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COHOMOLOGY OF BIQUOTIENTS 

J.-H. Eschenburg 

Biquotients are non-homogeneous quotient 
spaces of Lie groups. Using the Serre 
spectral sequence and the method of Borel, 
we compute the cohomology algebra of these 
spaces in cases where the Lie group cohomo- 
logy is not too complicated. Among these 
are the biquotients which are known to 
carry a metric of positive curvature. 

Introduction 

Biquotients are natural generalisations of homogeneous 

spaces. They are the source of many interesting examples in 

Riemannian geometry, among them compact spaces of positive 

curvature (of,[El, E2, E3]). Extending the method of A.Borel 

[B], we show how to compute the cohomology ring of a certain 

class of compact biquotients. In particular, we discuss a 

number of examples, e.g. the non-homogeneous analogues of 

the Wallach sapces. We are indebted to M.Kreck for many 

hints and discussion. 
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I. Biuuotients 

A biquotient is the base space of a homogeneous 

principal bundle. More precisely, let P be a compact 

homogeneous manifold and L a compact Lie group acting 

transitively on P . Let U c L be a closed subgroup which 

acts freely, i.e. if u E U has a fixed point ( u.p = p 

for some p E P ) , then u is the unit element 1 E U 

Consequently, the orbit space M = P/U is a manifold and P 

-> M a principal bundle with structure group U . 

Consider the particular case where P = G is a compact 

Lie group and U a closed freely acting subgroup of L := 

G :~ = G x G (which acts on P = G by (gl,g=).g = g~gg:~:--~ ). 

This example is universal: We can always represent P as 

left coset space P = L/K and get M = U\L/K . Putting G ̂  

= L and U ̂  = U x K c (G^) ~ , we obtain M = G^/U ^ as in 

the special case. 

In the following, we consider always this case P = G , 

L = G 2 . The group U c G ~ acts freely if the components 

ul, u= are not conjugate in G for any (u~,u=) E U\{I} 

The simplest examples are of course the homogeneous spaces 

where U c (1)xG (In this case, we may also choose L = G 

acting on P = G by right translations.) We give some more 

interesting examples: 

EXAMPLES 

I. Let G = Sp(2) and 

U = {(A(q),B(q)); q E S ~ c H} 
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2. 

3. 

with 
0) B(q) = (~ A(q) = (~ q , 1 ) 

0 

U acts freely since B(g) has a fixed vector while 

A(q) has not; so they are non-conjugate. This example 

has been discovered by Gromoll and Meyer [GM]; they 

showed that M = G/U is an exotic 7-sphere. 

Let G = U(3) and U = U~ x U:z where 

U~ = {D(a,a,a) ; a E S ~,} , 

U;,~ = {D(b,c,l) ; b,c E S ~} , 

where D(a~ ..... a~:) denotes the diagonal matrix with 

entries al ..... a~. This group acts freely since 

complex diagonal matrices are conjugate only if their 

entries agree up to permutation. 

Let G = U(3) and 

U' = {(D(aX~,aX~,aXm),(D(aY',aY=,aY3)); a E S ~} 

where x:~, y~ are integers without a common divisor. 

If the determinant of the components is the same, i.e. 

if E x~ = E y• , then SU(3) c U(3) is invariant 

under U' The action is free iff xi - YT(1) have no 

common divisor for i = 1,2,3 , for any permutation r 

E S:, . This generalizes a construction in [El]. 

However, U' ~ SU(3) ~ . But note that the mapping 

SU(3) c U(3) -> U(3)/U(1) is a diffeomorphlsm, where 

U(1) = {D(b,l,l); b E S ~} , and the action of U(1) 

and U commute. So SU(3)/U' = U(3)/U where 

U = U'.({I}xU(1)) 

153 



ESCHENBURG 

4. Let 

with 

G = Sp(3) and U = {(A(q),B(r,s)); q,r,s E S s} 

A(q) = D(q,q,q) , B(r,s) = D(r,s,l) 

Since B(r,s) does have a fixed vector while A(q) 

for q # 1 does not, these matrices are non-conjugate 

and U acts freely. 

All these manifolds M = G/U are compact, simply connected 

and carry a metric of nonnegative curvature; in i. and 4. 

the curvature is positive on an open dense subset ~cf. [GM], 

[E2]), while 2. and most of the examples in 3. carry a 

metric of positive curvature [EI,E2,E3]. 

