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ABSTRACT
Many novel multimedia applications such as virtual immer-
sive environments use multiple sensors and actuators. We
present in this paper a novel approach for position cali-
bration of visual sensors and actuators, i.e. cameras and
displays, in a distributed network of general purpose com-
puting devices. The proposed approach is very suitable for
the calibration of mobile setups since (a) synchronization
of the setup is not required, (b) it works fully automatic,
(c) only weak restrictions are imposed on the positioning
of the cameras and displays, and (d) no upper limit on the
number of cameras and displays to calibrated is imposed.
Corresponding points across different camera images are es-
tablished automatically and found with subpixel accuracy.
Cameras do not have to share one common view, only a
reasonable overlap between camera subgroups is necessary.
The method has been sucessfully tested in numerous multi-
camera environments with a varying number of cameras. It
has proven itself to work extremely accurate. Performance
results are reported.

1. INTRODUCTION
Many audio-visual sensor/actuator array processing appli-

cations, including video conferencing and smart conference
rooms, video surveillance, Multiple Perspective Video [10],
games, e-learning, home entertainment and image based ren-
dering, require that the positions of the sensors and actua-
tors are known precisely. Current systems either place the
sensors and actuators in known locations or manually cali-
brate their positions making mobile systems with multiple
sensors and actuators impossible.
Today we find microphones, cameras, loudspeakers and dis-
plays nearly everywhere - in public, at home and at work.
These audio/video sensors and actuators often are a com-
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ponent of computing and communication devices such as
laptops, PDAs and tablets, which we refer to as General
Purpose Computers (GPCs). Often GPCs are networked
using high-speed wired or wireless connections. The result-
ing array of audio/video sensors and actuators along with
array processing algorithms offers a set of new features for
multimedia applications such as mentioned above.

Figure 1: Distributed computing platform consist-
ing of networked general purpose computers with
visual sensors (cameras) and actuators (flat-panel
displays)

Such a setup demands a simple and convenient calibration
approach to put all sensors and actuators into a common
time and space. This is an important prerequisite to enable
such a platform for powerful multimedia-applications. [11]
proposes a means to provide a common time reference for
multiple distributed GPC’s; in [15] a method for automatic
calibration of audio sensors and actuators is presented. In
this paper we focus on providing a common space (coor-
dinate system) for multiple cameras and flat panel-displays,
i.e. video sensors and actuators, by actively estimating their
3D position and pose. We also adress the problem of ef-
fortless calibrating the intrinsic parameters of the multiple
cameras.
Fig. 1 shows one setup of our distributed computing plat-
form. A room or area is instrumented with N (N ≥ 3) static
cameras, which are connected to networked GPCs of suffi-
cient computational power. Further M (M ≥ 1) flat-panel
screens are at least partially visible from one camera. Given
such a distributed platform, the goal is to (a) determine
automatically the intrinsic parameters of each camera and
(b) the 3D position and pose of the cameras and flat-panel
displays in a common coordinate system. Therefore it is as-
sumed that at any instant the number of cameras and the
number of flat-panel displays in the setup is known. Our dis-



tributed system will automatically calibrate the positions of
the visual sensors and actuators. A precise synchronization
of the different devices is not necessary for our framework.

Related Work: Camera calibration is a well researched
topic in computer vision. It is defined as the estimation of
the intrinsic and extrinsic parameters f a camera. Broadly
there are two different methods of camera calibration, pho-
togrammetric calibration and self-calibration [20].
The first method applies a 3D or planar calibration object
whose precise geometry is known. Planar methods are more
popular because it is easy to obtain a calibration target by
just printing the pattern on paper and fixing it on a flat
surface. Some different approaches are described in [20], [9],
[19]. Although the results of calibrating a camera are good,
the major drawback of these calibration methods is that
they require special equipment or precise measurements by
hand.
A relatively new approach is the use of a virtual calibration
object [18], [4]. The calibration object is constructed over
time by tracking an easily identifiable object through a 3D
scene. Here the disadvantages usually are that the setup has
to be synchronized and special equipment is required.
Self calibration techniques ([7], [17], [14]) do not require any
special calibration target. They simultaneously process sev-
eral images from different perspectives of a scene and are
based on point correspondences across the images. The ac-
curacy of these methods depends on how accurately those
point correspondences between images can be extracted.
Point correspondences can be extracted automatically from
the images by identifying 2D features and tracking those be-
tween the different perspective views. Different algorithms
exist [6], [16], [12].
The multiple camera calibration can be solved globally in
one setup or subsets of cameras and displays are calibrated
first and then merged into a global coordinate system. Since
the first method is only suitable if all cameras share a com-
mon view, we follow the second more general approach.

Contributions: The main contributions of the paper are:

• A novel setup for a network of multiple visual sensors
and actuators, which can be created using ad-hoc con-
nected general purpose devices.

