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We present a tool for analyzing and editing audio signals in the visual domain.
As visual representation we use spectrograms, which give descriptive information
about the sound. This allows analysing and editing audio in a“what you see is what
you hear” style. Gabor analysis and synthesis serves as a basis to create images and
recreate audio signals from the edited images in hi-fi quality.

As the structures in the spectrogram are rather complex, image processing and
computer vision methods are applied for smart user assistedediting. Templates
based on sounds recorded under defined conditions are therefore used. This allows
detecting, separating, eliminating and/or modifying audio objects supervised (inter-
actively) or automatically.

We further propose the usage of resolution zooming, to support manipulating the
spectrogram of a signal at any chosen time-frequency resolution.

1 Introduction

Hearing, analyzing and evaluating sounds is possible for everyone. The reference-sensor for
audio, the human ear, is of amazing capabilities and high quality. In contrast editing and syn-
thesizing audio is an indirect and non-intuitive task, which needs great expertise. It is normally
performed by experts using specialized tools for audio-effects such as a low-pass filter or a re-
verb. This situation is depicted in figure 1: A user can edit a given sound by sending it through
an audio-effect (1). The input (2) and the output (3) are evaluated acoustically and sometimes
but rarely also with a spectrogram (4,5). The audio-effectscan only be controlled via some ded-
icated parameters (6) and therefore allow editing on a very abstract and crude level. In order
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to generate best results with this technique it is state of the art to record every sound separately
on a different track in clean studio conditions. The effectscan now be applied to each channel
separately. More direct audio editing is desirable, but notyet possible.

Figure 1: Classical situation in audio editing: A sound is sent through an audio-effect (1). The
input (2) and the output (3) are evaluated acoustically and sometimes visually (4,5).
The audio-effects are controlled via some dedicated parameters (6).

Figure 2: Visual Audio: The spectrogram of a sound is edited directly. The result can be evalu-
ated either visually or acoustically.

The goal of Visual Audio is to lower these limitations by providing a means to directly and
visually edit audio spectrograms, out of which high qualityaudio can be reproduced. Figure 2
shows the new approach: A user can edit the spectrogram of a sound directly. The result can
be evaluated either visually or acoustically, resulting ina shorter closed loop for editing and
evaluating. This has several advantages:

1. A spectrogram is a very good representation of an audio-signal. Often speech-experts are
able to read text out of speech-spectrograms. In our approach, the spectrogram is used as
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a representation of both, the original and the recreated audio-signal, which both can be
represented visually and acoustically. It therefore narrows the gap between hearing and
editing audio.

2. Audio is transient. It is emitted by a source through a dynamic process, travels through
the air and is received by the human ear. It cannot be frozen for investigation at a given
point in time and a given frequency band. This limitation is overcome by representing
the audio signal as a spectrogram. The spectrogram can be studied in detail and edited
appropriately before transforming back into the transientaudio domain.

Figure 3 gives an overview over the several stages of Visual Audio Editing. A time signal (1) is
transformed (2) into one of a manifold of time-frequency representations (3). One representation
is chosen (4) and edited (5). By inverse transformation (6) an edited time signal (7) is repro-
duced. By the appropriate choice of one of the manifold time-frequency representations, which
refer to higher time or higher frequency resolution, it is possible to edit with high accuracy in
time and frequency. If necessary, the process is repeated (8). Figure 4 shows a screenshot of our

Figure 3: Overview of Visual Audio Editing: a time signal (1)is transformed (2) into one of a
manifold of time-frequency representations (3). One representation is chosen (4) and
edited (5). By inverse transformation (6) an edited time signal (7) is recreated. If
necessary, the process is repeated (8).

implementation of Visual Audio Editing.
Related Work: Time-frequency transformations are a well-known and intensively used tool

in automatic processing of audio signals. Standard transformations are: wavelets [4], [19],
DFT and FFT [16] and Wigner-Ville-Distribution [17]. The Gabor transformation [8] is closely
related to the MLT (Modulated lapped transform) [15], whichhas many applications in audio
processing. The time-frequency transformations are mainly used either for calculating features
or for compression and filtering. In the first case, the features are used for recognizing speech
[13], speakers [18] or music pieces [9]. There is no way back from the features to the audio
signal. An inverse transformation is not performed, but thefeatures are used to derive higher

3



Figure 4: Screen shot of our implementation of Visual Audio Editing.

semantics from the audio signal. In the second case, e.g. lossy speech compression [19] or
denoising [5], an inverse transformation is performed and the signal is either intentionally or
unintentionally edited in the short term frequency domain.However the editing is not based on
any visualization and thus no visual manipulation conceptscan be applied.