2. How to compute the cohomoloav 

Consider P,L,U,M as above. Let E be an acyclic 

space on which L acts freely. So B L = E/L and B U = E/U 

are the classifying spaces of L and U . Following Borel 

[B], to compute the cohomology of M we use the the Serre 

spectral sequence (e.g. cf. [HI, p.37) of the bundle 

M' = (PxE)/U -> E/U = B U 

with fibre P ; note that M' and M are homotopic. Let K 

c L be the stabilizer subgroup of some point p 6 P Then 

we have the bundle maps 

M' = (PxE)/U ---> (PxE)/L < .... 

B U ---> B L = B L 

B K = E/K 
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where the isomorphism to the right is given by the mapping 

: B K = E/K -> (PxE)/L , #(K.e) = L.(p,e) 

which is well defined, keeps the points on the base space 

fixed, and has inverse 

~-1(L.(q,e)) = K.g-:L.e 

for q = g.p ~ P , g E L . The bundle B K -> B L will be 

called the reference bundle. In fact, we will compute first 

the spectral sequence of this bundle and then use natura- 

lity. This has been done by Borel in the case of homogeneous 

spaces where P = G is a compact Lie group and L = G acts 

by right translations. We are interested in the case P = G, 

L = G ::~ The stabilizer of the unit element p = I E G is 

the subgroup {(g,g); g E G} : G = (which we identify with 

G .) Thus it is sufficient to study the reference bundle 

B G -> BG~ ~ which is pulled back to the bundle M' -> B U by 

the map B% : B U -> BG2 induced by the inclusion 0 : U -> 

G :~ We have to compute the cohomology of this map B 0 

From now on, we make the following assumption on the 

cohomology algebra of our group G (the coefficient ring R 

is Z or a field): 

(A)  

I H~(G) is a free exterior algebra 

A[al ..... a,~] with generators a~ ..... am of 

degree deg a.j = r.~-i , rj even, with 2 

Then (cf. [B], Th. 19.1) 

H~(B G) = R[a ..... a~] 

with deg aj = r j , and the generators a.~ of H~(G) can 
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be chosen so that a~ corresponds to a~ under trans- 

gression T in the spectral sequence of the universal 

bundle E G -> B G . In particular, if T c G is the maximal 

torus and t~ ..... t~: a basis of H~(T) , then 

H~(B T) = R[t ...... t~] 

where deg(tj) = 2 and t j = T(tj) The inclusion T c G 

makes H~(B G) into the subalgebra of H~(B T) which contains 

precisely the Weyl group invariant polynomials over 

tl ..... tk (cf. [B], Prop. 27.1). In other words, the 

generators a j of H:':(B G) can be identified with certain 

Weyl-invariant polynomials over t ...... t~.: E.g., 

H:~(Bu(n)) is generated by the elementary symmetric polyno- 

mials in the variables t j , 

el = Z t j , ~=~ = Z tjtk ..... ~r. = tlt=...t~, , 

while H~(Bsp(n ) ) is generated by the elementary symmetric 

polynomials in t j= 

The second desciption allows us to compute the cohomo- 

logy of the map Bp : B G -> BG, for any Lie group embedding 

p : G -> G' In fact, choose maximal tori T of G and 

T' of G' so that p(T) c T' Call p~ : T -> T' the 

restriction. Let i and !' denote the corresponding Lie 

algebras and pT, : ! -> K' the differential of pT Then 

pT ~ : HI(T ') -> HI(T) is given by the adjoint map of pT:~ 

(We may identify HI(T;Z) with the unit lattice of T in 

i  9 and similar for T' .) Then Bp :~ : H~(BG.) -> H~(B G) is 

the extension of ~T :~ to the Weyl-invariant polynomials 

over HZ(T') and H~(T) The following lemma is a simple 

application: 
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LEMMA~. Let G be any compact Lie group satisfying {A) with 

H*(B G) = R [ ~  ..... ~,..] Let A : G -> G ~ , g -> (g,g) be 

the diagonal embedding. Then H*(BG:.. ~) = H*(B G) | H*(B G) , 

and BA:~(~.j| = BA*(I| = e.j In particular, ker(B~ :~] 

is the ideal generated by 6~ ..... 6,, where 

6..~ = ~.j| - l| 

PROOF, If E is an acyclic G-space, then E :'~ = ExE is an 

acyclic G=~:-space. Thus BG::~ = B G x B G is a classifying 

space for G =~ and H:*:(BG=] = H~:(BG)@H~(B G) We have 
A.t.. = ( I  i ) : ! -> !  9 K 

denotes the identity matrix, and the same holds 

on H~(T] Thus 

pT ~: = (I,I) : H~(T =:) = HI[T)@H~(T) -> H:L(T) 

~ can be considered as a polynomial over H*(T), 

where I 

for A't-:~ 

Since 

this proves the lemma. 