• A procedure to automatically calibrate the positions
of sensors and actuators without using calibration ob-
jects, neither 3D objects or planes nor virtual ones.
Thus we do not need any special equipment such as a
laser pointer. Also the setup does not have to be syn-
chronized. Our method is simple and convenient to
use and offers mobility of the entire setup. The cam-
era views are assumed to overlap only partly, i.e. not
all cameras share a common view.

• The usage of an active display as our calibration target
for the intrinsic calibration. Hence our system does not
require any special calibration target to be printed.
Moreover we have control over the calibration pattern
to be displayed and hence extraction of feature points
is easier and more reliable.

• Control points and point correspondences accross im-
ages are extracted fully automatically. Our solution
works for cameras whose viewpoint differ less that 15◦.

The rest of the paper is organized as follows. In Section

2 we formulate the problem and present our solution. Sec-
tion 3 explains how point features are extracted and tracked
between images. In Section 4 and Section 5 the camera
calibration of the multiple cameras is described. Results on
simulated and real-world experiments are presented. In Sec-
tion 4 the one-by-one calibration of the intrinsic parameters
of each camera is outlined. Section 5 presents the algorithm
used to determine the extrinsic parameters, i.e. the position
of all cameras in a common coordinate system, based on the
intrinsic parameters determined in Section 4 and detected
point correspondences acrosse the camera images. The esti-
mation of the position and orientation of the flat-panel dis-
plays in the 3D scene is described in Section 6. The paper
concludes with an outlook in Section 7.

2. PROBLEM FORMULATION
Given M cameras and N flat-panel displays, the goal is

to determine the cameras internal parameters and the three
dimensional position and pose of the cameras and the flat-
panel displays automatically. Therefore we make the follow-
ing assumptions:

• At any instant we know the number of visual sensors
and actuators in the network.

• The displays are sufficiently flat.

• The flat-panel displays’ dimensions, i.e. their width
and height are known in pixels.

In this work we use an enhanced perspective model consider-
ing also lens distortions which describes cameras sufficiently
for most applications.
Without considering lens distortion, the mapping performed
by a perspective camera between a 3D point X and a 2D
image point x, both represented by their homogeneous co-
ordinates, may be represented by a 3×4 matrix, the camera
projective matrix P:

x ≃ PX (1)

The matrix P can be written as

P = K[R|t] (2)

where K is a 3 × 3 upper triangular matrix containing the
camera intrinsic parameters:

K =

0

@

fx s px

0 fy py

0 0 1

1

A (3)

The parameters fx and fy are the focal length measured in
the width and height of the pixel, px and py are the coor-
dinates of the principal point in terms of pixel dimensions
and s denotes the skew. For most commercial cameras, and
hence below, the skew can be considered to be zero. The
3×3 rotation matrix R and the 3×1 translation vector t in
Equation 2 describe the 3D position and pose of the camera
in a certain coordinate system.
In real cameras this perspective model is not sufficient, some
desktop cameras exhibit significant distortions. In order to
develop a proper model, the perspective model has to be
enriched by some distortion components. Our distortion
model is chosen according to the model presented in [9]. We
account with two coefficients for tangential and radial dis-
tortion. This is sufficient to describe distortions that occur
in practice.



One goal of our work is to calibrate multiple cameras given
a set of corresponding points across their images. Points
are said to correspond if they image the same scene point in
different views. We assume in the following discussion, that
the distortion parameters of each camera are known and the
effects of those have been removed from all images. Thus
the projective matrix for each camera has to be determined
in a common coordinate frame.
As different views of the same scene are related to each other,
these relations are used for the calibration. For the remain-
der of this paper the scene is restricted to be static and for
the purpose of mathematical abstraction to consist of points
only.
The problem of calibrating multiple cameras is illustrated in
Fig. 2. A set of 3D points Xi is viewed by a set of cameras

X1

C2

C3

C4

C1

C5

X2

X3

Figure 2: General calibration problem

with matrices Pj . However a 3D point may not be visible
in all cameras, thus its corresponding projected point will
not be available in all image. Let xj

i denote the coordinates
of the i-th point as detected in the j-th camera image. The
reconstruction problem is then to find the set of camera ma-
trices Pj and points Xi such that

xj
i ≃ PjXi (4)

However, unless additional constraints are given, it is in
principle only possible to reconstruct a set of points, or
equivalent, to determine the camera matrices, up to a pro-
jective ambiguity. Additional constraints arise from knowl-
edge about the cameras (intrinsic or extrinsic parameters)
and/or the scene, and can be used to restrict the projective
ambiguity. A reconstruction up to an affine, metric or Eu-
clidean transformation can be achieved.