Nevertheless the approach of editing audio in its spectrogram has already been presented
earlier. One is Audiosculpt from IRCAM1 followed by Ceres, Ceres2 and last by Ceres32,
which are designed for musicians to create experimental sounds and also for education. They
work as FFT/IFFT analysis/resynthesis packages, which allow editing the short time Fourier
transformation spectrogram of an audio signal. The user hasto choose several parameters for
transformation and reconstruction, e.g. the window shape itself, but is restricted to very few
fixed window lengths. Another approach is reported by Horn [11]. Is is based on auditory
spectrograms, which model the spectral-transformation ofthe ear and is dedicated to speech, i.e.
only for a small bandwidth. The spectrogram is first abstracted to the so called part-tone-time-
pattern and then edited and reconstructed.

There are two main differences compared to Visual Audio Editing as we present it here: First
we use the Gabor transformation with the Gaussian window (see [8]). This transformation is
optimal in terms of time-frequency resolution according tothe Heisenberg uncertainty principle

1http://www.ircam.fr
2http://music.columbia.edu/˜stanko/About_Ceres3.html
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as well as in reconstruction quality. The uncertainty principle allows choosing the ratio of time
to frequency-resolution. Therefore the user is allowed to choose this himself continuously and as
only transformation parameter. In the following we refer toit as resolution zooming operation.
As sound images are more or less complex structures, we secondly introduce techniques for
smart user assisted editing by the usage of template sounds,so called audio objects, which help
to structure and handle the sound image.

This chapter is organized as follows: In Section 2 we explainhow the Gabor transformation
is used to create an image out of the audio signal and how to recreate the audio signal from the
image. A single parameter, the resolution zooming factor, is used in order to adapt the time-
frequency resolution to the task at hand. In Section 3 the manual editing of the image by the
user is described. In Section 4 we discuss and give examples on smart user assisted editing.
This is enabled by the use of audio objects, i.e. templates, which allow interacting with the
image, preserving its complex structure and therefore preserving the high audio quality. Section
5 concludes with a short summary of the main aspects.

2 From audio to Visual Audio and back again

An audio signal is in general given in the 1D time-domain. In order to edit it visually, a 2D
representation is necessary, which gives the user descriptive information about the signal and
out of which the original or edited signal can be reconstructed. In this section we therefore
discuss how to convert an audio signal into the image domain and how to recreate audio from
that image domain.

2.1 Time-frequency transformation: Gabor transformation

As image domain we use a spectrogram. The spectrogram of an audio signal is called imaged
sound. It shows the magnitude of a time-frequency transformation of the audio signal. Time-
frequency transformations reveal local properties of a signal and allow to recreate the signal
under certain conditions. The kind of revealed properties,however, depend strongly on the
window and the window length. We use the Gabor transformation with a Gaussian window and
apply multiwindow techniques to find the best matching window length for a given task (see e.g.
[22]).

Fundamentals of the Gabor transformation: The Gabor transformation was introduced by
Dennis Gabor [8] and has gained much attention in the near past (see e.g. [6] and [7]). In
conjunction with the Gaussian window, which is not the only possible choice, the Gabor trans-
formation has perfect time-frequency localization properties. It splits up a time functionx(t) in
its time-frequency representationX(t, f) and is defined as follows: From a single prototype or
windowing functiong(t), which is localized in time and frequency, a Gabor systemgna,mb(t) is
derived by time shifta and frequency shiftb (see [20]):

gna,mb(t) = e2πjmbtg(t − na), n,m ∈ Z, a, b ∈ R, (1)

a and b are called the lattice constants. The Gabor system covers the whole time-frequency
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plane. The Gabor transformation is then expressed as follows:

cnm = X(na,mb) =

+∞
∫

−∞

x(t)g∗na,mb(t) dt. (2)

cnm are called the Gabor coefficients ofx(t). The inverse transformation or Gabor expansion is
calculated with the window functionγ(t), which is called dual window ofg(t). With the Gabor
systemγna,mb(t) defined analogously to equation (1), the Gabor expansion is defined as follows
(see [1]):

x(t) =
1

L

∞
∑

n=−∞

∞
∑

m=−∞

cnmγna,mb(t) (3)

with L =
∑∞

k=−∞ |γ(ka)|2. The theory of the Gabor transformation leads to the result,that
the window functionsg(t) andγ(t) and the lattice constantsa andb must fulfill certain require-
ments in order to assure the invertibility (see [7]). The appropriate choices are discussed in the
following two paragraphs. For use in digital signal processing formulas (2) and (3) have to be
discretized, using sums instead of integrals and sums of finite length, which is discussed in the
last paragraph of this section.

The Gaussian window: We start with the discussion of the Gaussian window function, which
is given as:

g(t) =
1

√

2πσ2
t

e
− 1

2

t2

σ2
t (4)

and has the following advantageous properties (see e.g. [23]):

• Minimal extent in the time-frequency plane according to theHeisenberg uncertainty prin-
ciple.

