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Abstract. We construct a complete timelike maximal geodesic ("line") in a timelike
geodesically complete spacetime M containing a compact acausal spacelike hypersur-
face S which lies in the past of  some S-ray. An S-ray is a future complete geodesic
starting on S which maximizes Lorentzian distance from S to any of its points. If
the timelike convergence condition (strong energy condition) holds, a line exists only
if M is static, i.e. it splits geometrically as space x time. So timelike completeness
must fail for a nonstatic spacetime with strong energy condition which contains a
"closed universe" S with the above properties.

1. Introduction

Let M be a timelike geodesically complete time-oriented Lorentzian manifold
containing a compact spacelike acausal hypersurface S. A conjecture stated by R.
Bartnik [B] says: I f  M satisfies the timelike convergence condition (strong energy
condition), then M splits isometrically as space x time. (In fact, Bartnik assumes S to
be a Cauchy hypersurface.) By the Lorentzian splitting theorem [N], this statement is
true if we can construct a timelike line, i.e. an inextendible maximal timelike geodesic.
However,  without the timelike convergence condition, such a line need not exist (cf.
[EG]). It is the aim of the present paper to construct a timelike line if S lies in the
past of some S-ray, i.e. a future inextendible causal curve 3' starting on S such that
3' I [0, t] is a curve of maximal length between S and 3'(t) for all t > 0.

The main results are stated and proved in Sect. 5; the ingredients are given in
Sects. 2-4.  For standard facts in Lorentzian geometry and for standard notation (such
as I +, J+ ,  D +, H +) we refer to [HE, BE].
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2. Limi t  Curves

Let (M, g) be a space-time, i.e. a time-oriented Lorentzian manifold. Additionally, we
choose a complete Riemannian metric h on M.  All nonspacelike curves are rectifiable
and (with the possible exception of certain limit curves which inherit a limit parameter)
we will always parameterize them by arc length with respect to h. Clearly, a causal
curve 7 is (future and past) inextendible if and only if it is parametrized on ( - e c ,  oc).

Limit Curve Lemma for Inextendible Nonspaeelike Curves. Let 7~ : ( -oo ,  co) --+
M be a sequence of  inextendible nonspacelike curves (parametrized by arc length in
h). Suppose that p C M is an accumulation point of  the sequence (%(0)).  Then there
exists an inextendible nonspacelike curve 7 : ( - 0 %  oo) -+ M such that 7(0) = p and
a subsequence (Tin) which converges uniformly (with respect to h) to 7 on compact
subsets o fR .  "y is called a limit curve of  (',/n ).

Comment. The proof  of  this lemma is an application of Arzela 's  theorem and is
essentially contained in the proof  of  Proposition 2.18 in [BE]. One advantage of the
parametrization with respect to the background metric h is that one can establish
the upper semicontinuity of the Lorentzian length functional without invoking the
assumption of strong causality:

Proposit ion.  The Lorentzian arc length functional is upper semicontinuous with
respect to the topology of  uniform convergence on compact subsets, i.e. if a sequence
~ : [a, b] ~ M of nonspacelike curves converges uniformly to the nonspacelike cwwe

: [a, b] -~ M ,  then
L(7 ) >_ lim sup L('y~).

~ 0 0

Comment. The idea behind circumventing the strong causality assumption is this:
One can partition [a,b] as a = t o < t 1 < . . -  < t~ = b so that each subsegment
7 I [ti-l , t~] is contained in a normal neighborhood N i of  M .  (Ni,g) ,  viewed
as a space-time in its own right, is strongly causal. By the uniform convergence,
% [ [t~_l,t ~] C N i for all sufficiently large n. Now apply the known upper
semicontinuity of the Lorentzian arc length functional on the strongly causal space-
time (Ni, 9) to conclude,

L(7 I [ti-1,  ti]) _> lim sup L('y~ I [ti-1, tiJ)-
r ~ - - 4 0 0

Now sum over i to get the desired result.
The limit curve lemma was discussed for inextendible causal curves. There is

an obvious version for future (respectively past) inextendible causal curves
7n : [0, oc) --, M.

