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We present a tool for analyzing and editing audio signalinvisual domain.
As visual representation we use spectrograms, which gigergiéive information
about the sound. This allows analysing and editing audidwihet you see is what
you hear” style. Gabor analysis and synthesis serves assatbaseate images and
recreate audio signals from the edited images in hi-fi qualit

As the structures in the spectrogram are rather complexgenpaocessing and
computer vision methods are applied for smart user assesiéohg. Templates
based on sounds recorded under defined conditions aredteetefed. This allows
detecting, separating, eliminating and/or modifying aumtijects supervised (inter-
actively) or automatically.

We further propose the usage of resolution zooming, to stippanipulating the
spectrogram of a signal at any chosen time-frequency résolu

1 Introduction

Hearing, analyzing and evaluating sounds is possible feryene. The reference-sensor for
audio, the human ear, is of amazing capabilities and higlitguén contrast editing and syn-

thesizing audio is an indirect and non-intuitive task, wameeds great expertise. It is normally
performed by experts using specialized tools for audieet$f such as a low-pass filter or a re-
verb. This situation is depicted in figure 1: A user can ediivargsound by sending it through

an audio-effect (1). The input (2) and the output (3) areweald acoustically and sometimes
but rarely also with a spectrogram (4,5). The audio-effeatsonly be controlled via some ded-
icated parameters (6) and therefore allow editing on a vesyract and crude level. In order



to generate best results with this technique it is stateefthto record every sound separately
on a different track in clean studio conditions. The effexzta now be applied to each channel
separately. More direct audio editing is desirable, butyebdfpossible.
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Figure 1: Classical situation in audio editing: A sound istdbrough an audio-effect (1). The
input (2) and the output (3) are evaluated acoustically amlesimes visually (4,5).
The audio-effects are controlled via some dedicated paeEmEbs).
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Figure 2: Visual Audio: The spectrogram of a sound is editiegictly. The result can be evalu-
ated either visually or acoustically.

The goal of Visual Audio is to lower these limitations by piding a means to directly and
visually edit audio spectrograms, out of which high quaditydio can be reproduced. Figure 2
shows the new approach: A user can edit the spectrogram afral stirectly. The result can
be evaluated either visually or acoustically, resultingaishorter closed loop for editing and
evaluating. This has several advantages:

1. A spectrogram is a very good representation of an audivasi Often speech-experts are
able to read text out of speech-spectrograms. In our apiprdiae spectrogram is used as



a representation of both, the original and the recreatetaighal, which both can be
represented visually and acoustically. It therefore wesrthe gap between hearing and
editing audio.

2. Audio is transient. It is emitted by a source through a dyicgprocess, travels through
the air and is received by the human ear. It cannot be frozeimfestigation at a given
point in time and a given frequency band. This limitation \@@ome by representing
the audio signal as a spectrogram. The spectrogram can diedsin detail and edited
appropriately before transforming back into the transardio domain.

Figure 3 gives an overview over the several stages of VisudidEditing. A time signal (1) is
transformed (2) into one of a manifold of time-frequencyresgntations (3). One representation
is chosen (4) and edited (5). By inverse transformation (6¢dited time signal (7) is repro-
duced. By the appropriate choice of one of the manifold tfreguency representations, which
refer to higher time or higher frequency resolution, it isgible to edit with high accuracy in
time and frequency. If necessary, the process is repeateHi¢®ire 4 shows a screenshot of our

Figure 3: Overview of Visual Audio Editing: a time signal (i&)transformed (2) into one of a
manifold of time-frequency representations (3). One regméation is chosen (4) and
edited (5). By inverse transformation (6) an edited timenaiq7) is recreated. If
necessary, the process is repeated (8).

implementation of Visual Audio Editing.
Related Work: Time-frequency transformations are a well-known and isitexty used tool

in automatic processing of audio signals. Standard tramsftions are: wavelets [4], [19],
DFT and FFT [16] and Wigner-Ville-Distribution [17]. The Ger transformation [8] is closely
related to the MLT (Modulated lapped transform) [15], whitds many applications in audio
processing. The time-frequency transformations are maisgd either for calculating features
or for compression and filtering. In the first case, the festare used for recognizing speech
[13], speakers [18] or music pieces [9]. There is no way backnfthe features to the audio
signal. An inverse transformation is not performed, butfdeures are used to derive higher
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Figure 4: Screen shot of our implementation of Visual Audabtigg.

semantics from the audio signal. In the second case, e.gy kmeech compression [19] or
denoising [5], an inverse transformation is performed dredignal is either intentionally or
unintentionally edited in the short term frequency dom&lowever the editing is not based on
any visualization and thus no visual manipulation conceptsbe applied.