• Localized shape, i.e. only one local and global maximum withstrict decay in time and
frequency direction.

The uncertainty principle of Heisenberg says that the product of temporal and frequency extent
of a window function has a total lower limit. If the extents are defined in terms of standard devi-
ations of the window function and of its Fourier transformation respectively, it can be expressed
with the following inequality (see [19]):

σtσf ≥ 1

4π
. (5)

The “=” is only reached for the Gaussian window function (see e.g. [21]), which therefore has
the minimal possible extent in the time-frequency plane. Its Fourier transformation has the same
Gaussian shape as the time function itself:

G(f) =
1

√

2πσ2
f

e
− 1

2

f2

σ2
f , with σf =

1

4πσt

. (6)
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The dual windowγ(t) should also be localized in time and frequency to preserve the local
influence of the Gabor coefficients on the result of the inverse transformation. Also this is
best achieved by the Gaussian as dual window-function. To ensure perfect reconstruction some
restrictions are imposed on the choice of lattice constantsa andb as discussed in the following
paragraph.

Choice of lattice constants and oversampling factor: In his original paper [8] Dennis Gabor
suggested to chooseab = 1 which is called critical sampling. This choice has implicitinfluence
on the shape of the dual window. In fact with the Balian-Low theorem it can be shown that in
this case the dual window extends to infinity and is not localized at all (see [7]). The solution is
to chooseab < 1, which is referred to as the oversampled case. It leads to better localized dual
windows and numerically stable analysis and synthesis.

We therefore have to determine an appropriate oversamplingfactor forab < 1. In the liter-
ature normally the cases of rational oversampling (ab = p

q
, p, q ∈ N andp < q) and integer

oversampling (ab = 1

q
, q ∈ N) are discussed. Bastiaans [1] proposes takingab = 1

3
for which

the ideal dual window of the Gaussian is very similar to a Gaussian window. He mentions that
for increasing values ofq the resemblance of the Gaussian window and its dual window further
increases. In simple empirical hearing tests we found that an oversampling factor starting at
ab = 1

5
avoids hearable differences between an original and a reconstructed sound in case of

using the same Gaussian window for analysis and synthesis. This holds for speech and for full
bandwidth music. An oversampling factor ofq = 5 is therefore the necessary and sufficient
accuracy for high quality audio processing.

In the following, if necessary we namea, b for the critical sampled caseacrit, bcrit and for the
oversampled caseaover, bover. The resulting lattice and how it covers the time-frequencyplain
is illustrated in figure 5. The gray shaded circles indicate the extent of a single Gaussian window
in the time-frequency plain expressed in its standard deviations σt andσf . To ensure the same

Figure 5: Coverage of the time-frequency plain: The gray shaded circles indicate the extent of
a (1) single Gaussian window expressed in its standard deviations σt andσf , (2) the
critically sampled case and (3) the oversampled case.

overlapping of the Gaussians in time and frequency direction, we therefore have to set:

σt

σf

=
acrit

bcrit
=

aover

bover
. (7)
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With aoverbover = 1

q
this holds for:

aover =
acrit√

q
, bover =

bcrit√
q

. (8)

With formula (6) and formula (7) we can solve:

σt =
1√
4π

√

a

b
,σf =

1√
4π

√

b

a
. (9)

As in the following we will always chooseb and determine the other values, we continue with
ab = 1

q
:

σt =
1√
4πq

1

b
,σf =

√

q

4π
b. (10)

With an oversampling factor ofq = 5 and these formulas, it is feasible to take the Gaussian
window g(t) as its own dual windowγ(t) = g(t). One still has the freedom to choose either
acrit or bcrit, i.e. to choose an appropriate window length for the currenttask.

Discretization and Truncation: The formulas (2) and (3) are for a continuous representation
of x(t) and calculate sums and integrals over infinity. Therefore they have to be discretized
and the sums and integrals have to be truncated in order to be implemented. This corresponds
to bandlimiting and samplingx(t) and to truncatingg(t). x(t) is sampled with the sampling
frequencyfs. With T = 1/fs andk ∈ Z x(t) becomesx(kT ). To fulfill the sampling theorem,
the bandwidthfB of x(kT ) has to fulfill fB ≤ fs/2 (see e.g. [16])3. We defineM ∈ N as the
number of frequency bands withM = ⌈1

2

fs

bover
⌉. With tcut half the window length, we define

N ∈ N with N = tcutfs = tcut

T
as half the window length in samples. The Gabor transformation

can then be implemented as:

cnm = X(na,mb) =
1

L

N−1
∑

k=−N

x(kT )g∗na,mb(kT ) (11)

with its inverse:

x(kT ) =
1

L

⌈
kT+tcut

a
⌉

∑

n=⌊
kT−tcut

a
⌋

M−1
∑

m=0

cnmgna,mb(kT ) (12)

whereL =
√

q
∑N−1

k=−N |g(ka)|2 andm ∈ [0,M − 1]. We still have to determinetcut andN

respectively, which correspond to the truncation of the Gaussian window as already mentioned.
We have chosen empirical listening tests to find an appropriate truncation. The goal was to get a
reproduced sound with no hearable difference from the original sound. We define the declineD