Let d denote the Lorentzian distance function, i.e.

d(p, q) = sup{L(#); # C C O ,  q)} _< oc,

where C(p,  q) denotes the set of  future directed causal curves from p to q. The
Lorentzian distance function is known to be lower semicontinuons. A sequence
%~ : [a,~, b,~J --~ M of causal curves is called limit maximizing if

L(~/~) > d(~/n(an), 7n(bn)) - e~
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for some sequence s~ --+ 0. Suppose that ~/n converges uniformly to 3' : [a, b] ~ M on

some subinterval [a, b] c N [an'  bn]" Since L is upper and d lower semicontinuous,
Tb

there is a sequence 5n ~ 0 such that

L("/n) - 6 .  < L("/) <_ d('),(a), 3'(b))

<_ d(3'~(a), "In(b)) + 5~ < L(%~) + s~ + 5n,

thus
lim L(q'n) = L('),) = d("/(a), ~,(b)) = lim d(',/,~ (a), ~& (b) )

and in particular, 3, is maximal. (Beem and Ehrlich introduced the notion of limit
maximizing curves in the strongly causal setting; cf. [BE, Chap. 7].)

3. Rays, Co-Rays and Busemann Function

A ray in M is a maximal future inextendible causal geodesic ~ : [0, co) -+ M.  Rays
often arise from limit constructions:

Lemma 1. Let z~ be a sequence in M with z n --+ z. Let Pn C I+(z~) with finite
d(z~,pn).  Let "7,~ : [0, a,~] ~ M be a limit maximizing sequence of  causal curves
with ~n(O) = z~ and ~ ( a n )  = Pn" Let ~n : [0, oo) --~ M be any future inextendible
extension of  "),~. Suppose either

(a) Pn --~ oc, i.e. no subsequence is convergent,
o r

(b) d(z~,p~)  --~ oo.

Then any limit curve ? : [0, oo) ~ M o f  the sequence ~/~ is a ray starting at z.

Proof. All we have to show is that a,~ --~ ~ .  Suppose not. By passing to a sub-
sequence, we may assume a n ~ a < e~. Since 3'~ are parametrized by arc length for
h, all -y,~ are contained in a compact subset K C M,  e.g. the closed h-ball of  radius
2 a around z. This is clearly impossible in Case (a). In Case (b), let T be a timelike
unit vector field [i.e. g(T, T)  = - 1 ]  on M and ~- = g(., T). Consider the Riemannian
metric

h 0 = 9 + 2 T |  = 9  • + T | ~-.

Note that for any causal curve segment o,

L(~)  = Lg(a) < Lho(~r),

where Lho denotes the length with respect to h 0. By assumption, L(~/n ) > d(zn ,pn ) -
s~ --~ co, hence Lho(Tn ) --+ oo. Since K is compact, there exists )~ > 0 such that
h > A �9 h 0 on T M  I K .  Therefore a~ = Lh(~'n) ~ c~ which is a contradiction.

S-Rays. Let ",/: [0, oo) ~ M be a ray. Let S C M be a subset containing 3,(0) such
that -,/maximizes distance to S, i.e. for any t E [0, e e l

L(7 [ [0, t]) = d(S, 7(t)),
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where d(S, ~) = sup{d(q, x); q E S}. Then 7 is called an S-ray: E.g., any ray 9' is
a {ff(0)}-ray. Observe that for any x E 1-(3')  N J+(S)  and all sufficiently large t,

d(S, x) + d(x, ?'(t)) _< d(,,/(0), 7(t)) < oo. ( ,)

Co-Rays. Let ~ : [0, oo) ~ M be a future inextendible S-ray and let z E
I - ( 7 )  A J+(S). Let z .  ~ z in J+(S) and put p~ = 7(r~) for some sequence
r~ --~ ec. Then z~ E I - ( p ~ )  for sufficiently large n, and d(z~,p~) < eo by (,).
Assume either

(a) p~ ~ oo o1" (b) d(z~,pn ) -+ oo.