Nevertheless the approach of editing audio in its spedroghas already been presented
earlier. One is Audiosculpt from IRCAMfollowed by Ceres, Ceres2 and last by Cefes3
which are designed for musicians to create experimentaidsoand also for education. They
work as FFT/IFFT analysis/resynthesis packages, whidwadlditing the short time Fourier
transformation spectrogram of an audio signal. The usetdakoose several parameters for
transformation and reconstruction, e.g. the window shégmf,i but is restricted to very few
fixed window lengths. Another approach is reported by Horh).[1ls is based on auditory
spectrograms, which model the spectral-transformaticdheéar and is dedicated to speech, i.e.
only for a small bandwidth. The spectrogram is first abséce¢d the so called part-tone-time-
pattern and then edited and reconstructed.

There are two main differences compared to Visual Audioifglias we present it here: First
we use the Gabor transformation with the Gaussian window [8B. This transformation is
optimal in terms of time-frequency resolution accordinght® Heisenberg uncertainty principle

Thttp://www.ircam.fr
2http://music.columbia.edu/"stanko/About_Ceres3.html



as well as in reconstruction quality. The uncertainty pgptecallows choosing the ratio of time

to frequency-resolution. Therefore the user is allowedtmwse this himself continuously and as
only transformation parameter. In the following we refeittas resolution zooming operation.

As sound images are more or less complex structures, we digdatroduce techniques for

smart user assisted editing by the usage of template sosmdsjled audio objects, which help
to structure and handle the sound image.

This chapter is organized as follows: In Section 2 we exptaw the Gabor transformation
is used to create an image out of the audio signal and how teatecthe audio signal from the
image. A single parameter, the resolution zooming fackysied in order to adapt the time-
frequency resolution to the task at hand. In Section 3 theuadagditing of the image by the
user is described. In Section 4 we discuss and give examplasnart user assisted editing.
This is enabled by the use of audio objects, i.e. templatbschnallow interacting with the
image, preserving its complex structure and thereforegpvasy the high audio quality. Section
5 concludes with a short summary of the main aspects.

2 From audio to Visual Audio and back again

An audio signal is in general given in the 1D time-domain. tdes to edit it visually, a 2D
representation is necessary, which gives the user ddageripformation about the signal and
out of which the original or edited signal can be reconsadctin this section we therefore
discuss how to convert an audio signal into the image domainhaw to recreate audio from
that image domain.

2.1 Time-frequency transformation: Gabor transformation

As image domain we use a spectrogram. The spectrogram ofdém signal is called imaged
sound. It shows the magnitude of a time-frequency transdtion of the audio signal. Time-
frequency transformations reveal local properties of aaignd allow to recreate the signal
under certain conditions. The kind of revealed propertiesyever, depend strongly on the
window and the window length. We use the Gabor transformatiith a Gaussian window and
apply multiwindow techniques to find the best matching wimdiength for a given task (see e.g.
[22]).

Fundamentals of the Gabor transformation: The Gabor transformation was introduced by
Dennis Gabor [8] and has gained much attention in the nedr(pas e.g. [6] and [7]). In
conjunction with the Gaussian window, which is not the onbggible choice, the Gabor trans-
formation has perfect time-frequency localization praiger It splits up a time functiom(¢) in
its time-frequency representation(¢, /) and is defined as follows: From a single prototype or
windowing functiong(t), which is localized in time and frequency, a Gabor system,.;(t) is
derived by time shift: and frequency shift (see [20]):

Gna,mb(t) = ezwjmbtg(t —na), n,m € 7, a,b € R, Q)

a and b are called the lattice constants. The Gabor system coverwliole time-frequency



plane. The Gabor transformation is then expressed as faillow

+00
com = X(na,mb) = [ (01 a0 @)

—00

cnm are called the Gabor coefficientsoft). The inverse transformation or Gabor expansion is
calculated with the window functiom(t), which is called dual window of(¢). With the Gabor
systenmy,. m»(t) defined analogously to equation (1), the Gabor expansioefiset as follows
(see [1]):

f =1 3 Y ot 3)

N=—00 M=—00

with L = 772 Iv(ka)|. The theory of the Gabor transformation leads to the rethat,
the window functiong;(¢) and~(¢) and the lattice constanisandb must fulfill certain require-
ments in order to assure the invertibility (see [7]). Therappate choices are discussed in the
following two paragraphs. For use in digital signal proogggormulas (2) and (3) have to be
discretized, using sums instead of integrals and sums ¢é fiemgth, which is discussed in the
last paragraph of this section.

The Gaussian window: We start with the discussion of the Gaussian window functidrich
is given as:

o~
)
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and has the following advantageous properties (see e.p: [23

q
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g(t) =

(4)

e Minimal extent in the time-frequency plane according toltesenberg uncertainty prin-
ciple.

e Localized shape, i.e. only one local and global maximum \witict decay in time and
frequency direction.