Solution: We solve the camera and display calibration prob-
lem in two stages. In a first stage we determine the cam-
eras intrinsic parameters and their position relative to each
other up to a global scale factor. Intrinsic calibration is
done independently for each camera by using a flat-panel
display as a planar calibration object. This is reasonable
since our cameras do not allow for varying internal parame-
ters. To accomodate general camera setups it is not required
that the calibration object is visible from all cameras at the
same time. Then the position estimation is performed in
the extrinsic calibration algorithm, i.e. cameras’ positions
and poses are computed in a common coordinate system. In
a typical distributed camera environment each camera can
only see a small volume of the total viewing space and differ-
ent intersecting subsets of cameras share different intersect-
ing views. Hence multiple camera calibration is performed

by calibrating subsets of cameras and then building a global
coordinate system from individual overlapping views.
In the second stage the display positions in the scene and
their respective orientations are estimated by actively dis-
playing a known patterns on the screens. Since all our fea-
ture points lie on planes we estimate the homography be-
tween each display and the camera image in which the screen
is best visible. From those homographies we can extract the
position and orientation with respect to the specific camera.
Since the position of each camera is known in a common
coordinate system, we then know the position and pose of
the display with respect to any other camera.

3. POINT CORRESPONDENCES
2D point correspondences between projections of the same

3D point onto different camera planes, i.e. camera images,
can be generally used to recover the calibration matrices of
the cameras. Therefore establishing such correspondences is
the first step in determining the cameras’ intrinsic parame-
ters and their relative positions.
To determine point correspondences each image is at first de-
scribed and represented by a set of features, each describing
a specific image point, also interest point, and its neighbor-
hood. Subsequently the features of each image are input to
a matching procedure, which identifies in different images
features that correspond to the same point in the observed
scene.
There are various approaches for extracting a set of interest
points and features from an image. Our approach uses the
so called SIFT (Scale Invariant Feature Transform)-features
proposed in [12] to establish correspondences. SIFT-based
feature descriptors were identified in [13] to deliver the most
suitable features in the context of matching points of a scene
under different viewing conditions such as different lighting
and changes in 3D viewpoint.

SIFT-Features Extraction: The SIFT-feature extraction
method combines a scale invariant region detector and a de-
scriptor based on the gradient distribution in the detected
regions.
The following steps are performed for computing a set of
features of an image [12]:

• Scale-space extrema detection

• Accurate keypoint localization

• Orientation assignment

• Keypoint descriptor calcultaion

The first three steps detect a set of interest points - also
called keypoints. They are characteristic for a specific im-
age. The keypoints are filtered to preserve only those, which
are stable under a certain amount of additive noise. An im-
age location, scale and orientation is assigned to each key-
point. This enables the construction of a repeatable local
2D coordinate system, in which the local image (pixel and
its surrounding region) is described invariantly from these
parameters based upon image gradients.
However this approach has its limitations. To ensure a suf-
ficient number of reliable matching points, the displacement
between the cameras should not exceed 15◦. The resulting
correspondences are within pixel accuracy.

SIFT-Feature Matching: Point-to-point correspondences



between two images are established by first extracting a set
of SIFT-features from each image and subsequently com-
paring their keypoint descriptors. The matching technique
used for the SIFT-features has also been proposed in [12].
The matching is performed by first individually measuring
the Euclidean distance of each feature vector (representing a
certain keypoint) of one image to each feature vector of the
other image. Then the best matching candidate for a spe-
cific keypoint is identified by the interest point in the other
image with the minimum distance. A valid match is found
in the second image, if the distance ratio between the near-
est and the second nearest neighbor (closest/next closest)
is below a certain threshold. This validation is necessary
due to features caused by noise or perspective phenomenons
that match incorrectly in the other image.
Fig. 3 shows an example of matched points between two im-
ages.

Figure 3: Matched feature points visualized ny a
connecting line between images of the same scene

Subpixel Accuracy: The matching result of Lowe’s al-
gorithm is only at pixel accuracy. For position estimation of
multiple cameras extensive experiments have shown that it
is essential to keep all computations at a subppixel accuracy
level.
So far the approximate positions of the corresponding points
are known and can be used as an initial guess about the exact
position. Subpixel precision can then be achieved through
the Affine Lucas Kanade Feature Tracker [16]. This feature
tracker assumes for simplicity reasons an affine transforma-
tion between the viewpoint of both images. This approx-
imation is valid, if the viewpoints of the different cameras
are sufficiently close together.
The basic optimization problem which is solved by the fea-
ture tracker is the following:

min
d,D

ωx
X

x=−ωx

ωy
X

y=−ωy

(I(x+u)− J((D+ I2×2)x+d+u))2 (5)

where I(u), J(u) represent the grey-scale values of the two
images at location u, the vector d = [dx dy ]T is the opti-
cal flow at location u, and the matrix D denotes an affine
deformation matrix characterized by the four coefficients
dxx, dxy, dyx, dyy:

D =

„

dxx dxy

dyx dyy

«

(6)

The objective of affine tracking is then to choose d and D
in a way that minimizes the dissimilarity between feature
windows of size 2ωx + 1 in x and size 2ωy + 1 in y direction
around the point u and v in I and J respectively. v denotes
here the corresponding point of u of image I in image J and

can be expressed in terms of u according to v = u+Du+d.
To handle changes in brightness and contrast a normaliza-
tion is applied to the image patches in the iteration process.
An example result obtained by the subpixel feature track-