[Note that (b) holds if 7 has infinite length.] Consider a limit maximizing sequence
#n of  causal curves from zn to p~. By Lemma 1, any limit curve p : [0, oc) -~ M
of the #~ is a ray starting at z. Such a ray is called a co-ray of 3'- Note that # is
contained in the closure of  1 - (7) .  (In fact, if p(t) E 01-(7) ,  then p I [t, oc) is a
future inextendible null geodesic generator of  01- (7 ) . )

Busemann Functions. Let ff : [0, oo) --~ M be a timelike S-ray and b : I - ( i f )
[ - c o ,  co) the associated Busemann function, namely b(z) ~ tHrobs(x), where

b,(x) = d(',/(0), ",/(t)) - d(x, ~/(t)).

Recall that be(x) decreases monotonely with t, since for s > t we have

d(x,.y(~)) > d(z, ~(t)) + d(~(t),.y(s)),
d(7(0), 7(s)) = d(7(0), if(t)) + d(ff(t), 7(8)).

Further, for x E I - ( 7 )  N J+(S),  we have

b(x) > d(S, x) >_ O,

since (*) shows bt(cc) >_> d(S, x) for any t. Recall that d is lower semicontinuous,
hence b t is upper semicontinuous, and since b is the decreasing limit of  the b e, it is
also upper semicontinuous.

L e m m a  2. Let 3' : [0, cx~) --~ M be a timelike S-ray and # : [0, oc) ---, M a co-ray
with #(0) = z E I - ( 7 )  N J+(S). Then we have for any s > 0 and any x E I - ( # ( s ) )

b(x) < b(z) + d(z, #(s)).

In particular, if tz is a null ray, the1~ b(x) < b(z) for any x E I -  (tz).

Proof. Let # = lira f~n where #,~ is a limit maximizing sequence from z n to 7(r~).
L e t b  n : = b ~  .Then

bn(z ) = d(~(O), 3/(rn)) - d(x, 7(rn)).



                    

Since/z,~(s) ~ /~ ( s ) ,  we have x E I-(tz~(s)) and

d(x, "y(r~)) > d(x, #n(S)) + d(p,~(s), 7(r~))

which shows
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b~(x) <_ -d(x ,  p~(s)) + b~(l~n(S)) <_ bn(#n(s)).

For two real sequences (a~), (b~) we will write a N ~ b,~ if a~ - b~ is converging to
zero. Since #~ is maximal up to an error e,~, we have

b,~(p,~(s)) - b~(zn) = d(zn, 7(r~)) - d(tt,~(s), 7(r~))
d(z,,  ~(s ) ) .

Thus
bn(x) <_ b,~(#n(s)) ~ b~(zn) + d(z n, tzn(s)).

Now for any y C I+(z) fq I 7 ( 7 )  we have y C I+(z~) for large n and therefore

d(z~, y) + d(y, ~/(rn)) < d(zn, ~/(r~)),

which shows d(y, 7(rn)) < d(z~, 7(rn)), hence b~(y) > bn(zn). So we obtain

b~(x) <_ b,~(y) + d(z~, #~(s)) + e~.

Taking the limit as n ~ oo, we get the result; note that d(z,~, I%(s)) ~ d(z, #(s))
since #~ I [0, s] is limit maximizing, and use the upper semicontinuity of b.

Comment. Lemma 2 replaces the well known fact in Riemannian geometry that the
Busemann function grows with unit speed (with respect to arc length) along co-rays.
This still holds in Lorentzian geometry provided that d is continuous and # timelike
(cf. [E, p. 480]).

4. Spacelike Hypersurfaces

Definition. A subset S c M is called a spacelike hypersurface if for each p C S
there is a neighborhood U of p in M such that S N U is acausal and edgeless in U.

Comment. A spacelike hypersurface is necessarily an embedded topological submani-
fold of M with codimension one. A smooth hypersurface with timelike normal vector
is a spacelike hypersurface in the sense of our definition.

L e m m a  3. Let S C M be an acausal spacelike hypersurface. Then

I+(S) = J+(S) \  S.

Consequently, any S-ray is timelike.