The uncertainty principle of Heisenberg says that the prodtitemporal and frequency extent
of a window function has a total lower limit. If the extenteatefined in terms of standard devi-
ations of the window function and of its Fourier transforimatrespectively, it can be expressed
with the following inequality (see [19]):

1
e > E . (5)
The “="is only reached for the Gaussian window function (see €g])[ which therefore has
the minimal possible extent in the time-frequency plareFturier transformation has the same
Gaussian shape as the time function itself:

1 ik
G(f) = e *7]

2 o2

,WithO'f:

(6)
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The dual window~(¢) should also be localized in time and frequency to presereeldbal
influence of the Gabor coefficients on the result of the irvdransformation. Also this is
best achieved by the Gaussian as dual window-function. $aremperfect reconstruction some
restrictions are imposed on the choice of lattice constatisdb as discussed in the following
paragraph.

Choiceof lattice constants and over sampling factor: In his original paper [8] Dennis Gabor
suggested to choos@ = 1 which is called critical sampling. This choice has implicitiuence
on the shape of the dual window. In fact with the Balian-Lowdtem it can be shown that in
this case the dual window extends to infinity and is not laealiat all (see [7]). The solution is
to choosenb < 1, which is referred to as the oversampled case. It leads terdetalized dual
windows and numerically stable analysis and synthesis.

We therefore have to determine an appropriate oversamfacigr forab < 1. In the liter-
ature normally the cases of rational oversamplialy £ g, p,q € Nandp < ¢) and integer

oversampling ¢b = % q € N) are discussed. Bastiaans [1] proposes taking- % for which
the ideal dual window of the Gaussian is very similar to a Geuswindow. He mentions that
for increasing values af the resemblance of the Gaussian window and its dual windavefu
increases. In simple empirical hearing tests we found thatversampling factor starting at
ab = % avoids hearable differences between an original and a seétmbted sound in case of
using the same Gaussian window for analysis and synthekis.hblds for speech and for full
bandwidth music. An oversampling factor @f= 5 is therefore the necessary and sufficient
accuracy for high quality audio processing.

In the following, if necessary we nanagb for the critical sampled case,;;, b.-i+ and for the
oversampled case,e, bover- The resulting lattice and how it covers the time-frequeplamn
is illustrated in figure 5. The gray shaded circles indichtedgxtent of a single Gaussian window
in the time-frequency plain expressed in its standard tievieo; ando ;. To ensure the same
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Figure 5: Coverage of the time-frequency plain: The graydstecircles indicate the extent of
a (1) single Gaussian window expressed in its standard tiavsar; ando, (2) the
critically sampled case and (3) the oversampled case.
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overlapping of the Gaussians in time and frequency diractie therefore have to set:
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With apperbover = % this holds for:

Aerit berit
Qoper = —— bover = . (8)
V4 V4

With formula (6) and formula (7) we can solve:

S N P o

As in the following we will always choosk and determine the other values, we continue with
S 11

o= =10 = %b. (10)
With an oversampling factor af = 5 and these formulas, it is feasible to take the Gaussian
window g(¢) as its own dual windowy(t) = g¢(t). One still has the freedom to choose either
aerit OF berit, 1.€. 10 chOOSE an appropriate window length for the curtask.

Discretization and Truncation: The formulas (2) and (3) are for a continuous representation
of z(¢) and calculate sums and integrals over infinity. Therefoey thave to be discretized
and the sums and integrals have to be truncated in order tmfernented. This corresponds
to bandlimiting and sampling(¢) and to truncating;(¢). z(t) is sampled with the sampling
frequencyfs. With T = 1/ f, andk € Z x(t) becomes:(kT'). To fulfill the sampling theorem,
the bandwidthfp of (kT has to fulfill fz < f,/2 (see e.g. [16D. We defineM < N as the
number of frequency bands withl = %bfs 1. With ¢.,; half the window length, we define
N e Nwith N =t fs = tTt as half the window length in samples. The Gabor transfoonati
can then be implemented as:

N-1
1 .
Cnm = X(na,mb) = E Z m(kT)gna,mb(kT) (11)
k=—N
with its inverse:
(kT‘Ftcut‘I
M—1

x(kT) =

Z Z CnmYna,mb kT) (12)

n= LkT tcutJm 0

S

where L = \/q SNy lg(ka)|? andm € [0, M — 1]. We still have to determing.,; and N
respectively, which correspond to the truncation of the<S&mn window as already mentioned.
We have chosen empirical listening tests to find an apprigpiancation. The goal was to get a
reproduced sound with no hearable difference from themalgiound. We define the declide

3For hi-fi audio typical values ar, = 44.1kHz (CD) or higher andfz = 20kH z.



of the Gaussian window from the maximum to the cut expressd@ias:

D = 20l0g2Y_ap. (13)
g(tcut)
For a givenD we get with (4):
tout = 1/ 20 (10%)% (14)

Values of D > 30dB have shown to be completely sufficient for high quality audio
Remark: Storing the Gabor coefficients is very efficient independ#rihe time-frequency
resolution. A discretized time signal of duratiog,. needsN® = t4,, f, real sample values.
The Gabor coefficients need
t
Ngabor = %fTB = taur fBY (15)
complex or

Ngabor =2- Ngabor = 2tdurqu (16)

real and imaginary values combined for storage. In summ@%m = ¢ - N® values indepen-
dent of the current time-frequency resolution are needstbie the Gabor transformation. This
can be further enhanced by settifig = 20kH z with f5 < f,/2.