3For hi-fi audio typical values arefs = 44.1kHz (CD) or higher andfB = 20kHz.
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of the Gaussian window from the maximum to the cut expressed in dB as:

D = 20log
g(0)

g(tcut)
dB. (13)

For a givenD we get with (4):

tcut =

√

2ln
(

10
D
20

)

σt. (14)

Values ofD ≥ 30dB have shown to be completely sufficient for high quality audio.
Remark: Storing the Gabor coefficients is very efficient independentof the time-frequency

resolution. A discretized time signal of durationtdur needsNR = tdurfs real sample values.
The Gabor coefficients need

NC

Gabor =
tdur

a

fB

b
= tdurfBq (15)

complex or
NR

Gabor = 2 · NC

Gabor = 2tdurfBq (16)

real and imaginary values combined for storage. In summaryNR

Gabor = q · NR values indepen-
dent of the current time-frequency resolution are needed tostore the Gabor transformation. This
can be further enhanced by settingfB = 20kHz with fB < fs/2.

2.2 One degree of freedom: resolution zooming

The human ear has a time-frequency resolution, which closely reaches the physical limit ex-
pressed in the Heisenberg uncertainty principle . It furthermore adapts its current time-frequency
resolution to the current content of the signal according tothe Heisenberg uncertainty principle
(see [2]). It is therefore advantageous also to adapt the resolution of the transformation to the
current editing task. The resolution zooming feature is discussed in this section.

Heisenberg uncertainty principle: We already applied the Heisenberg uncertainty principle
to the functions of the window and the dual window (see section 2.1). It also holds for the
function of the signal, which of course in general has a worseresolution than the theoretical
limit.

As the Gabor transformation is a discretized version of the STFT, we can discuss the con-
tinuous case of the STFT. The STFT can be expressed as a convolution of signalx(t) with
h∗(−t, f) = w∗(−t)e−j2πft:

X(t, f) = x(t) ∗ h∗(−t, f) =

∫

+∞

−∞
x(τ)h∗(−(t − τ), f) dτ . (17)

This is similar to adding the variances of two statisticallyindependent random variablesX and
Y , which form a new random variableZ = X + Y . Their probability density functions are also
convolved and the variance ofZ is then given by (see [10]):

σ2
Z = σ2

X + σ2
Y . (18)
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Therefore the time and frequency variances of a signal and a window are added in the form:

σ2
ttransformation

= σ2
tsignal

+ σ2
twindow

, (19)

σ2
ftransformation

= σ2
fsignal

+ σ2
fwindow

. (20)

Consequently the achievable accuracy of editing a given signal is given by the superposition of
the signal’s and window’s uncertainty. As time and frequency resolution are interconnected, one
has to give up time resolution in order to improve the frequency resolution and vice versa.

Which window length to choose: So one has to choose the frequency shiftbcrit resulting
in a time shiftacrit = 1

bcrit
or vice versa. This is equivalent to choosing an adapted window

length. Different choices lead to different time-frequency representations of the same signal in
the 3D-space with the axest, f and e.g.bcrit. Although the same signal is represented, different
characteristics of the signal are revealed in different layers with constantbcrit. The properties of
this space can be clarified by the extremes ofbcrit:

bcrit → ∞: The windowg(t) becomes the Dirac impulse and the Gabor transformation be-
comes the time signal itself.

bcrit = 0: The window becomesg(t) = const. losing its windowing properties and the Gabor
transformation becomes the Fourier transformation.

In Visual Audio Editing it is therefore essential to calculate the Gabor transformation of an
audio signal with different choices ofbcrit and to perform the respective editing task in the layer
bcrit = const. which allows the best accuracy for the current task. This canbe understood as
zooming, which allows increasing the resolution of the representation of a signal either in time
or in frequency, while the resolution of the other domain decreases.

From this discussion it also follows, that in contrast to images, the two axis time and frequency
are not equivalent. A rotation of an image or of a region will lead to rather undesirable results
and has to be omitted.