Proof. Clearly, I+(S) C J+(S) \ S. So let p E J+(S) \ S and let # be any causal
past directed curve from p to S. Let q c S be the past end point of/z.  There exists a
neighborhood U of q and a coordinate chart x = (x0 , . . .  ,Xd) : U ---, I d+I such that
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O/Ox o is timelike, and x - l ( S  M U) is a graph over I d. Let q~ E # A U, q~ # q, and
replace the segment of  # between q~ and q by the x0-parameter line through q~ which
also meets S. Thus q~ E I+(S), hence p ~ I+(S). This shows that I+(S) = J+(S) \S .
If  3' is an g-ray, it cannot stay in S since S is locally acausal. So 7(t) E I+(S) for
some t > 0 which implies that d(~/(0), "/(t)) > 0. Hence 7 is timelike.

L e m m a  4. Let S c M be a compact acausal spacelike hypersurface. Then there
exists a timelike g-ray in D+(S). I f  H+(S) r 0, we find such a ray in I - ( p )  M D+(S)
for any p C H+(S).
Proof. If  H + ( S )  ~ (~, this is true by the "Main Lemma" in [G2]. So it remains
to consider the (easier) case where H+(S) = 0. Let p E S and # : [0, ec) -+ M
be a future inextendible timelike geodesic with #(0) = p. Since H+(S) = 0, we
have #((0, ec)) C D+(S). Let r n --~ ec and Pn = #(rn)" Then Pn --+ ec since
Pra ~ P E D+(S) (for some subsequence (Pro) of  (pn)) would be a violation of  strong
causality. By compactness of  S, there are maximal curves Yn from S to Pn E D+(S).
Let z n = 7n(0) E S. We may assume that z~ ---+ z E S. By Lemma l, the ~'r~
accumulate to an S-ray % By Lemma 3, 7 is timelike.

L e m m a  5. Assume M is future timelike geodesically complete. Let S be a compact
acausal spacelike hypersurface in M. Then each X-ray ~/ is contained in D+(S) and
any co-ray/3 of. y is timelike.
Proof. If q, is not contained in D+(S), it will leave D+(S) at some point o = 7(t) E
H+(S). By Lemma 4, there exists a timelike S-ray of  infinite length (by completeness)
in I - (o)  (~ D+(S). Therefore, d(S, o) = oc which contradicts the fact that 7 is an
X-ray.

Now let/3 be a co-ray of  7 with/3(0) = q E J+(S). Since S is acausal, we have
/3(t) E J+(S) \ S = I+(S) (cf. Lemma 3) for any t > 0. Choose a sequence tn ~ ec
and put p~ =/3( tn) .  We will show that

d(S,p~) --~ oo. (*)
By perturbing the sequence (p~) slightly to the past and using the lower semi-
continuity of  d, one can easily construct a sequence (qn) C I-('7) n J+(S) with
qn E I - ( p  n) for all n, such that d(S, qn) ~ ec. This implies that/3 cannot be null:
Otherwise, for the Busemann function/3 of  ~, we would get b(qn ) << b(q) < oc (cf.
Lemma 2), but on the other hand, b(qn) >_ d(S, qn) -+ oc (cf. Sect. 3), a contradiction.

In order to show (*), we may assume d(S, pn) < ec for all n. Let (Tn : [0, a n] -+ M
be a limit maximizing sequence of  curves from S to Pn, i.e. L(~rn) > d(S,p n) - e n
with e n -+ 0. Let (Try(0) = zr~ E S. By compactness, we may assume z n ~ z E S.

Case 1. Pn ~ OC. Then by Lemma 1, a n --~ oc, and cr n accumulate to an X-ray
(7 : [0, oc) --~ M.  By Lemma 3, (7 is timelike and has infinite length (by completeness).
So we have for any a > 0 and for large enough n,

d(S, Pn) >- L(~rn I [0, a~]) > L(~r~ I [0, a]) --+ L((7 I [0, a])

(cf. Sect. 2). Since L(a  ] [0, a]) ---+ oc as a ---+ oc, we get (*).