3. The reference bundle 

In this section, 

of the 

Recall 

E -> B 

we 

Let 

we compute the spectral sequence E~. 

bundle B A : B G -> BG~ where G satisfies (A). 

that the Serre spectral sequence of a bundle ~ : 

with fibre F starts with E=** = H~(B;H*(F)) , and 

have a projection k,- : H:~(B) -> E~ :~r with k, = ~ . 

6~ be as in the lemma above. 

PROPOSITION 

have 

(i) 

For r~-1 < r ~ rA , j >-. 1 

Er*O = H*(BGm)/Ij-~ 

(with ro := O) we 
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where Ik c H:~(BG= ) is the ideal generated by 

and 

~,...,6k , 

(2) 
d~(l| = ~ 0 for all r < rj 

[ k~(dj) for r = rj 

PROOF. We prove (I) for all rj s t and (2) for all r j 

t-i by induction over t . For t = 2 the statement is 

true. Suppose that it holds for some t z 2 . First, we show 

(2) for all j with rj = t Let 

A = Span {a~ ; r~ = t) : H~-~(G) , 

D = Span {6~ ; ro = t} c H~(BG=~) 

D c ker (B~: H:~(B G) -> H~(BG:~)) 

there exist some r z t such that 

We have 

6 E D 

(im d~) ~,~ (note that kt(6) ~ 0 

But (im d~) ~,~ = 0 for r > t ("the arrow of dr 

long"), thus 

k~(D) c (im d~) ~'~ = d~(l| 

Since A and k~(D) (by induction hypothesis) 

modules with the same dimensions, d~ is an 

between these modules, and we get (2) 

change of the basis of A or D . 

Hence, for any 

0 ~ k~(6) 

by induction hypothesis). 

is too 

are free 

isomorphism 

for r = t up to a 

Now suppose that 

it follows that Ik c ker k~§  9 

Thus assume that k~§ = 0 

Then 

rk-, < t S rk. Since k~(D) c im d~, 

We have to show equality. 

for some ~ E H~(BG:2)\Ik 

where u = E c~| 

the projection onto 

generated by products with factors aj 

= d~([u]~) 

with c~ E H~-~(G) , and [ ]~ denotes 

E~ Let C = H~-*(G) be the submodule 

of lower degree 
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r.j < t . Since the A-component of c~ gives rise to a term 

of u which lies in Ik , we may assume (mod Ik) that c~ E 

C . Now we show that no such element u E C | H~(BG=) can 

survive up to E~ In fact, let r be the lowest degree of 

any factor in any of the c~ Then we have a decomposition 

u = Z a , , u ~  + u '  

where J(r) = {i ; rl = r} , such that u~ and u' contain 

only factors a j with r., > r . (We have written an for 

l| .) By induction hypothesis, the elements a~., u~ and 

u' survive up to E~ , and 

d,(u) = E 6>u~ # 0 

Thus u does not survive in 

the proof. 

E,...I , and we have finished 

4. The spectral sequence of a biquotient 

THEOREM I. Let G be a compact Lie group with (A). @ : 

U -> G 2 a Lie group embedding such that U acts freely on 

G . and E an acyclic space with a free GZ-action. Let E~ 

denote the spectral sequence of the bundle 

M' = (G x E)/U -> E/U = B U . 

Let a j , j = 1 ..... m be the generators of H:~G . Then all 

l| 6 E~ ':'~ are transgressive, and 

dr.. (l| = kr.j(B@~:6j) 

where 6.j is as above. 
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REMARK. Since B S : H*(BG2) -> H*(B U) can be computed 

from the adjoint of the map ST* = S~It' : t' -> t~t , where 

t' and t_ denote the Lie algebras of the maximal tori T' 

: U and T : G , Theorem 1 allows us to compute H*(G/U) if 

we know ST*  9 We have an important special case: 

THEOREM 2. Suppose that BS'61 .... BS*6~r. 

factor of the free module H:~(B U) and that BS:~6~ 

lie in the ideal (Bs~6:L ..... BS*6j-~) for j = 

Then the cohomology algebra of M = G/U is 

H:~:(G/U) = H*(Bu)/(Bs~6~ ..... BS~,.,) 

PROOF. The proof of Theorem 1 is clear by the 

proposition and the naturality of spectral sequences. 