2.2 One degree of freedom: resolution zooming

The human ear has a time-frequency resolution, which glaselches the physical limit ex-
pressed in the Heisenberg uncertainty principle . It furttare adapts its current time-frequency
resolution to the current content of the signal accordinthéoHeisenberg uncertainty principle
(see [2]). Itis therefore advantageous also to adapt treutésn of the transformation to the
current editing task. The resolution zooming feature isused in this section.

Heisenberg uncertainty principle: We already applied the Heisenberg uncertainty principle
to the functions of the window and the dual window (see sacHd). It also holds for the
function of the signal, which of course in general has a woeselution than the theoretical
limit.

As the Gabor transformation is a discretized version of theTS we can discuss the con-
tinuous case of the STFT. The STFT can be expressed as a wtonodf signalz(t) with
h*(—t, f) = w*(—t)e 727/t

—+00

X(t, f)=z(t)xh"(—t, f) = / x(T)h* (= (t — 1), f)dr. (17)

—0o0

This is similar to adding the variances of two statisticatigependent random variablés and
Y, which form a new random variablé = X + Y. Their probability density functions are also
convolved and the variance éfis then given by (see [10]):

0% = 0% + o3 (18)



Therefore the time and frequency variances of a signal and@ow are added in the form:

o2 = o2 + o? (29)

tt'ransformation tsignal twindow’

2

ft'ransformation

Consequently the achievable accuracy of editing a givamasig given by the superposition of
the signal’s and window’s uncertainty. As time and frequemssolution are interconnected, one
has to give up time resolution in order to improve the freqyasolution and vice versa.

Which window length to choose: So one has to choose the frequency shifi; resulting
in a time shifta..;; = ﬁ or vice versa. This is equivalent to choosing an adapted awnd
length. Different choices lead to different time-frequgmepresentations of the same signal in
the 3D-space with the axesf and e.gb..;:- Although the same signal is represented, different
characteristics of the signal are revealed in differeng¢layvith constant..;;. The properties of

this space can be clarified by the extremes.gf:

_ 2 2
- Ufsignal + Ufwindow ) (20)

berit — o0 The window g(t) becomes the Dirac impulse and the Gabor transformation be-
comes the time signal itself.

berit = 0: The window becomes(t) = const. losing its windowing properties and the Gabor
transformation becomes the Fourier transformation.

In Visual Audio Editing it is therefore essential to caldeldhe Gabor transformation of an
audio signal with different choices éf,;; and to perform the respective editing task in the layer
berit = const. which allows the best accuracy for the current task. ThistEmnnderstood as
zooming, which allows increasing the resolution of the espntation of a signal either in time
or in frequency, while the resolution of the other domainrdases.

From this discussion it also follows, that in contrast togas, the two axis time and frequency
are not equivalent. A rotation of an image or of a region velid to rather undesirable results
and has to be omitted.

Example: Figure 6 a) shows a typical spectrogram of a speech signalspéctrogram is cal-
culated withb,..;; = 64H z, which results with,,., = 28.6 H z in roughly 699 frequency bands
in the range fronDH =z to 20k Hz. One property of the signal is hidden in this spectrogram:
The recording was accidentally interfered by power line ratri0 H = (common in Europe).
The hum can be heard, if the sound is played at higher volumadslebut it cannot be seen in
this spectrogram. Figure 6 b) shows a spectrogram of the satoeding with a much higher
frequency resolution df..;; = 5Hz, i.€. byyer = 2.24H z. In this spectrogram it is easy to dis-
tinguish the hum &0 H z and his higher harmonics from the rest of the signal. Figureshiows
the spectrogram with,.,.;, = 64H z again, but the image is “stretched” in frequency direction.
The energy of the hum is distributed widely in the spectrogend the higher harmonics are
totally blurred and cannot be recognized at this frequarspiution.