Case 2. Pn -+ P E M. The coray/3 is contained in D+(S) ,  thus p E D+(S).  Since
strong causality is violated at p, it cannot lie in D+(S) ,  hence p E H+(S). Applying
Lemma 4 again gives an S-ray # C I - (p)  f) D+(S) of infinite length. In particular,
we have p E I+(#(t)) for any t > 0 and therefore Pn E I+(#(t)) for large n. Hence
d( S, Pn) -+ oc.
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5. The Main Theorem

Recall that a line is a (future and past) inextendible geodesic "7 such that any compact
segment 3' I [a, b] is maximal, i.e. L(~/I [a, b]) = d(~/(a), ~(b)).

Theorem A. Let M be a spacetime which is timelike geodesically complete and
contains a compact acausal spacelike hypersurface S. Suppose that there exists an
S-ray ~ such that S C I-(~/). Then M contains a timelike line.

Pro@ Let /3  : [0, oc) --~ M be a past directed S-ray in D - ( S )  which exists by the
time dual of Lemma 4. Since/3(0) C S c I - ( ~ ) ,  we have/3(s)  E I - (~, ( t ) )  for all s
and sufficiently large t. Pick monotone sequences tn, s~ --+ oc and set q~ = ~y(t~)
and Pn =/3(Sn)" Let #n : [an, bn] --~ M be a limit maximizing causal curves from
p~ to q~. Since p~ E D - ( S )  and q~ C J+(S), the curve #n must intersect S, say
at zn, and we choose the parameter so that z n = #~(0). By compactness, we may
assume that z~ --~ z E S. Let # be a limit curve of complete extensions of the #~ ' s
(cf. Sect. 2). We have to show that bn --+ oe, a~ --~ - e c  (then # is a line) and that
# is timelike.

Note that #+ = # I [0, ec) is a co-ray of 3 ~, and in particular, b,~ ~ ec (cf. proof
of Lemma 1). Thus #+ is a timelike ray (cf. Lemma 5), and moreover, there exists
0 < 6 < l iminf lanl  such that # [ [ -5 ,  oe) is maximizing, hence also a timelike ray.

In order to see that # -  : [0, oc) -+ M,  # - ( t )  = # ( - t )  is a (past directed) co-ray
of /3  we have to show that z ~ I+(/3). But since #n I [ -5 ,  0] --+ # I [ -5 ,  0] which
is a timelike geodesic, we have #,j(s) E I - ( z )  for sufficiently large n and suitable
s c [ -5 ,  0], hence z E I+(/3(s~)) C I+(/3). Hence # -  is a co-ray of /3, and in
particular, a~ --~ - o c .  Thus # is a line, and since #+ is timelike, # must be timelike.

Remark. The proof shows that the assumption of timelike geodesic completeness can
be replaced by the assumptions that J+(S) is future timelike geodesically complete
and J - ( S )  is strongly causal.

As a consequence of Theorem A and the Lorentzian splitting theorem [N], we get
immediately the following rigidity result:

Theorem B. Let M be a spacetime which contains a compact acausal spacelike
hypersurface S, and which satisfies the timelike convergence condition, i.e. Ric (v, v) _>
0 for all timelike vectors v E T M .  If  M is timelike geodesically complete and
there exists an S-ray ~/ such that S C I-(~/) then M splits, i.e. M is isometric to
(IR x V, - d r  2 | h), where (V, h) is a compact Riemannian manifold.

Remark. There are numerous corollaries one can point out. The S-ray condition is
implied by any of the following assumptions:

(a) For every future inextendibIe timelike geodesic "/ in J+(S), S is contained in
I -  (~/).

(b) For every future inextendible timelike geodesic ~/ in J+(S), I - ( ' ~ )  = M.
(c) There exists t > 0 such that S C I - ( z )  for any z E I+(S) with d(S,x)  >_ t.

Conditions (a) and (b) both weaken the "no observer horizon" condition of Theorem
1.1 in [G1] (which, in addition, requires S to be Cauchy). Conditions (b) and (c)
actually imply that S is a future Cauchy surface, i.e. J+(S) = D+(S) or equivalently
H + ( S )  = 9.
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