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ABSTRACT

In many novel application scenarios such as smart rooms
or sensing rooms visual sensors (such as cameras) need to
know which visual actuators (such as displays) are visible to
them. Often only parts of a display are visible from a cam-
era. Therefore, a novel algorithm for precise visibility deter-
mination is presented. The algorithm makes the assumption
that the displays are active, i.e., they can be controlled by
the application. Under these conditions the algorithm deter-
mines precisely where which parts of a display are imaged
by a camera.

1. INTRODUCTION

Sensor networks and sensing rooms are promising recent re-
search directions. Especially sensing rooms are often equip-
ped with visual sensors (cameras) and actuators (displays).
Important questions arising in this setup are (a) how to cali-
brate the multiple cameras, i.e. how to put them into a com-
mon coordinate system, (b) how to add the locations and
orientations of displays to the common coordinate system,
and (c) how to determine which parts of the displays are vis-
ible in each camera, either because the display is not fully
in the field of view and/or parts are occluded by other ob-
jects [1]. In this paper we will address the last problem –
the problem of determining the visibility of displays in un-
calibrated cameras.

Although the topic of camera calibration from images is
well investigated and a significant amount of research has
been done in the last years, e.g. [2], [3], no directly related
research could be found in the area of visiblitiy estimation
of active displays in camera images.

The paper is organized as follows. In Section 2 the problem
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is formulated, a solution overview is given and the limita-
tions of the solution are identified. In Section 3 our algo-
rithm is presented, before Section 4 gives implementation
details and reports results. Section 5 concludes the paper
with a summary and outlook.

2. PROBLEM FORMULATION AND ITS
SOLUTION

Given an uncalibrated static camera and an active flat-panel
display, both at unknown locations, the objective is to auto-
matically determine the fraction of the display that is visible
in the camera image. There are two possible reasons why
only a fraction of a display is visible in a camera image: (1)
parts of the display are simply out of the viewing area of the
camera or (2) parts are occluded by at least one foreground
object. We will not analyze the reason for the invisibility in
our approach, but just determine which pixels are visible to
the camera.

Our solution to the above mentioned problem is based on
the idea to use the active flat panel display to show a known
temporal pattern encoding each pixel on the screen. During
playback of the temporal pattern the static camera captures
an image sequence. The image sequence is then analyzed
over time, whether and where some of the known tempo-
ral pattern can be detected in the captured image sequence.
The detected temporal pattern directly encodes the display
position to which they belong. As a result a complete list of
all visible pixels is determined.

In the following we will describe the temporal pattern and
its associated detector function deployed in our prototype
system.

Temporal pattern: A sinusoidal signal pattern of frequency
fi is assigned to each pixel on the active display letting its
grayscale valuespi oscillate between black and white (0 and



255) over timet according to:

pi =
255

2
sin(2πfit) +

255

2
(1)

Frequency analysis: For analysis the greyscale value of
each pixel in the camera is captured overn frames to deter-
mine its oscillating frequency. It is assumed that the frames
are captured with a sample frequencyfs, i.e., frames are
sampled at time intervals∆, where∆ is determined by the
sampling frequencyfs of the image sequence according to
∆ = 1

fs

.
For each pixel an estimation of the power spectrum is com-
puted using the so-calledperiodogramestimate.
According to [4], given a time functionc(t) sampled at
n equal time intervals∆, the Discrete Fourier Transform
(DFT) can be computed via

Ck =

n−1
∑

l=0

cle
2πilk/n k = 0, ..., n − 1 (2)

wherec0...cn−1 denote then samples of the functionc(t)
(cl = c(l∆)). The periodogram estimate of the power spec-
trum atn/2+1 different frequenciesfi is then estimated by
means of:
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where the frequenciesfk are defined only for zero and pos-
itive frequencies

fk ≡
k

n∆
= 2fc

k

n
k = 0, ...,

n

2
(4)

fc denotes hereby the Nyquist frequency. The Nyquist fre-
quency is given byfc ≡ 1

2∆
.

The oscillation frequency of a pixel may be determined by
searching for peaks in the power spectrum. Each pixel has
a maximum atf = 0, the DC component. Significant local
maximums in the power spectrum forfk > 0 mark the os-
cillation frequency of the pixel. If a clear pronounced max-
imum cannot be found, the pixel is approximately constant
over time.

Limitations of the above described approach derive from
different aspects. First there are physical limits: The res-
olution of determining the visible parts is limited (a) on the
display’s side by the size of each pixel and (b) on the cam-
eras side by the size of the captured image of the display in
pixels which in turn depends also on the distance between
the screen and the camera.
Second mathematical limitations arise from the frequency

analysis procedure. The highest frequency that can be de-
tected in a pixel, the Nyquist frequency, is limited by the
sampling frequency of the captured sequence. The frequency
resolution with which the power estimate can be calculated
in the interval[0, fc] is given by Equation 4. Besides from
the Nyquist frequency, the resolution depends on the num-
bern of samples. Givenn samples the power estimate may
be determined by the above described periodogram estimate
at (n/2) + 1 frequency bins.

The described limitation are crucial for the computation.
Given, for instance, a display of size1600 · 1200 pixels, the
number of different frequenciesfi needed to be displayed
is 1600 · 1200 = 1920000. To determine each frequency a
power spectrum estimate at a minimum of1920000 positive
frequency bins has to be calculated in order to be able to
distinguish all displayed frequencies. This implies at least a
3840000-point DFT. This is prohibitively expensive.
Fortunately, it usually does not make sense to assign each
pixel a different frequency, as the camera resolution is usu-
ally much lower than the display resolution and additionally
the display is covering only a small area in the camera im-
ages.