2.3 Fast computation

The Gabor transformation as we use it here can be expressaedecial form of the DFT
(Discretized Fourier Transform), if the window is undewstaas a part of the signal. At every

10
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Figure 6: Typical spectrograms for speech signal with aerfating power line hum. a):
berit = 64Hz, b): beryy = BHz, C): bery = 64H z, “stretched” in frequency direc-
tion. For convenience b) and c) are cut abd$80H z. The interfering power line
hum and higher harmonics can be recognized easily in thelengiectrogram. They
are indicated by arrows on the right ®H z, 250H z, 350H z, 650H z, 850H z and
950H z. The energy of the hum is distributed widely in the right ¢psgram and the
higher harmonics are totally blurred.

multiple of the time shiftu,,.- @ DFT has to be computed. For hi-fi audio with high sampling
frequency and some signal length, this leads to rather bdorpgnce expressed in computation
time. The DFT can be faster implemented as FFT (Fast Fourgrsform), if the the DFT length

is a power of 2. As the DFT as then restricted to dedicatedthsnghese forces the use of only
SOMebyyer = sz They are moreover dependent on the sampling frequénoy the original
signal. As for Visual Audio Editing,,.,- shall be chosen continuously the only possible solution
up to now was to calculate a much more time consuming DFT.

We propose a solution to soften the hard restriction by the Wirdow length, which allows
to take advantage of the higher performance of the FFT. Ttisduces some computational
overhead, which is generally acceptable if the overall etieo time is still lower than that of a
DFT, which is often the case.

For fast calculation of a DFT it is common practice to zero pagiven signal to a power of
two boundary. By this action, the frequency spacing of theiltang values is also modified.
We follow a very similar idea. By extending the window from &TFboundary aM to a
broader window at the FFT boundaty/ = 21 - 27 ( € N), the density of frequency values is
increased. Instead 6f,., = 2f—M we geti)over = Zfs. = bz—,, Because of the frequency-shape
of the window, which is not altered by altering the FFT lendtie frequency values can now be
downsampled by a facter € N, x < 27, in order to get Bover = Kboper- Figure 7 explains the
scenario.

Before performing the inverse transformation the skippallies have to be reconstructed.
This can be done in the (complex) frequency signal very sintd the way it is done with (real)

11
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Figure 7: This illustrates the downsampling. The verticabas mark in each cadg,.,. (1)
shows a FFT with lengthM and the correspondirtg,,.... (2) shows a FFT with length
2M = 2M - 22. The blue circles mark a frequency vector generated by dampkng
with factor 3. This alters the lattice constants. The resulting frequearector with
adaptedr; ando s is shown.

time signals: sample up by the factoand filter with the reconstruction filter. This filter is in our
case the frequency representation of the Gaussian windenfgsmula (6)). As a convolution
in the frequency domain is a multiplication in the time domahis step can be done much
more efficient after the inverse transformation in the tinoendin by multiplication with the
time representation of the Gaussian window. Performanasuorements and more details can
be found in [3].

2.4 Visualization: magnitude, phase and quantization

The transformation-data is represented as complex numligrseal and imaginary 32 bit float
values. These numbers can not be visualized directly. ddsté complex numbers the magni-
tude values are used. They are then compressed and quamotigdgit unsigned integer values
by calculating the square root of the values and scaling tfpEmimage), to fit in 8 bit, while
using the complete number range.

The processing tasks are performed on the transformatitay ddoile the visualization is
constantly updated. If an processing tasks is performet@magnitude values only the phases
are stored unchanged for the inverse transformation.

3 Manual audio brushing

We now describe, how imaged sounds can be edited manuallpb®ious approach is to edit
them like bitmaps — a well understood paradigm as documéditestiandard software packages
such as Adobe Photosh@. These techniques will allow us to perform tasks, which dleee

12



very complicated or even impossible with classical filtgriechniques. Bitmap editing oper-
ations serve as a basis for developing and understandingntért based audio manipulation
techniques. Our tool also allows to listen to selected regmf an imaged sound. This can be
used to provide an instant feedback for the performed sowardpulations and thus serves as a
perfect evaluation tool for the achieved sound quality.

3.1 Time-frequency resolution

The first task in editing is to find the right time-frequencgateition. The right resolution allows
to select a given sound very accurately. This will be illatgd with three prototypical sounds.
Figure 8 shows the imaged sound of music with three instrasneuitar, keyboard and drums.
The time-frequency resolution is setitg;; = 52.41H z. The sound of a cymbal is marked with
a rectangle. Because of the chosen time-frequency resoltlie cymbal-sound can be found
very compact in the spectrogram. For sounds with other cltenatics different time-frequency
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Figure 8: Music with three instruments: guitar, keyboard drums. Time-frequency resolution:
berit = 52.41H z. The sound of a cymbal is marked with a rectangle.

resolutions have to be chosen. Figure 9 shows the imaged! swiuslicks of a ball-pen with
a time-frequency resolution set bg.;; = 196.53H z, i.e. with a higher time resolution. This
sound has mainly transient components and is very localiz¢iche as can be seen clearly in
the spectrogram.

