||↓m ≡ m−1|↓m .

Now,
m−1||↓m

≡ m−1|↓m
≡ m−1|(↓(m−1 	2) ∪ {first(m)})
≡ m−1|↓(m−1 	2) ∪ m−1|{first(m)})
≡ m−1 ∪ m−1|{first(m)}
≡ m−1 	2 ∪ ∅
≡ m−1 	2 .

Since we need to have ↓n ≡ ↓m we now try to find a z such that

n ≡ m−1 	2 ∪ [first(m) 7→ z] .

We also need to satisfy isanchored(n) which implies 2 ∈ ↑n. However,

↑(m−1 	2) ⊆ ↑m−1 ⊆ ↓m

and hence 2 6∈ ↑(m−1	2). So the only way to achieve 2 ∈ ↑n is to set z ≡ 2.
This leaves us with

(∗) n ≡ m−1 	2 ∪ [first(m) 7→ 2] .

Now one can verify isanchored(n). This will be the starting point for our
development of an imperative version.

One can bring the expression for n into a different form. We have

16

m−1 	2 ∪ [first(m) 7→ 2]
≡ m−1 	2 ∪ [first(m) 7→ 2]	2

≡ (m−1 ∪ [first(m) 7→ 2])	2

≡ (m−1 ∪ [2 7→ first(m)]−1)	2

≡ (m ∪ [2 7→ first(m)])−1 	2.
This form now suggests a nice conceptual algorithm for reversing a chain:
First close the chain temporarily to a cycle by treating 2as an ordinary cell
and adding the link [2 7→ first(m)]. Then reverse all the pointers by passing
to (m ∪ [2 7→ first(m)])−1. Finally, cut the cycle again by taking away the
link emanating from 2. It should be remarked here that this view of chain
reversal was not known to the author before; it was obtained by purely symbolic
reasoning in trying to bring the original expression into a more regular form.

5.2 Versions with Overwriting and Selective Updating

Again we specify a version of reversal that deals with lists addressed by header
cells:

owrev(l, x)
def≡ revpc(from(x, l))�

l /− rev(from(x, l)) .

Using (∗) we obtain
owrev(lx)

≡ l /− (from(x, l)−1 	2 ∪ [first(from(x, l)) 7→ 2])
≡ l /− (from(x, l)−1 	2 ∪ [x 7→ 2])
≡ (commutativity, sequentialization)

l /− [x 7→ 2] /− from(x, l)−1 	2.
Now we introduce an auxiliary function

owrev1 (l, x, y)
def≡ l /− [x 7→ y] /− from(x, l)−1 	2

with the embedding

owrev(l, x) ≡ owrev1 (l, x,2) .

For abbreviation we introduce m
def≡ l /− [x 7→ y]. Now we can develop a

recursion equation:
owrev1 (l, x, y)

≡ (unfold owrev)
l /− [x 7→ y] /− from(x, l)−1 	2

≡ m /− from(x, l)−1 	2

17

≡ (by Corollary 3.8)
if l(x) = 2 then m /− [x 7→ 2]−1 	2

else m /− ([x 7→ l(x)] ∪ from(l(x), l))−1 	2 fi
≡ (distributivity, inverse)

if l(x) = 2 then m /− [2 7→ x]	2

else m /− ([l(x) 7→ x]	2 ∪ from(l(x), l)−1 	2) fi
≡ (l(x) 6= 2 in else-case)

if l(x) = 2 then m /− ∅
else m /− ([l(x) 7→ x] ∪ from(l(x), l)−1 	2) fi

≡ (neutrality, sequentialization)
if l(x) = 2 then m

else m /− ([l(x) 7→ x] ∪ from(l(x), l)−1 	2 fi
≡ (Lemma 3.4)

if l(x) = 2 then m
else m /− [l(x) 7→ x] /− from(l(x), l)−1 	2 fi

≡ (fold owrev1)
if l(x) = 2 then m

else owrev1 (m, l(x), x) fi .
Again we have arrived at an (obviously terminating) tail recursion.