Figure 4: Matched feature points before and after
the tracking algorithm (points in the left image were
taken as reference and tracked in the right image)

ing algorithm is shown in Fig. 4. The corresponding feature
points shown in Fig. 3 were used to initialize the algorithm.
It can be seen, that the matching points are shifted to a
slightly different position by the algorithm. The improv-
ment in accuracy is especially obvious in the region marked
with a circle in both images. SIFT-feature matching in the
case of two very close points in the first image resulted in
the same feature in the second image. With this initial guess
the Lucas Kanade feature tracker finds the two different cor-
responding points and herewith it significantly improves the
accuracy of the image matching process.

4. INTRINSIC CALIBRATION
Intrinsic calibration is done independently for each cam-

era. This is reasonable since our cameras do not allow for
varying internal parameters. To estimate the internal pa-
rameters , the C++ implementation of J.-Y. Bouguets Cam-
era Calibration Toolbox [3] in OpenCV [2] is used. It uses
a slightly modified version of Zhang’s method [20].
The calibration algorithm requires to record images of a
known planar calibration target at a few (at least two) dif-
ferent orientations for each camera, where the motion of the
different poses need not to be known. Therefore the target
is freely moved in front of each cameras separately.
As the 2D geometry of the calibration plane is known with
very high precision, the camera observes in each image the
projection of a set of control points with known position in
some fixed world coordinate system. Camera calibration is
achieved by minimizing the mean-squared distance between
measured feature points in the image and their theoretical
position with respect to the camera’s intrinsic and extrin-
sic parameters. If n images of a model plane are taken and
each image gives rise to m correspondening points with the
calibration pattern, then the Maximum Likelihood estimate
(assuming measured points are corrupted by independent
Gaussian noise) can be obtained by minimizing the follow-
ing function with respect to the complete set of calibration
parameters:

ε =

n
X

j=1

m
X

i=1

‖ xj
i − x̂(K, κ1, κ2, ρ1, ρ2,Rj , tj ,Xi) ‖

2 (7)

where x̂(K, κ1, κ2, ρ1, ρ2,Rj , tj , Xi) is the theoretical posi-



tion of the projection of point Xi in the image j includ-
ing distortion effects described by the distortion coefficients
κ1, κ2, ρ1, ρ2. This results in a non-linear optimization prob-
lem; a proper initialization of the calibration parameters is
required. Thus the complete calibration procedure consists
of an initialization stage, where a closed form solution is
computed, followed by a nonlinear refinement based on the
Maximum Likelihood criterion. For a more in detail discus-
sion of both stages the reader is reffered to [20] and [3].

4.1 Control Point Extraction
In the calibration procedure several different perspectives

of a planar model object of known geometry are fed into the
calibration routine. We used the pattern shown in Fig. 6
(right) as our planar model object, since it gives rise to a
large number of stable SIFT-features. It is displayed on a
laptop or any other flat screen of known size, whose surface
can be assumed to be sufficiently flat. A number of different
images of the model plane are then captured by waving the
screen in front of the camera. Some example images of the
plane under different orientations are shown in Fig 5.

Figure 5: Four sample images of the model plane
used for calibration

Projected points from the pattern in the images are then
determined by extracting SIFT-features from each view and
matching them with the features extracted from the calibra-
tion pattern. Subpixel matching was not necessary to obtain
sufficiently accurate results. A matching example between
the calibration pattern and an image of the model plane is
illustrated in Fig. 6.

Figure 6: Example match between calibration pat-
tern (right; from [1]) and imaged calibration plane
(left)

One remark has to be made about the use of SIFT-features
in the field of intrinsic camera calibration: Usually in other
calibration procedures ([3], [19]) a checkboard pattern is

used requiring some user interaction to obtain matching
points (in this cases corners) between the calibration object
and the (different) image(s) of the calibration object. With
the procedure described here, the subset of image points
can be easily detected automatically. Another important
advantage of using a flat screen displaying a known pat-
tern together with extracting SIFT-features is that feature
matching can be performed also with images containing only
a partially visible image of the model plane.

4.2 Experimental Results
In order to evaluate the calibration routine, the algorithm

was applied to a different number of images of the model
plane. The results are shown in Tabel 1. As the number of
pattern points that could be extracted varies per view, only
the total number of points used in the calibration procedure
is given in the second row of the table for each experiment.