A third example illustrates, that changing the time-fratgyeresolution not only changes the
visualization but also more clearly reveals or hides imgatrinformation. See figure 10, which
shows the sound of a piano playing a C-major scale, each pperaely. The imaged sound
is represented in three different time-frequency resohstib..;; = 10.65H z, beriy = 49.13H 2

13
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Figure 9: Clicks of a ball-pen. Time-frequency resolutiép:;; = 196.53H z. This sound has
mainly transient components with very temporal charasties.

andb..;; = 196.53H z. Forb..;+ = 10.65H z it is easy to identify the fundamental frequency and
the higher harmonics of each note. Itis even possible téyénat a major scale and not a minor
scale was played. By following the stairs of the first harroafieach note one can clearly see
that the semitones are between lll, IV and VII, VIII. Rgy;; = 49.13H = the spectral structure
of each tone is still to identify, but less accurate. The terapdecay of each harmonic can now
be perceived separately. Hor;; = 196.53 H =z the temporal structure, how fast the notes were
played, is emphasized, while the spectral structure idyneampletely smeared.

Zooming to a higher resolution on one axis reduces the régnlon the opposite axis. If the
right time-frequency resolution is chosen, the sound tjgalof interest are separated and can be
selected separately. The original sound can still be réngsted from an imaged sound at any
given time-frequency resolution. The combined time-fiesgry resolution is always at the total
optimum. Time-frequency resolution zooming is therefostrang feature of Visual Audio.

3.2 Selection masks

Once you have selected the time-frequency resolution, & hefening the sound pieces you
want to edit must be constructed. In order to pick up diffeddnds of sounds, masks are
necessary, which represent common structures of souna@shéfter the mask matches a sound,
the easier itis to select.

This already works with simple masks, because of two reagearstly, similar physical gener-
ation mechanisms of different sounds of the same class baghly the same shape. Secondly,
the ear is robust to small degenerations in sound qualittalegperience (recall the bad sound
quality of a telephone compared to original speech) and dueatsking effects (see [24]) near
the edge of a selecting mask.

We review some sensible selecting masks with corresporstingd examples.

e rectangle masks
e comb masks
e polygon masks
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Figure 10: Sound of a piano playing a C-major scale, each separately. Time-frequency
resolutions: 1b..;; = 10.65Hz, 2. beryy = 49.13Hz and 3.b..;; = 196.53H z.

e combination masks

Rectangle mask: Figure 8 already contained an example of a rectangle mastiidrcase
the sound of a cymbal is such localized in the spectrogigm & 52.41 H z), that it can easily
be isolated by a rectangle. This can be verified by listeronidpé outer or the inner part of the
rectangle only.

The rectangle mask furthermore exists in two extreme sha@e®e is useful, in order to
select sounds with very temporal characteristics, therashgseful for sounds with strong tonal
character. Figure 11 shows left an example of a click of afrati and right an example of a
whistling sound.

Comb masks: In contrast to the whistling sound, most tonal sounds not mdorporate the
fundamental frequency, but also higher harmonics. Thiddass to the comb masks. Figure
12 (b.r+ = 11.46Hz) shows again the sound of a piano playing a C-major scaldy eate
separately (left). The mask useful in this case is calledicomask. As in this case a sound with
a prominent pitch always generates a regular structuregbeniharmonics which in its regularity
is similar to a comb. A comb mask is defined by the followinggmaeters: a function which
describes the developing of the frequency of the higheshbiic, the number of harmonics and
the bandwidth of every single harmonic. Figure 12 shows pleetsogram of a short piano piece
(berie = 11.46H 2), which is of course polyphonic (right). The comb structofeesach single
note is nevertheless preserved.

Polygon masks: The last mask we want to explain simply uses polygons. Segefiifor an
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Figure 11: Rectangle mask in the two extreme shapes. bgft (= 196.53Hz): Click of a
ball-pen. Rectangle mask with temporal characteristicghtRb..;; = 65.51H z):
whistling, strong tonal character.
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Figure 12: Sound of a piand,,.;; = 11.46Hz. Left: C-major scale. Right: Short polyphonic
piece.
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example. It shows a speech signal with background nojsg & 78.61H z). Polygons allow to
select such complex regions, while requiring more elaleoegs of the user. They can be used
e.g. to select structured and desired sounds between olsdiing broadband noise.

12586.0 |
12129.0 | <
11708.0 |
11286.0 |
10829.0 |
10407.0 |
9985.0
9528.0
9106.0
8684.0
8227.0
7805.0
7348.0
£926.0
6504.0
6047.0
5625.0
5204.0
4747.0 _
4325.0 | I P
2903.0

3446.0

20240 : i.
i

26020 | I
21450
e )
1301.0
844.0

422.0 - 2

Figure 13: Imaged sound of speech with background néisg, = 78.61Hz. The polygon
selects parts of the speech signal, separating it from thewwding broadband noise.