Specifying a procedure

proc powrev ≡ (var state l, cell X) :
revpc(from(X, l))�
l := rev(from(X, l))

we obtain, as in the previous section, the final version

proc powrev ≡ (var state m, cell X) :
revpc(from(X, l))�
d (var cell x, y) := (X,2) ;

while l(x) 6= 2

do (l, x, y) := (l /− [x 7→ y], l(x), x) od ;
l := l /− [x 7→ y] c

Note that sequentialization of the collective assignment would require an aux-
iliary variable.

This program describes a well-known algorithm for reversing a list “in
situ”. Whereas verification purely at the procedural level is by no means easy
(see e.g. [4,7]), in particular if all the details were to be filled in, we have
derived and thereby verified the program by a fairly short and simple formal
calculation using standard transformation techniques.

18

5.3 Proving Program Properties

To conclude this section, we want to show how the algebra of maps can also
be used for proving properties of programs. We want to show that, for a non-
empty finite anchored chain m,

rev(rev(m)) ≡ m .

There is a variety of ways of showing this; one possibility would be an induction
on the length of m using a recursive or imperative variant of rev . However, the
proof is much simpler if one uses the non-operational explicit form (∗) we have
derived from the implicit specification, since induction then can completely be
avoided. We first note that

rev(m)
≡ m−1 	2 ∪ [first(m) 7→ 2]
≡ (m	 (2↓m))−1 ∪ [first(m) 7→ 2] .

Next,
{first(rev(m))}

≡ ↓rev(m)\↑rev(m)
≡ ↓m\(↑(m	 (2↓m))−1 ∪ {2})
≡ ↓m\{2}\↓(m	 (2↓m))
≡ ↓m\↓(m	 (2↓m))
≡ ↓m\(↓m\(2↓m))
≡ ↓m ∩2↓m
≡ 2↓m .

Now
rev(rev(m))

≡ rev(m)−1 	2 ∪ [first(rev(m)) 7→ 2]
≡ ((m	 (2↓m))−1 ∪ [first(m) 7→ 2])−1 	2∪

[2↓m 7→ 2]
≡ (((m	 (2↓m))−1)−1 ∪ [first(m) 7→ 2]−1)	2∪

[2↓m 7→ 2]
≡ (m	 (2↓m) ∪ [2 7→ first(m)])	2∪

[2↓m 7→ 2]
≡ (m	 (2↓m))	2 ∪ [2 7→ first(m)])	2∪

[2↓m 7→ 2]
≡ m	 (2↓m) ∪ [2↓m 7→ 2]
≡ m .

In a similar fashion one can prove the associativity of conc. Since these proofs
manage to do completely without induction, their mechanization should be

19

easy, e.g., using techniques from term rewriting. A tool for assisting such proofs
would considerably help our approach in becoming practically usable.

6 Conclusion

We have shown with two examples how to derive algorithms involving pointers
and selective updating from formal specifications using standard transforma-
tion techniques. The key to the method consists in considering the store as
an explicit parameter, since then one has complete information about sharing
and therefore complete control about side effects. We deem this approach much
clearer (and much more convenient) than the idea of hiding the store and com-
ing up with special logics (see e.g. [8,6]) that capture the side-effects indirectly,
as needs to be done in the field of verification of procedural programs.

Staying at the applicative level almost to the very end of the derivations
has allowed us to take full advantage of the powerful algebra of partial maps.
The operations of that algebra are even that expressive that we did not need
to explain anything with the help of diagrams. This may seem due to the sim-
plicity of the algorithms. However, also when developing the intricate garbage
collection algorithm described in [3] we quite soon stopped drawing diagrams
because the algebraic formulation was clearer and much more modular. An-
other advantage of the applicative treatment is that if additional predicates
or operations on maps are needed, they are much more easily added at the
applicative than at the procedural level. Finally, if pointer algorithms are de-
veloped in a systematic way at the applicative language level, there is no need
for introducing additional imperative language concepts such as the highly
imperspicuous pointer rotation [12].