Example: Figure 6 a) shows a typical spectrogram of a speech signal. The spectrogram is cal-
culated withbcrit = 64Hz, which results withbover = 28.6Hz in roughly 699 frequency bands
in the range from0Hz to 20kHz. One property of the signal is hidden in this spectrogram:
The recording was accidentally interfered by power line humat 50Hz (common in Europe).
The hum can be heard, if the sound is played at higher volume levels, but it cannot be seen in
this spectrogram. Figure 6 b) shows a spectrogram of the samerecording with a much higher
frequency resolution ofbcrit = 5Hz, i.e. bover = 2.24Hz. In this spectrogram it is easy to dis-
tinguish the hum at50Hz and his higher harmonics from the rest of the signal. Figure 6c) shows
the spectrogram withbcrit = 64Hz again, but the image is “stretched” in frequency direction.
The energy of the hum is distributed widely in the spectrogram and the higher harmonics are
totally blurred and cannot be recognized at this frequency-resolution.

2.3 Fast computation

The Gabor transformation as we use it here can be expressed asa special form of the DFT
(Discretized Fourier Transform), if the window is understood as a part of the signal. At every
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Figure 6: Typical spectrograms for speech signal with an interfering power line hum. a):
bcrit = 64Hz, b): bcrit = 5Hz, c): bcrit = 64Hz, “stretched” in frequency direc-
tion. For convenience b) and c) are cut above1600Hz. The interfering power line
hum and higher harmonics can be recognized easily in the middle spectrogram. They
are indicated by arrows on the right at50Hz, 250Hz, 350Hz, 650Hz, 850Hz and
950Hz. The energy of the hum is distributed widely in the right spectrogram and the
higher harmonics are totally blurred.

multiple of the time shiftaover a DFT has to be computed. For hi-fi audio with high sampling
frequency and some signal length, this leads to rather bad performance expressed in computation
time. The DFT can be faster implemented as FFT (Fast Fourier Transform), if the the DFT length
is a power of 2. As the DFT as then restricted to dedicated lengths, these forces the use of only
somebover = fs

2M
. They are moreover dependent on the sampling frequencyfs of the original

signal. As for Visual Audio Editingbover shall be chosen continuously the only possible solution
up to now was to calculate a much more time consuming DFT.

We propose a solution to soften the hard restriction by the FFT window length, which allows
to take advantage of the higher performance of the FFT. This introduces some computational
overhead, which is generally acceptable if the overall execution time is still lower than that of a
DFT, which is often the case.

For fast calculation of a DFT it is common practice to zero pada given signal to a power of
two boundary. By this action, the frequency spacing of the resulting values is also modified.
We follow a very similar idea. By extending the window from a FFT boundary at2M to a
broader window at the FFT boundary2Ṁ = 2M ·2η (η ∈ N), the density of frequency values is
increased. Instead ofbover = fs

2M
we getḃover = fs

2Ṁ
= bover

2η . Because of the frequency-shape
of the window, which is not altered by altering the FFT length, the frequency values can now be
downsampled by a factorκ ∈ N, κ < 2η, in order to get äbover = κḃover. Figure 7 explains the
scenario.

Before performing the inverse transformation the skipped values have to be reconstructed.
This can be done in the (complex) frequency signal very similar to the way it is done with (real)
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Figure 7: This illustrates the downsampling. The vertical arrows mark in each casebover. (1)
shows a FFT with length2M and the correspondingbover. (2) shows a FFT with length
2Ṁ = 2M · 22. The blue circles mark a frequency vector generated by downsampling
with factor 3. This alters the lattice constants. The resulting frequency vector with
adaptedσt andσf is shown.

time signals: sample up by the factorκ and filter with the reconstruction filter. This filter is in our
case the frequency representation of the Gaussian window (see formula (6)). As a convolution
in the frequency domain is a multiplication in the time domain, this step can be done much
more efficient after the inverse transformation in the time domain by multiplication with the
time representation of the Gaussian window. Performance measurements and more details can
be found in [3].

2.4 Visualization: magnitude, phase and quantization

The transformation-data is represented as complex numberswith real and imaginary 32 bit float
values. These numbers can not be visualized directly. Instead of complex numbers the magni-
tude values are used. They are then compressed and quantizedto 8 bit unsigned integer values
by calculating the square root of the values and scaling them(per image), to fit in 8 bit, while
using the complete number range.

The processing tasks are performed on the transformation data, while the visualization is
constantly updated. If an processing tasks is performed on the magnitude values only the phases
are stored unchanged for the inverse transformation.

3 Manual audio brushing

We now describe, how imaged sounds can be edited manually. Anobvious approach is to edit
them like bitmaps – a well understood paradigm as documentedby standard software packages
such as Adobe PhotoshopTM . These techniques will allow us to perform tasks, which are either
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very complicated or even impossible with classical filtering techniques. Bitmap editing oper-
ations serve as a basis for developing and understanding of content based audio manipulation
techniques. Our tool also allows to listen to selected regions of an imaged sound. This can be
used to provide an instant feedback for the performed sound manipulations and thus serves as a
perfect evaluation tool for the achieved sound quality.