# img 20 30 40 50 60
# pnts 2218 3735 5171 6735 8039
fx 818.38 831.29 834.17 836.79 838.16
fy 818.16 830.87 833.64 836.38 837.98
px 305.02 307.19 308.77 307.69 308.51
py 263.87 257.35 255.35 255.32 254.48
κ1 −0.421 −0.432 −0.437 −0.433 −0.436
κ2 0.092 0.108 0.126 0.101 0.111
ρ1 -0.005 -0.003 -0.002 -0.002 -0.002
ρ2 0.004 0.003 0.002 0.003 0.003

Table 1: Results obtained for the intrinsic parame-
ters of a camera

The influence of the number of images used for the cali-
bration with respect to the performance of the optimization
procedure was investigated in [20]. It was found that the
estimation error decreases with an increasing number of im-
ages of the model plane. This effect can also be observed
in Table 1. For 40 or more images the estimated intrinsic
parameters are consistent between the experiments, whereas
in the case of only 20 views the calculated values show a rel-
atively large deviation from the calculated values for more
views. Compared to algorithms using corner features, the
number of views necessary for reliable calibration is higher,
as corner correspondences can be extracted more accurate
than SIFT feature correspondences.
Once the intrinisc parameters are determiend the distortion
in the original images can be corrected as shown in Figue 7.

Figure 7: Original and recified image

5. EXTRINSIC CALIBRATION OF MULTI-
PLE CAMERAS



The main objective of the algorithm presented in this sec-
tion is to recover the 3D positions and poses of a multiple
cameras in a common coordinate system in a fully automatic
manner from the captured images of the different cameras.
The considered situation is illustrated in Fig. 2. As already
metioned in Section 2 we can describe the mapping of Xi to
xj

i according to xj
i ≃ PjXi under the assumption, that ra-

dial/tangential distortion effects have been already removed.
In general a 3D point Xi might only be observed by a sub-
set of cameras, so the corresponding projected point will not
appear in all views.
Since we know the intrinsic parameters of all cameras in the
scene, the locations of the projected points can be given in
normalized image coordinates, denoted in the following with
xn

j
i . The normalized image coordinates xn of a point x are

derived by removing the effects of the internal parameters
from the measured image point. The idea is, that the nor-
malized point xn is the image of the point X with respect to
a camera that has the identity matrix I3×3 as its calibration
matrix K. A normalized point may be computed from the
image measurement via:

xn ≃ K−1x (8)

if the calibration matrix K of the particular camera is known.
The mapping between a point Xi to its projected and nor-
malized point xn

j
i in the j-th image is then described by the

normalized camera matrix Pn
j :

xn
j
i ≃ Pn

jXi (9)

where

Pn
j = K−1

j Pj = K−1

j Kj [Rj |tj ] = [Rj |tj ] (10)

The normalized camera matrix Pn
j only consists of a rota-

tion Rj and a translation tj .
In summary, our goal is to find the appropriate set of nor-
malized camera matrices Pn

j and points Xi such that xn
j
i ≃

Pn
jXi, based on a set of image correspondences, which are

represented by normalized coordinates xn
j
i . The relative

position of the cameras may be computed uniquly up to an
indeterminated overall scale factor.

5.1 Algorithm
There are several strategies for solving the multiple cam-

era calibration problem. The superior method is bundle
adjustment. The process of bundle adjustment is an esti-
mation involving the minimization of the reprojection error.
The reprojection error is defined as the (summed squared)
distances between the theoretical image positions of the pro-
jections of the estimated 3D points X̂i and the measured
image points. Bundle adjustment can handle missing corre-
spondences, which appear, if only a subset of cameras shares
a common view. However, it involves a nonlinear optimiza-
tion process and thus it does not have a direct solution. A
sufficiently good starting point is required.
We use a hierarchical method to obtain an initial guess for
all camera matrices Pn

j and the 3D scene represented by
the points Xi. The method is mainly based on the approach
presented in [5]. It partitions the set of cameras into man-
ageable subgroups that share a common view. A coordinate
system is build for each of these subgroups and then, based
on points and cameras being common to different subsets,
these different coordinate frames are merged in a hierarchi-
cal fashion in order to build a global coordinate system from

the individual overlapping systems.
The main advantage contributed by a hierarchical procedure
is that the error can be distributed evenly over the entire set
of estimated camera matrices. As in [5], we also use image
triplets as the basic building block. The cameras’ positions
in such a basic unit and the structure of the scene observed
by three cameras can be computed automatically by cal-
culating the associated trifocal tensor from point-to-point
correspondences across the three views. Then the triplets
are registered into sub-groups, followed by merging these
subsets and thus building the entire group. This situation
is illustrated in Fig. 8.
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triplets

T1
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Figure 8: Camera positions and the structure of the
scene are computed by registering the basic building
block (triplets of cameras) into subgroups