We are convinced that our approach can be extended into a convenient
method for constructing systems software with guaranteed correctness.

Acknowledgements
The idea of an algebraic treatment of pointers was stimulated by discussions
within IFIP WG 2.1, notably by the algebraic way in which R. Bird and
L. Meertens develop tree and list algorithms. I gratefully acknowledge many
helpful conversations with my present and former colleagues from the project
CIP, notably with F.L. Bauer, ∪ . Berger, H. Partsch, P. Pepper, W. Meixner,
and, particularly, H. Ehler, as well as with my students.

20

References
1. F.L. Bauer, R. Berghammer, M. Broy, W. Dosch, F. Geiselbrechtinger, R.

Gnatz, E. Hangel, W. Hesse, B. Krieg-Brückner, A. Laut, T.A. Matzner, B.
Möller, F. Nickl, H. Partsch, P. Pepper, K. Samelson, M. Wirsing, H. Wössner:
The Munich project CIP. Volume I: The wide spectrum language CIP-L. Lec-
ture Notes in Computer Science 183. Berlin: Springer 1985

2. F.L. Bauer, B. Möller, H. Partsch, P. Pepper: Formal program construction
by transformations — Computer-aided, Intuition-guided Programming. Insti-
tut für Informatik der T∪München, TUM-I8807, Juni 1988. Also in IEEE
Transactions on Software Engineering 15, 165–180 (1989)

3. U. Berger, W. Meixner, B. Möller: Calculating a garbage collector. In: M. Broy
M. Wirsing (ed.): Methodik des Programmierens. Fakultät für Mathematik
und Informatik der Universität Passau, MIP-8915, 1989, 1–52. Also in: M.
Broy, M. Wirsing (eds.): Programming methodology — The CIP approach.
To appear in Lecture Notes in Computer Science . Berlin: Springer

4. R. Burstall: Some techniques for proving correctness of programs which alter
data structures. In: B. Meltzer, D. Mitchie (eds.): Machine Intelligence 7.
Edinburgh University Press 1972, 23–50

5. A. Horsch: Functional programming with partially applicable operators. Fakultät
für Mathematik und Informatik der TU München, Dissertation, 1989

6. A. Kausche: Modale Logiken von geflechtartigen Datenstrukturen und ihre
Kombination mit temporaler Programmlogik. Fakultät für Mathematik und
Informatik der T∪München, Dissertation, 1989

7. M. Levy: Verification of programs with data referencing. Proc. 3me Colloque
sur la Programmation 1978, 413–426

8. I. Mason: Verification of programs that destructively manipulate data. Science
of Computer Programming 10, 177–210 (1988)

9. B. Möller: Applicative assertions. In: J.L.A. van de Snepscheut (ed.): Math-
ematics of Program Construction. Lecture Notes in Computer Science 375.
Berlin: Springer 1989, 348–362

10. P. Pepper, B. Möller: Programming with (finite) mappings. In: M. Broy (ed.):
Informatik im Kreuzungspunkt von Numerischer Mathematik, Rechnerent-
wurf, Programmierung, Algebra und Logik. Festkolloquium für F.L. Bauer,
Juni 1989.

11. J. Reynolds: Reasoning about arrays. Commun. ACM 22, 290–299 (1979)
12. N. Suzuki: Analysis of pointer rotation. Conf. Record 7th POPL, 1980, 1–11.

Revised version: Commun. ACM 25, 330–335 (1982)

21

	Introduction
	The Algebra of Partial Maps
	Chains
	Basic Notions
	Anchored Chains
	Well-Founded Chains

	Concatenation of Chains
	Specification and First Explicit Solution
	A Version with Overwriting

	Chain Reversal
	Specification and First Explicit Solution
	Versions with Overwriting and Selective Updating
	Proving Program Properties

	Conclusion