3.1 Time-frequency resolution

The first task in editing is to find the right time-frequency resolution. The right resolution allows
to select a given sound very accurately. This will be illustrated with three prototypical sounds.
Figure 8 shows the imaged sound of music with three instruments: guitar, keyboard and drums.
The time-frequency resolution is set tobcrit = 52.41Hz. The sound of a cymbal is marked with
a rectangle. Because of the chosen time-frequency resolution the cymbal-sound can be found
very compact in the spectrogram. For sounds with other characteristics different time-frequency

Figure 8: Music with three instruments: guitar, keyboard and drums. Time-frequency resolution:
bcrit = 52.41Hz. The sound of a cymbal is marked with a rectangle.

resolutions have to be chosen. Figure 9 shows the imaged sound of clicks of a ball-pen with
a time-frequency resolution set tobcrit = 196.53Hz, i.e. with a higher time resolution. This
sound has mainly transient components and is very localizedin time as can be seen clearly in
the spectrogram.

A third example illustrates, that changing the time-frequency resolution not only changes the
visualization but also more clearly reveals or hides important information. See figure 10, which
shows the sound of a piano playing a C-major scale, each note separately. The imaged sound
is represented in three different time-frequency resolutions: bcrit = 10.65Hz, bcrit = 49.13Hz
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Figure 9: Clicks of a ball-pen. Time-frequency resolution:bcrit = 196.53Hz. This sound has
mainly transient components with very temporal characteristics.

andbcrit = 196.53Hz. Forbcrit = 10.65Hz it is easy to identify the fundamental frequency and
the higher harmonics of each note. It is even possible to verify, that a major scale and not a minor
scale was played. By following the stairs of the first harmonic of each note one can clearly see
that the semitones are between III, IV and VII, VIII. Forbcrit = 49.13Hz the spectral structure
of each tone is still to identify, but less accurate. The temporal decay of each harmonic can now
be perceived separately. Forbcrit = 196.53Hz the temporal structure, how fast the notes were
played, is emphasized, while the spectral structure is nearly completely smeared.

Zooming to a higher resolution on one axis reduces the resolution on the opposite axis. If the
right time-frequency resolution is chosen, the sound qualities of interest are separated and can be
selected separately. The original sound can still be reconstructed from an imaged sound at any
given time-frequency resolution. The combined time-frequency resolution is always at the total
optimum. Time-frequency resolution zooming is therefore astrong feature of Visual Audio.

3.2 Selection masks

Once you have selected the time-frequency resolution, a mask defining the sound pieces you
want to edit must be constructed. In order to pick up different kinds of sounds, masks are
necessary, which represent common structures of sounds. The better the mask matches a sound,
the easier it is to select.

This already works with simple masks, because of two reasons: Firstly, similar physical gener-
ation mechanisms of different sounds of the same class have roughly the same shape. Secondly,
the ear is robust to small degenerations in sound quality dueto experience (recall the bad sound
quality of a telephone compared to original speech) and due to masking effects (see [24]) near
the edge of a selecting mask.

We review some sensible selecting masks with correspondingsound examples.

• rectangle masks
• comb masks
• polygon masks
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Figure 10: Sound of a piano playing a C-major scale, each noteseparately. Time-frequency
resolutions: 1.bcrit = 10.65Hz, 2. bcrit = 49.13Hz and 3.bcrit = 196.53Hz.

• combination masks

Rectangle mask: Figure 8 already contained an example of a rectangle mask. Inthis case
the sound of a cymbal is such localized in the spectrogram (bcrit = 52.41Hz), that it can easily
be isolated by a rectangle. This can be verified by listening to the outer or the inner part of the
rectangle only.

The rectangle mask furthermore exists in two extreme shapes. One is useful, in order to
select sounds with very temporal characteristics, the other is useful for sounds with strong tonal
character. Figure 11 shows left an example of a click of a ball-pen and right an example of a
whistling sound.

Comb masks: In contrast to the whistling sound, most tonal sounds not only incorporate the
fundamental frequency, but also higher harmonics. This leads us to the comb masks. Figure
12 (bcrit = 11.46Hz) shows again the sound of a piano playing a C-major scale, each note
separately (left). The mask useful in this case is called comb mask. As in this case a sound with
a prominent pitch always generates a regular structure of higher harmonics which in its regularity
is similar to a comb. A comb mask is defined by the following parameters: a function which
describes the developing of the frequency of the highest harmonic, the number of harmonics and
the bandwidth of every single harmonic. Figure 12 shows the spectrogram of a short piano piece
(bcrit = 11.46Hz), which is of course polyphonic (right). The comb structureof each single
note is nevertheless preserved.

Polygon masks: The last mask we want to explain simply uses polygons. See figure 13 for an
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Figure 11: Rectangle mask in the two extreme shapes. Left (bcrit = 196.53Hz): Click of a
ball-pen. Rectangle mask with temporal characteristics. Right (bcrit = 65.51Hz):
whistling, strong tonal character.