Combination masks. To match for complex sounds it is possible to build up comphesks
out of repeated simple masks of the same type or simple méaskiavent types.

3.3 Interaction

Once a sound of interest is selected with an appropriate ,ntaskpossible to edit the imaged
sound. Their are several useful possibilities.

Amplifying, ssamping: The simplest editing is to multiply the magnitude valuedwétcer-
tain factorA. For A = 0 the sound is erased or stamped out(fer A < 1 the sound is damped
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in its level, forA = 1itis unchanged and fad > 1 the sound is amplified.

Equalization: If afactor A( f,t) as function of time and frequency is used, the result is aimil
to a very complex equalization process.

Cut, Copy& Paste: It is also possible to move the sound around in the spectmagtaonly
the time position is changed, the same sound is just movedpied to an other time instance.

Changing the pitch: If a sound is moved not only in time, but also in frequencys tttianges
the pitch of the sound too.

Changing the shape: If the sound has harmonic components, it is necessary ircésis, to
stretch or compress the sound in frequency direction, tegpve the harmonic structure. Some
more details of this issue are discussed in the next seatideruihe term “image-transformations”

Evaluating: A very helpful mechanism in Visual Audio is the playback ofested regions
of an imaged sound. In practice it is not trivial to choose ¢beect shape for a mask for a
given desired sound operation. The accuracy of the shapbaaever easily be evaluated by
simply listening to the parts inside and the parts outsiéentlask respectively. By the presence
or absence of a sound quality in these two parts of the sotirednibe clearly distinguished,
whether the shape of the mask has to be tuned further or whetbalready correct.

4 Smart audio brushing

In this section we will discuss smart techniques for Visuald Editing, which are based on
audio objects. This is a more flexible approach than the oesepted in the preceding chapter,
because audio objects can adapt to much more complex sliagesimple masks.

Firstly we will discuss the features of audio objects. A sbuwacorded beforehand under
defined conditions is used as an audio object i.e. as a teanpkatk for editing the current audio
track.

Secondly we illustrate the detection of known audio objebistections are described by the
locations (i.e. positions and shapes) of the audio objactisa spectrograms. Detection has to
be performed resilient to typical variations in which audigjects of interest can be experienced.

Last we explain deleting and modifying of detected audiceoty. Audio object deletion
is a special form of modifying audio objects. An example fanare general modification is
editing the audio object in a different track before addintpithe original audio track again.
The remaining signal content is at the same time left unobdngrigure 14 summarizes these
two possible two-step editing processes.

_,—» delete —»
—L> modify |—»

—» detect

Figure 14: Two-step editing process for audio objects.
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4.1 Audio objects: template masks

Reproducible sounds, which are well-structured can beeitle@s visual objects in the spectro-
gram. In the spectrogram, they are characterized by a disgnvisual pattern — a pattern which
looks similar even under typical variations such as frequeshifts, different play rates, and
recordings from different microphones, different roonts] alayback devices. Examples could
be individual notes played by an instrument, the sound of@sirgg car door or the rattling of a

single key on a PC-keyboard. An example is also the click adlagen, whose imaged sound
we already discussed in figure 9 and figure 11. An other exams@a individual note played

by a piano. See for instance figure 15. If the structure of addsistable over long times, even

11180+
T 8944 -
6708 -

f in Hz
4472 -

22361

'”'"n 7

0 :
0.00 0.90
tin sec ——»

Figure 15: Example for an audio object, which can serve aplemmasks: A short C2 played
as an individual note by a piané,,.;; = 49.13H z.

longer portions of a sound can serve as audio-objects. Adlpxample is a single track of an
audio CD.

4.2 Detecting audio objects

Detection starts with a template of an audio object. Figérexplains the procedure. The audio

image-
transformation

Audio Track —’—>

Template

detecting— 7,1, L, ...

Figure 16: Detecting audio objects.

object template undergoes a set of predefined parametnizadeitransformatiofisbefore a

“These transformations, discussed in the image domain,aanech image-transformation, to distinguish them
from the time-frequency transformations in this chapter.
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visual detecting algorithm is used to possibly detect thdifreml template in the audio track.

Sound variations, image-transformations. An audio object is represented by a visual tem-
plate. Each template is transformed before comparison th@haudio track. This step com-
pensates for the different setting used for recording thelate and the audio track (different
microphones, different rooms, different instrument ofshene kind, etc.). The different settings
result in slightly different spectrograms, different levand small sampling rate differences.
While for the first and the second, the detection relies onbaisbalgorithm, the third can be
avoided by the preprocessing step called image-transtmmegsee Figure 16).