The first task is to segment the set of cameras into appropri-
ate subgroups and those subsets into triplets. Consequently
neighboring cameras with sufficient view overlaps have to
be determined. Requirements are that cameras building
a triplet share a common view and a sufficient number of
point correspondences over the three images are available
in order to compute the trifocal tensor reliably. Therefore
SIFT-feature points are extracted from each image. Then
the number of correspondences in each possible triplet com-
bination is computed through a matching procedure. Only
triplets with sufficient corresponding points are kept.
Next the triplets need to be clustered into subgoups. The
triplets in a certain subgroup and also different sub-groups
need to overlap by two cameras to enable stitching them
together into a single coordinate frame. Therefore combina-
tions of the above determined triplets are tested.
In the next stage the cameras in each triplet have to be
calibrated extrinsically. Robust ways of computing the tri-
focal tensor and extracting the according camera matrices
based on corresponding image points have been extensively
studied in [8]. Point correspondences are established by rep-
resenting each image by its SIFT-feature points. One of the
three images of a triple is arbitrarily selected to be the refer-
ence image. Two-view point correspondences between this
reference image and each of the other two images are then
determined by SIFT-matching. These correspondences are
refined by using them as initializations for the Affine Lucas
Kanade feature tracker. The required three-view correspon-
dences are derived by joining the two-view match sets.
Features which arise from moving objects and are therefore
not appropriate for the reconstruction task (as the cameras
are not synchronized) can be simply eliminated by observing
the location of each feature point over time and eliminating



all temporally unstable SIFT features.
However, if the scene of interest is untextured or contains
only sparse textures, then too few point features may be
extracted from the acquired images, which may lead to un-
reliable results in the trifocal tensor estimation. Thus, the
observed 3D scene needs to be sufficiently textured in order
to ascertain detection and tracking of enough image features.

To proceed from triplets to a description of the complete
set of cameras, it is necessary to register all triplets into the
same coordinate frame. This is done, as already mentioned,
in a hierarchical manner as proposed in [5]. Registration of
triplets and sub-groups is achieved by computing a homog-
raphy of 3-space between the different metric structures.
The considered situation is illustrated in Fig 9. The objec-
tive is hereby to obtain a common set of 3D points and a
normalized camera matrix for each view, such that the re-
projection error is minimized.

Figure 9: Registration of triplets 2 and 3 in the
metric frame of triplet 1

In the following only the registration of two triplets is dis-
cussed. All registration problems in the algorithm are anal-
ogously solved. Specifically a pair of triplets is considered,
where the triplets have exactly two cameras in common. In
general different overlaps are possible, e.g. one or zero com-
mon cameras. As the implementation in this work specifi-
cally forces the triplets in a subgroup, and also the different
subgroups, to have two cameras in common, only this case is
discussed here. For a detailed description of the other cases
and an evaluation of the different registration methods, the
reader is referred to [5].
Given some 3D points common in both sets and the homoge-
neous representation of these points by Xi in the first frame
and X′

i in the second frame (the inhomogeneous represen-
tation are denoted with X̄i, X̄′

i in the following), the point
representations in the different metric frames are related by
a 3-space homography H according to:

Xi = HX′

i (11)

Equivalently Pn
j = P′

n
j
H−1 holds for the corresponding

normalized projection matrices of the cameras common to
both triplets. As both triplets are determined up to a metric
ambiguity, the homography between the two metric frames
can be described by a metric transformation:

H =

0

B

B

@

σr11 σr12 σr13 t1
σr21 σr22 σr23 t2
σr31 σr32 σr33 t3

0 0 0 1

1

C

C

A

(12)

with rij being the coefficients of a rotation matrix R and ti

being the coefficients of a translation vector t. σ identifies
the relative scale between the structure. Therefore the trans-
formation between the two different metric frames counts 7
unknowns. Two stages are used to derive accurate estimates
for those parameters: first a closed-form solution is obtained,

which is then further refined in a nonlinear stage.
In order to compute a direct solution for the 7 parameters,
the first step is to estimate the relative scale σ. Therefore
the centroid of the each structure (consisting of the common
3D points (in inhomogeneous coordinates) X̄i, X̄′

i respec-
tively) denoted with inhomogeneous coordinates M̄, M̄′ is
computed. Then the distance of each point in the structure
to its centroid is calculated. The relative scale between the
two structures is determined by the quotient of the mean
distances:

σ =
1

n

Pn

i=1
‖ X̄i − M̄ ‖

1

n

Pn

i=1
‖ X̄′

i − M̄′ ‖
(13)

where ‖ · ‖ denotes the L2-norm and n is the number of
common points in both triplets. Thus the second structure
may be rescaled according to:

X̄′
si = σX̄′

i (14)

so that Equation 11 becomes

Xi = HsX
′

si (15)

where

Hs =

„

R t
01×3 1

«

(16)

In order to obtain an initial estimate for the coefficients of R
and t the squared distance between these two structures is
minimized with respect to the coefficients of Hs using linear
algebraic methods:

min
R,t

X

i

d(Xi,HsX
′

si)
2 (17)

where d(x,y) denotes the Euclidean distance between the
inhomogeneous points corresponding to x and y.
Finally this is followed by a nonlinear minimization stage in
order to refine the above derived initial values. This nonlin-
ear estimation minimizes the reprojection error to the orig-
inal measured and normalized image points with respect to
all parameters of H.