Figure 12: Sound of a piano,bcrit = 11.46Hz. Left: C-major scale. Right: Short polyphonic
piece.
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example. It shows a speech signal with background noise (bcrit = 78.61Hz). Polygons allow to
select such complex regions, while requiring more elaborateness of the user. They can be used
e.g. to select structured and desired sounds between of surrounding broadband noise.

Figure 13: Imaged sound of speech with background noise,bcrit = 78.61Hz. The polygon
selects parts of the speech signal, separating it from the surrounding broadband noise.

Combination masks: To match for complex sounds it is possible to build up complexmasks
out of repeated simple masks of the same type or simple masks of different types.

3.3 Interaction

Once a sound of interest is selected with an appropriate mask, it is possible to edit the imaged
sound. Their are several useful possibilities.

Amplifying, stamping: The simplest editing is to multiply the magnitude values with a cer-
tain factorA. ForA = 0 the sound is erased or stamped out, for0 < A < 1 the sound is damped
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in its level, forA = 1 it is unchanged and forA > 1 the sound is amplified.
Equalization: If a factorA(f, t) as function of time and frequency is used, the result is similar

to a very complex equalization process.
Cut, Copy&Paste: It is also possible to move the sound around in the spectrogram. If only

the time position is changed, the same sound is just moved or copied to an other time instance.
Changing the pitch: If a sound is moved not only in time, but also in frequency, this changes

the pitch of the sound too.
Changing the shape: If the sound has harmonic components, it is necessary in thiscase, to

stretch or compress the sound in frequency direction, to preserve the harmonic structure. Some
more details of this issue are discussed in the next section under the term “image-transformations”

Evaluating: A very helpful mechanism in Visual Audio is the playback of selected regions
of an imaged sound. In practice it is not trivial to choose thecorrect shape for a mask for a
given desired sound operation. The accuracy of the shape canhowever easily be evaluated by
simply listening to the parts inside and the parts outside the mask respectively. By the presence
or absence of a sound quality in these two parts of the sound, it can be clearly distinguished,
whether the shape of the mask has to be tuned further or whether it is already correct.

4 Smart audio brushing

In this section we will discuss smart techniques for Visual Audio Editing, which are based on
audio objects. This is a more flexible approach than the one presented in the preceding chapter,
because audio objects can adapt to much more complex shapes,than simple masks.

Firstly we will discuss the features of audio objects. A sound recorded beforehand under
defined conditions is used as an audio object i.e. as a template mask for editing the current audio
track.

Secondly we illustrate the detection of known audio objects. Detections are described by the
locations (i.e. positions and shapes) of the audio objects in the spectrograms. Detection has to
be performed resilient to typical variations in which audioobjects of interest can be experienced.

Last we explain deleting and modifying of detected audio objects. Audio object deletion
is a special form of modifying audio objects. An example for amore general modification is
editing the audio object in a different track before adding it to the original audio track again.
The remaining signal content is at the same time left unchanged. Figure 14 summarizes these
two possible two-step editing processes.

Figure 14: Two-step editing process for audio objects.
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4.1 Audio objects: template masks

Reproducible sounds, which are well-structured can be treated as visual objects in the spectro-
gram. In the spectrogram, they are characterized by a distinctive visual pattern – a pattern which
looks similar even under typical variations such as frequency shifts, different play rates, and
recordings from different microphones, different rooms, and playback devices. Examples could
be individual notes played by an instrument, the sound of an closing car door or the rattling of a
single key on a PC-keyboard. An example is also the click of a ball-pen, whose imaged sound
we already discussed in figure 9 and figure 11. An other exampleis an individual note played
by a piano. See for instance figure 15. If the structure of a sound is stable over long times, even

Figure 15: Example for an audio object, which can serve as template masks: A short C2 played
as an individual note by a piano.bcrit = 49.13Hz.

longer portions of a sound can serve as audio-objects. A typical example is a single track of an
audio CD.

4.2 Detecting audio objects

Detection starts with a template of an audio object. Figure 16 explains the procedure. The audio

Figure 16: Detecting audio objects.

object template undergoes a set of predefined parametrized image-transformations4 before a

4These transformations, discussed in the image domain, are named image-transformation, to distinguish them
from the time-frequency transformations in this chapter.
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visual detecting algorithm is used to possibly detect the modified template in the audio track.
Sound variations, image-transformations: An audio object is represented by a visual tem-

plate. Each template is transformed before comparison withthe audio track. This step com-
pensates for the different setting used for recording the template and the audio track (different
microphones, different rooms, different instrument of thesame kind, etc.). The different settings
result in slightly different spectrograms, different levels and small sampling rate differences.
While for the first and the second, the detection relies on a robust algorithm, the third can be
avoided by the preprocessing step called image-transformation (see Figure 16).