prove Theorem 2, we observe first by induction over r 

all E,. in the spectral sequence of M' -> B U are 

R-modules since d (l| = k rj rj 
Moreover, no products with l@aj 

means E.= *~ = E| :~':' = H*(Bu)/(S*d~ ..... r Since 

is a subalgebra of H*(M ') and the spectral sequence 

converges to H*(M') , the theorem is proved. 

generate a direct 

does not 

2,...,m 

previous 

To 

that 

free 

(B$:~6j) is indivisible. 

can survive in E,~ which 
m~ *C* 

(E,-) 

Now we compute the integral cohomology (R = Z) of the 

examples given in Ch.l: 

i. G = Sp(2), 

U = {(D(q,q),D(q,l)); q 6 S ~} 

Then ST* = (i,i,i,0) . Let v,w denote the basis of HI(T) 

and t a generator of HI(T ') (where T, T' are maximal 
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tori in G and U ). Thus @T* maps v@l, w@l, l@v onto 

t and l@w onto 0 . We have H*(Sp(2)) = A[a~,a=] with 

r~ = 4 , r= = 8 , and H:*:(Bsp(2 )) = Z[~,~=] where 

:t = v :~ + w ~ E H ~ , ~: = V :~. W ~ E H ~ 

(we omit the distinction between v,w and v,w), while 

H*(B U) = Z[t =] with t = E H "~. Since 6,~ = ~j@l - i@~ , 

we get B0"(6~) = t =~ , 

k4(t~) which implies 

d8(l@a=) = k8(t4) = 0 

generates HT(G/U) = Z , 

B@*(62) = t '~ . Thus d4(l@al) = 

k.j(t :~ ) = 0 for j ~ 5 , and 

So l@a= survives in E 9 and 

while any other HP(G/U) for p # 

0 and p # 7 vanishes. This shows H*(G/U) = H*(S 7) which 

of course follows also from the result of [GM]. 

2. G = U(3), 

U = {(D(a,a,a),D(b,c,l)); a,b,c E S I) 

We have 

Let 

I i 1 -i 0 0 0 1 0 T:*: = 0 0 0 i 0 0 
0 0 0 0 1 0 

U~,U=,U:~ and vl,v=~,v~,w~,w=,w~ be bases of H~(U) 

and HI(T =) Then H*(BG=) is generated by 

V J , ~ WJ , ~ V~Vk , ~ W~Wk , V~V2V~ , W*W2W~ 

which is mapped by B# ~ onto the following elements of 

H:*:(Bu): 

Ul , U2+U~ , --Ul 2 , U2U~ , - - U l  m , 0 . 

Thus 

B0"(6~) = u~ - u= - u~ , 

B0"(62) = -u~ z - u~u~ , 

B *(6~) = -ul ~ 
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All these elements are indivisible, 

(i.e. the quotient module has no torsion). We put 

x = ul , y = u2 , 

and the relation B0~(61) = 0 gives 

U~ = X - y 

Then from BO~:(~=) = 0 we get the new relation 

xy = y~ - X ~ 

Thus B0~(6=) does not lie in the ideal generated 

B ~(6~) Likewise, 

x ~ = 0 , so BO:~(6~) 

B~*(62) and B0~(6~) 

so they span a direct factor 

by 

BO*(6s) = 0 gives the new relation 

does not lie in the ideal generated by 

Hence Theorem 2 is applicable: 

H:*:(G/U) = Z[x,y]/(xy-y~+x =, x 3) 

In other words, the cohomology is without torsion and 

generated by x, y , x =~, y=~ and x~y with the relations 

xy = y~ - X :~: , X ~' = 0 . xy~ = x:~y  9 y:3 = 2xy~ 

is a homogeneous space which is very similar to 

G/T where T = U(1) ~ is 

It is well known (cf. [B], 

There 

G/U , namely the flag manifold 

the maximal torus in G = U(3) 

Prop. 29.2) that 

H~(G/T) = Z[x,y,z]/I 

where I is the ideal generated by the elementary symmetric 

xy + yz + zx, xyz Replacing z with 

the same cohomology module, but the 

x ~ = 0 , x2y = -xy = , y~ = 0 . 

quadratic forms xy - y2 + x = and 

polynomials x+y+z, 

-(x+y) , we get 

relations are 

xy = -y~ - x = , 

Since the two 

xy + y= + x ~ are inequivalent over ~ (the first is in- 

definite, the second positive definite), the real cohomology 
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algebras of G/U and G/T are not isomorphic (cf. [E3] for 

a different proof) while these spaces have the same integral 

homology and the same cohomology algebra mod 2. 

where 

and Xl-YT(1). x2--YT(2), x3-YT(3) 