3. VISIBILITY ESTIMATION ALGORITHM

Due to the limitations identified in the last section the tem-
poral pattern described above is only approximated in the
actual implementation. Instead of varying each pixel in a
different frequency, we divide the display into rectangular
regionsKji as shown in Figure 1. The rectangles result
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Figure 1: Approximation of the ideal pattern

from a combination of two 1D patterns displayed in se-
quence, the so calledhorizontalandverticalpattern.

The horizontal pattern is constructed by dividing the dis-
play intoN regions as illustrated in Figure 2. A frequency
fi is assigned to each regions according tofi = fH i

N , i =
1...N . fH denotes the highest frequency chosen to occur
in the horizontal pattern. The pattern is called horizontal,



because the assigned frequencies increase in horizontal di-
rection from left to right.
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Figure 2: Horizontal pattern: the greyscale value of a pixel
in the regioni oscillates in the assigned frequencyfi

Subsequently the so calledverticalpattern is displayed. Anal-
ogous to the horizontal pattern, the screen is divided intoM
regions, where the frequency increases in vertical direction
from the top to the bottom.
When both patterns are combined, the screen is divided into
M · N rectanglesKji each of dimensionrx × ry, where
rx = w

N andry = h
M . Each rectangleKji is encoded by

the frequenciesfiH andfjV with which its pixels oscillate
in the vertical and horizontal pattern, respectively.

We have chosen to combine two sequential 1D patterns over
one simultaneous 2D pattern for the following reasons. If
we choose to use a 2D pattern with the same resolution, we
need to displayN · M different frequencies, and thus we
need to perform at least a(N · M) · 2-point DFT in order
to estimate the power spectrum at a minimum ofN · M
frequencies (Equation 4) and thus to be able to distinguish
the displayed frequencies. In the case of two sequential 1D
patterns (horizontal and vertical), we can derive the same
resolution by performing aN · 2-point DFT for the cap-
tured image sequence during the horizontal pattern being
displayed, and aM ·2-point DFT for the captured image se-
quence during the vertical pattern being displayed. Figure3
summarizes the algorithm.

4. EXPERIMENTAL RESULTS

The algorithm has been implemented in C++ and tested on
real data. The display whose visible fraction should be de-
tected is partially shown in Figure 4. It’s screen is divided
into M = N = 40 regions in horizontal and vertical di-
rection. With a native resolution of1600 × 1200 pixels,

Figure 3: Algorithm for determining the visible parts of a
display from an uncalibrated camera

this results in a resolution ofrx = 40 pixels in x-direction
andry = 30 pixels in y-direction. The highest horizontal
and vertical frequencyfH andfV was chosen to be4 Hz,
i.e. frequencies in different regions differ at least about0.1
Hz. The recording sampling frequencyfs of the image se-
quences with the camera was chosen to be 20 frames per
second (20 fps) in most experiments. Some experiments
were performed at 30 fps.
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Figure 4: Sample frames of screen displaying the vertical
(left) and horizontal pattern (right).

Figure 4 shows two single frames each extracted from an
example image sequence: at left the screen is displaying the
vertical pattern, at right it is displaying the horizontal pat-
tern. The number of frames extracted from each captured
sequence is 512. It is important to choose a power of two,
as then the frequency analysis can be computed faster.

In a first stage the grey-value of each pixel in the image
is recorded overn frames. The resulting discrete function
of grey-values over time is shown in the right graph of Fig-
ure 5 for three different pixels each marked by a cross in the
left image of Figure 5.
The discrete Fourier transform is implemented as a Fast
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Figure 5: Grey-values of the three pixels, marked left, as a
discrete function of the frame number (right)

Fourier Transform (FFT). According to Equation 4, for a
sampling frequency of 20 Hz the power spectrum can be
computed with a resolution of approximately 0.04 Hz (the
resolution for a sampling frequency of 30 Hz is approxi-
mately 0.06 Hz).
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Figure 6: Periodogram estimate of the power spectrum of
the discrete functions shown in Figure 5(b)

The resulting power spectrum estimate for the three discrete
time functions shown in Figure 5 are illustrated in Figure 6.
On the left side the whole spectrum is illustrated, the right
side shows in detail the part that is marked with a rectan-
gle in the left image. All three power spectrums have their
maximum value atf = 0, the DC component. The power
spectrums of the first two pixels show also a strong local
maximum forf > 0, whereas the third pixel whose discrete
time function is not varying over time (see Figure 5) does
not show a noticable maximum.

The results obtained by the algorithm for three different
cases are illustrated in Figure 7. The left column shows
the images from the camera’s viewpoints, the right column
presents the resulting visible parts of the displays in the im-
ages. In all examples the boundaries of the visible fraction
of the screen are bent. This is due to the lack of camera cali-
bration, i.e. a direct result of the camera’s (radial) distortion.

5. SUMMARY AND CONCLUSIONS

In this paper we describe the problem of precisely determin-
ing the visibility of displays from uncalibrated cameras. We
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Figure 7: Examples of the camera images and the results of
the algorithm

propose to display an appropriate temporal pattern on the
display and then to analyze the respective image sequences
captured by the cameras. The proposed algorithm has been
implemented and extensively validated on real data. Results
are also presented.
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