min
σ,R,t

X

ij

d
2(Pn

jHX′

i,xn
j
i ) + d

2(P′

n

j
H−1Xi, xn

j
i ) (18)

d(x,y) is here the Euclidean image distance between the
inhomogeneous points corresponding to x and y. This non-
linear minimization is solved using a standard techniques,
the Levenberg-Marquardt algorithm.
By registering all triplets hierarchically as described above
in one common coordinate frame an initial guess for the
observed 3D structure (represented by 3D points) and all
normalized camera matrices in the entire set of cameras is
obtained. Finally a Maximum Likelihood estimate (assum-
ing independent Gaussian noise in the point measurements)
of the entire set of camera positions and the 3D-structure is
computed via bundle adjustment:

min
P̂

j
n

,X̂i

X

ij

d
2(P̂j

nX̂i,xn
j
i ) (19)

where d(x,y) denotes here the Euclidean image distance be-
tween the homogeneous points x and y (for 3D points that
are visible in the specific camera image).
Each normalized camera matrix is parameterized by 6 en-
tries, 3 representing the rotation matrix and 3 representing



Figure 10: Some images of the observed office scene
taken from the different viewpoints of the cameras

the translation vector. The dimension of the minimization
problem adds then up to a total number of 6(M −1) param-
eters for the camera matrices, plus a set of 3L parameters
for the coordinates of the L reconstructed 3D points.

5.2 Experimental Results
The extrinsic camera calibration algorithm has been im-

plemented for the case of 11 cameras; the size of the sub-
groups was chosen to be five cameras. Triplets in sub-
groups and different subgroups have two cameras in com-
mon. Fig. 10 shows some of the images taken from the dif-
ferent viewpoints of the cameras. It should be mentioned,
that the change of viewpoint between the different locations
of the cameras is relatively small. This is due to the match-
ing algorithm, which requires a change of viewpoint less than
15◦ between the images in order to ensure reliable matching
and a sufficient number of corresponding points. A result-
ing configuration for one subgroup of 5 cameras is shown in
Fig. 11 (a),(b) from two different viewpoints. Camera posi-
tions are marked with yellow pyramids, reconstructed scene
points with blue dots. In Fig. 11 (c) the reprojection er-
ror is illustrated. Reprojected points are marked with blue
crosses, measured and normalized points with red circles.
As can be seen the estimation is highly accurate.
The resulting camera positions and scene reconstruction for
all 11 cameras are shown in Fig. 12 from two different per-
spectives together with the reprojection error for one es-
timated cameras. The distance between the reprojected
points and the measured image points is very small, there-
fore the overall estimation is highly accurate, again.

Discussion: In the given examples the implementation per-
forms very well. However experiments with different real
data sets have shown that sporadically the accuracy of the
algorithm can be affected significantly, consequently the es-
timated cameras and scene point configuration do not repre-
sent the actual scene. Thorough analysis showed that mis-
estimations were caused by inaccurately estimated triplets.
If the camera positions and/or the reconstructed 3D points
of one triplet are estimated inaccurately, the homography
estimation to register these triplet in a sub-group fails as
well. As a result the whole sub-group configuration is deter-
mined incorrectly leading to an initial guess for the entire
group too far away from the actual value. As the optimiza-
tion problem of the final bundle adjustment is of very high

dimension, a poor initial guess commonly results in the non-
linear optimization to fail completely, i.e. not to converge
at all or to converge to a suboptimal solution.
The sources of the failure in the triplet estimation may
be that corresponding image points are not extracted ac-
curately enough, due to the performance limits of the fea-
ture extraction and matching algorithm and/or the feature
tracker. Those algorithms are only partly invariant to per-
spective transformations or even assume affine transforma-
tion between the images. Another cause of failure arises
from the fact, that the intrinsic camera parameters can also
only be estimated with a certain accuracy. This may have
also an impact on the noise level in the corresponding nor-
malized points.

6. POSE ESTMATION OF DISPLAYS
So far only the cameras have been calculated. The task is

now to estimate the pose of the flat-panel display in the 3D
scene. The pose of an object is defined as its position and
orientation in a certain coordinate system.
The following assumptions are made:

• The flat-panel displays are active, i.e. they may be
used to display some known pattern. Feature points
can be extracted from this pattern, whose relative ge-
ometry on the display is known.

• The display is at least partially visible in one camera
and a sufficient number of feature points of the dis-
played pattern can be detected in this camera image.

• All cameras in the scene are extrinsicly and intrinsicly
calibrated.

The algorithm requires the screen only to be visible partly
in one of the cameras. Therefore if the screen is visible in
more than one camera, the screen’s position is calculated
with respect to the camera from which it can be detected
’best’ (’best’ is defined later). As the relative position of all
N cameras to each other is already known up to a global
scale factor, the pose of the specific flat screen with respect
to all other cameras is then also determined up to a scale
factor. However, if at least two points on a display can be
detected in two different cameras, it is possible to determine
the overall scale factor of the whole structure, as the absolute
distance of those two points on the screen in pixels is known.