3. G = U(3), 

U = ((D(aX~,aX:~,aX=),D(aY~b,aY=,aY~)); a,b ~ S:'} 

=: U~,w 

x:~, y~ are integers such that x,+x=+x~ = y~+y~+y~ 

are relatively prime for 

any permutation T E S~ . Then 

r = 0 0 0 1 0 

If we let s,t be the generators of Hx(U) : H:;~(B U) , then 

B~ ~(61) = -S , B ~(52) = m.t ~ , B~:(6:~) = n.t ~ 

where m = a=~:(x) - o=(y) and n = o~(x) - a~(y) and a j 

denote the elementary symmetric polynomials. By assumption 

for x~ and y.~ , the numbers m and n are relatively 

prime. By Theorem i, E~ = E., = Z[t] | A[a~,a:~] Moreover, 

l| does not survive in E~ = Ee. , and E~ 4<' = Zt~/mZt 2 . 

Thus (ker de) ~ = Zm(l@a~) since (m,n) = 1 , and m(l@a:a) 

survives in E7 . So the surviving elements in E- are t = 

t@l , t = (with mt ~ = 0 ), u := m(l@a~) and tu . Let 

(Fp)pzo be the filtration of H~(G/U) which corresponds to 

the Serre spectral sequence (of. [HI, p.37). We have E pq = 

(F~/Fp+~) p'~q Thus F~ = F=, F~ = F~, F~ = 0 . Moreover, 

tu E E =~ = F= 7 : HT(G/U) since in F~ = F4 = E 4~ there 

are no elements of total degree 7. Let u E HS(G/U) be a 

preimage of u E (Fo/F~) ~ , i.e. u = u + F2 ~ Then tu = 

tu since tu - tu E t.F~ ~ c F47 = 0 So the cohomology 
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H*(G/U) is generated by t e H = , t ~ E H ~ with torsion 

m.t 4 = 0 , u E H ~ and tu ~ H 7 . The number 

m = x~x~ + x~x~ + x3x~ - (y,y= + y=y~ + y~y~) 

= ~(llyll ~ - llxli =) 

(remember (z x~) ~ = (E y~):~ ) is the only cohomology 

invariant which distinguishes the cohomologies of G/U~.y 

for different pairs of integral vectors (x,y) 

In the special case x = 0 we recover the the 

homogeneous spaces which have been considered by Aloff and 

Wallach [AW]. In this case we have y~., = -(y~+y~) , and the 

corresponding number m = y~= + y~= + y~y= satisfies cer- 

tain restrictions, e.g. m is not congruent to 0 mod 2 , 

2 mod 3 , 0 mod 5 , 4 mod 5 , 2 mod 7 , 4 mod 7 etc. So one 

easily finds x,y so that G/U~.y are not Wallach spaces 

(cf. [El]). It would be interesting to know whether the 

classification of the Wallach spaces up to diffeomorphisms 

by Kreck and Stolz [KS] extends to these inhomogeneous 

spaces as well. 

4__~. G = Sp(3) , 

U = {(D(q,q,g),D(r,s,l)); q,r,s e S ~} 

Let u,,u2,u~ be the standard basis of H~(T) = H2(BT). The 

generators ~j of H~(B G) are the elementary symmetric 

polynomials in the variables u~ ~, u~ 2, u~ = . We have 

0 I"W~ = 
I 1 1 0 0 0 1 
0 0 0 1 0 0 , 
0 0 0 0 1 0 

hence, if t,,t2,ts denotes the basis of H~(Tu) = H=(BTu) 

164 



ESCHENBURG 

(where Tu denotes the maximal torus of U), then 

B$:':(61) = 3t~ =~ - t::~: = - t~ =~ . 

B~:*:(6:~.) = 3t~ 4 - t:~:~t:~ :;~ , 

B :*:(6~) = t~ ~ 

Note that H*:(B U) is generated by x = t~ ~: , y = t:~ :~ , z = 

t~ ~ By Theorem 2 we get (cf. example 2) 

H*:(G/U) = Z[x,y]/(3x:~-3xy+y =~:, x ~) 

Using the substitution x = v , y = v - w , we get 

H:~:(G/U) = Z[v,w]/(v:~+w=~+vw, v :~) 

Thus G/U has the same cohomology algebra as G/Sp(1) :~ , 

the manifold of flags in HP ~ . Recently, S.Stolz has shown 

that G/U has nontrivial Pontrjagin classes; therefore, 

G/U and G/Sp(1) :3 are not diffeomorphic. 
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