The sampling rate differences have the following impact on the template or an audio track:

• A higher sampling rate results in more samples in a given time. Compared to the correct
sampling rate this results in a longer image. The template has to be compressed in time
direction to compensate for this.

• A higher sampling rate recording played at the correct sampling rate results in a lower
sound. The template has to be stretched in frequency direction to compensate for this.

• Regardless of the sampling rate difference, which is unknown, a compression in one comes
along with a stretching in the other direction. The templatetherefore undergoes a com-
bined stretching and compression.

Detecting: The visual detecting algorithm is used with each possible set of allowed image-
transformation parameters in order to find the best matches in the spectrograms under the al-
lowed image-transformation space. As a result, a vector of locations (time, frequency, and
shape) and perhaps other parameters such as volume level andalike are given wherever the
template has been detected in the audio track.

In our system we use the normalized cross-correlation between the modified audio template
image and all possible locations in the spectrogram. As a result, audio object are usually located
with pixel accuracy. Since audio editing is very sensitive to inaccuracies, the estimated locations
and the associated transformation parameters of the reference (i.e. template) audio object could
be further refined by the Lucas-Kanade feature tracker ([14]) – an optical flow method – leading
to subpixel accuracy. This technique for example is used in conjunction with sub-pixel accurate
feature point localization in camera calibration (see [12]).

4.3 Deleting audio objects

An audio object, which has been detected in the audio track, can now be edited by the use of
the best matching template. Possible editing tasks are: correcting the volume level, applying
a selected equalization or deleting the sound object. In this section, the two most important
methods for deleting audio objects are mentioned.

Stamping: The first approach simply “stamps” out the template out, i.e.the magnitude values
are set to zero. Either a user decides interactively, by inspecting the spectrograms visually and
the result aurally, or the template is applied automatically. All magnitude values, which in the
template spectrogram are larger than a certain frequency dependent threshold value are stamped
in the audio track (see figure 17).
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Figure 17: Scheme for stamping a detected audio object with atemplate spectrogram.

We apply this approach to a mixed music and whistle signal. Figure 18 shows the relevant
signals and spectrograms: a) music signal, b) whistling signal, c) mixed signals. Both signals can
be recognized in the spectrogram and the time delay of the whistling of4sec can be determined
easily. In figure 18, d) the “cleaned” signal is shown, i.e. the whistling is stamped out with the
template spectrogram, which was created from a different recording of the same whistle signal.
Figure 18 e) shows the over-compensated signal parts and figure 18 f) the under-compensated
signal parts. In the cleaned signal the whistling is hardly perceivable and the speech signal has
no perceivable difference to the uninterfered original.

Energy based erasing: In contrast to visual objects, which are often intransparent, audio
objects are always additive, i.e. they shine through the energy of an other audio object. The
stamping approach, although attractive because of its simplicity and analogy to the visual do-
main, creates poorer results for increased overlapping of objects in the time-frequency domain.

Another method is subtracting the magnitude values of the templates spectrogram from the
magnitude values of the mixed signals spectrogram. As the template was recorded with a differ-
ent microphone and perhaps has a different level, it is first adapted in order to match the mixed
signals spectrogram absolutely and per frequency band as well as possibly before applying the
difference. Figure 19 shows a scheme for erasing an audio object by subtracting the energy of an
adapted template spectrogram. The success of this method depends on the similarity of template
and original signal and the adaption of the template to the original signal.

5 Conclusion

We presented a new approach of editing audio in the spectrogram. It opens up the possibility
to freeze audio, which is naturally transient, and edit it ina static setting. This enables many
new possibilities in terms of accuracy and flexibility not only in analyzing, but also in editing
audio manually and automatic. We explained how to adapt the Gabor transformation for this
task in order to always reach the absolute physical limit of time-frequency resolution. This is
a great advantage, because the ear itself approaches this limit very closely and is very sensitive
to errors in audio signals. We presented manual as well as smart user-assisted audio brushing
techniques, which are based on the use of known audio objects. Audio objects in general enhance
the flexibility in achieving high quality editing results.

Future developments could be to adopt advanced image manipulation techniques, such as
inpainting, to reconstruct erased or damaged audio parts and the use of artificial neural nets and
other machine learning techniques to further automate the editing processes. Visual Audio will
unfold its full power by combining classical techniques with presented techniques in one tool.
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Figure 18: From top to bottom a) music signal, b) whistling signal, c) mixed signals, whistling
4sec delayed, d) stamped signal, i.e. cleaned signal, e) over-compensated signal parts
and f) under-compensated signal parts.
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Figure 19: Scheme for erasing a detected audio object with a template spectrogram by subtract-
ing the magnitude values.
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