6.1 Algorithm
The considered situation is illustrated in Fig. 13. A known

pattern is displayed on the flat-panel screen. Feature points
are extracted from the known pattern and the image cap-
tured by the camera, and then matched. Thus point corre-
spondences between object points Xi, whose positions in a
certain coordinate frame attached to the object are known,
and points xi in the image can be established.
The relation between the homogeneous coordinates of a 3D
point in the object referenece frame attached to the grid
(Fig. 13), denoted with XO

i , and its projection in the image
is described by Equation 1, 2 (assuming distortion effects
have been removed from the image measurements):
xi ≃ PXO

i = K[R|t]XO
i . t denotes here a translation vector

and R = [r1 r2 r3] is a 3 × 3 rotation matrix, where r1, r2

and r3 are 3× 1 vectors representing the rotation axes. The
objective of the presented algorithm is now to estimate R
and t that define the relative position of the active planar
screen, i.e. the pattern, with respect to the camera, given
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Figure 11: Two different views of the reconstructed 3D scene points and camera positions for a subgroup of
five cameras (a), (b) and the reprojection error for one of the five camera images (c).

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−202

−2

−1

0

1

2

3

4

5

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−1

0

1

2

−2

0

2

4

6

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
reprojected points
measured image points

(a) (b) (c)

Figure 12: Two different views of the reconstructed 3D scene points and camera positions for the entire
group of 11 cameras (a), (b) and the reprojection error for one of the 11 camera images (c).
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the position of feature points on the display, above denoted
with XO

i and their measured projections onto the image xni.
The projected coordinates xi can now be normalized with
respect to the intrinsic parameters, assumed that those are
known. In the following the normalized image points are de-
noted with xni. According to Equation 9 and 10, the point
XO

i is then projected onto xn by:

xni ≃= [R t]XO
i (20)

In practice Equation 20 will not be exactly satisfied due to
noisy image point measurements. Assuming that the ex-
tracted image points are corrupted by additive independent
white Gaussian noise, the Maximum Likelihood estimate can

be derived by minimizing the reprojection error

ε =
n

X

i=1

‖ xni − x̂ni(R, t,XO
i ) ‖2 (21)

with respect to R and t. x̂ni(R, t, XO
i ) denotes here the

theoretical position of the projection of a point XO
i accord-

ing to Equation 20.
Obviously this is a non-linear minimization problem, which
must be solved iteratively. A standard techniques is the
Levenberg-Marquardt algorithm. An approximate pose, which
is sufficiently close to the actual position, must be provided
to initiate the iteration process.
An initialization is found by a closed-form solution. Since
all feature points are positioned on a plane, a homography
between the display and the image plane may be estimated.
Without loss of generality it is assumed, that the display lies
in the plane Z=0 of the object reference frame (see Fig. 13).
Then Equation 20 becomes:

xni ≃ [R t]XO
i = [r1 r2 r3 t]
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where H = [r1 r2 t] First this 3 × 3 homography H is es-
timated. Then in a second step a rotation matrix R and a
translation t are extracted from H to obtain an initial guess
on the pose parameters.
In general such a 3 × 3 homography has 8 degrees of free-
dom and can be estimated with linear methods up to a scale



factor by using Equation 22, if four point-to-point corre-
spondences between the displayed pattern and the captured
image can be found. However, if more than four feature
points are used, insensitivity to measurement errors and im-
age noise is added and the initial guess may be closer to the
actual parameters, which finally may give a more accurate
result. Therefore the ’best’ camera in a set to pick for the
pose estimation of a certain screen, is the camera that can
establish the most corresponding points between the known
pattern on the display and its image.

6.2 Experimental Results
The algorithm described above has been tested in a real

setup. In a first step the point correspondences between
the known pattern displayed and the camera image are es-
tablished. Fig. 14 illustrates the extracted matching points,
on the top the camera image is shown, on the bottem the
displayed pattern. With these correspondences the position

Figure 14: Point correspondences between the dis-
played pattern and the camera image

and pose of the screen relative to the camera is computed.
The result of the reconstruction algorithm is illustrated in
Fig. 15.
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7. CONCLUSION
In this paper we have presented a flexible and easy way

to calibrate multiple cameras in a distributed platform of
GPCs. Our method needs minimal user intervention. Hence
the proposed method can be used in a variety of places rang-
ing from single desktop cameras to multi-camera lab setups.
We also show how to determine the position of active flat-
panel dispalys in the scene. All stages of the calibration al-
gorithms have been implemented in C++ and experimental
results on real data showed that the presented methods work
very well. As the change in viewpoint between the different
cameras is restricted, future work is needed to improve the

automatic extraction of point correspondences between im-
ages. This will also result in a more robust computation of
triplets, leading to an overall robuster estimation of position
and pose in the extrinsic calibration routine.
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