The sampling rate differences have the following impacthentemplate or an audio track:

e A higher sampling rate results in more samples in a given.ti@mmpared to the correct
sampling rate this results in a longer image. The templasetdvbe compressed in time
direction to compensate for this.

e A higher sampling rate recording played at the correct sagphte results in a lower
sound. The template has to be stretched in frequency direttiicompensate for this.

e Regardless of the sampling rate difference, which is unknazompression in one comes
along with a stretching in the other direction. The temptatrefore undergoes a com-
bined stretching and compression.

Detecting: The visual detecting algorithm is used with each possiblefallowed image-
transformation parameters in order to find the best matahései spectrograms under the al-
lowed image-transformation space. As a result, a vectooadtions (time, frequency, and
shape) and perhaps other parameters such as volume levelikmdre given wherever the
template has been detected in the audio track.

In our system we use the normalized cross-correlation letwlee modified audio template
image and all possible locations in the spectrogram. Aswdtresidio object are usually located
with pixel accuracy. Since audio editing is very sensitvénaccuracies, the estimated locations
and the associated transformation parameters of the nee(ee. template) audio object could
be further refined by the Lucas-Kanade feature tracker Y[4h optical flow method — leading
to subpixel accuracy. This technique for example is usedijunction with sub-pixel accurate
feature point localization in camera calibration (see J12]

4.3 Deleting audio objects

An audio object, which has been detected in the audio treak,now be edited by the use of
the best matching template. Possible editing tasks areeatorg the volume level, applying
a selected equalization or deleting the sound object. ki gbction, the two most important
methods for deleting audio objects are mentioned.

Stamping: The first approach simply “stamps” out the template outithe.magnitude values
are set to zero. Either a user decides interactively, byeittipy the spectrograms visually and
the result aurally, or the template is applied automaticalll magnitude values, which in the
template spectrogram are larger than a certain frequermgndent threshold value are stamped
in the audio track (see figure 17).
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thresh-
Template holding ™ Mask
Y
Audio Track » stamping » Cleaned Track

Figure 17: Scheme for stamping a detected audio object wimalate spectrogram.

We apply this approach to a mixed music and whistle signajurei 18 shows the relevant
signals and spectrograms: a) music signal, b) whistlingadjg) mixed signals. Both signals can
be recognized in the spectrogram and the time delay of thsthviy of 4sec can be determined
easily. In figure 18, d) the “cleaned” signal is shown, i.e Whistling is stamped out with the
template spectrogram, which was created from a differergrdeng of the same whistle signal.
Figure 18 e) shows the over-compensated signal parts arm fi@uf) the under-compensated
signal parts. In the cleaned signal the whistling is hardcpivable and the speech signal has
no perceivable difference to the uninterfered original.

Energy based erasing: In contrast to visual objects, which are often intransparandio
objects are always additive, i.e. they shine through theggnef an other audio object. The
stamping approach, although attractive because of itslisitgpand analogy to the visual do-
main, creates poorer results for increased overlappindpjetcts in the time-frequency domain.

Another method is subtracting the magnitude values of thelates spectrogram from the
magnitude values of the mixed signals spectrogram. As thplage was recorded with a differ-
ent microphone and perhaps has a different level, it is fdtapted in order to match the mixed
signals spectrogram absolutely and per frequency band laasveossibly before applying the
difference. Figure 19 shows a scheme for erasing an audécifny subtracting the energy of an
adapted template spectrogram. The success of this metpeddi®on the similarity of template
and original signal and the adaption of the template to tigral signal.

5 Conclusion

We presented a new approach of editing audio in the speatrogit opens up the possibility
to freeze audio, which is naturally transient, and edit iaistatic setting. This enables many
new possibilities in terms of accuracy and flexibility notyom analyzing, but also in editing
audio manually and automatic. We explained how to adapt thieoGtransformation for this
task in order to always reach the absolute physical limiiraetfrequency resolution. This is
a great advantage, because the ear itself approachegstthisdry closely and is very sensitive
to errors in audio signals. We presented manual as well ag siser-assisted audio brushing
techniques, which are based on the use of known audio obfetso objects in general enhance
the flexibility in achieving high quality editing results.

Future developments could be to adopt advanced image niatigputechniques, such as
inpainting, to reconstruct erased or damaged audio padtsh@nuse of artificial neural nets and
other machine learning techniques to further automatedhimeg processes. Visual Audio will
unfold its full power by combining classical techniqueshwiresented techniques in one tool.
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Figure 18: From top to bottom a) music signal, b) whistlingnsil, ¢) mixed signals, whistling
4sec delayed, d) stamped signal, i.e. cleaned signal, e) ovepeasated signal parts
and f) under-compensated signal parts.
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Template cloelal
energy
Y
Audio Track » subtract » Cleaned Track

Figure 19: Scheme for erasing a detected audio object wimalate spectrogram by subtract-
ing the magnitude values.
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