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Introduction

In this work, we consider compact simply connected manifolds which admit a Rie-
mannian metric with curvature K > 1, i.e. which are curved stronger than spheres.
Besides the rank-one symmetric spaces, there are very few examples of such manifolds.
The homogeneous ones have been classified by Berger, Wallach and Berard Bergery
([3,14,2], cf. also [l,S,ll]). Th e 1 owest dimensional non-symmetric example among
those was found by Wallach; it is the (6-dimensional) flag manifold F over @P2, and it
is the base space of an infinite number of simply connected circle bundles MP,q which
also admit such metrics [l]. Some years ago, we found new examples which admit only
an inhomogeneous metric of positive curvature ([7,8]), in particular a six-dimensional
manifold F’ which is closely related to F. Like F, it is an S2-bundle over CP2 and
there are also corresponding circle bundles ML,p with the same properties as MP,g. It is
the aim of the present paper to describe the geometry and topology of these examples
in some detail.

1. How to construct spaces of positive curvature

All known examples of compact Riemannian manifolds with positive sectional cur-
vature arise from two sources: The noncommutativity of compact Lie groups and the
contraction property of Riemannian, submersions:
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Fact 1 (cf. [13,5]). If G is a compact Lie group with biinvariant metric, then the
curvature of any 2-plane u c g with orthonormal basis X,Y is

K(u) = K(X,Y) = $II[x,Y]((2 2 0. (1)
Fact 2 (cf. [13,12,5]). Let E, B be Riemannian manifolds and x : E + B a Riemann-
ian submersion. For e E E let u* C T,E be a horizontal 2-plane and u = dn(a”).
Then

K(u) >, K(@). (2)

Both facts have been observed first by H. Samelson [13]. Of course, Fact 2 follows also
from O’Neill’s formula, but Samelson’s proof is easier: Let yr ,y2 be horizontal geodesics
starting at e tangent to a”. Then noyj are geodesics in M starting tangent to u with the
same angle. Since 7r contracts distances, we have d(r on(t), A o Y2(t)) < d(yl(t), Y2(t))
for all positive t and therefore K(u) > K(u”).

Examples of Riemannian submersions are the so called orbital submersions which
arise as follows. Let G be a group of isometries acting with closed orbits on a Rie-
mannian manifold E. Then the orbits have constant distance from each other. Hence
the orbit space E/G becomes a metric space. If the action of G is free, this metric is
Riemannian, called orbital metric.

2. Normally homogeneous metrics on Lie groups

Let Go be a compact Lie group with a biinvariant metric and K,-, a closed subgroup.
Then Ko acts isometrically and freely on Gu by right translation: (k,g) ---f gk-l. The
orbit space is the homogeneous space Go/K0 with a normally homogeneous metric.
Thus, all normally homogeneous spaces have curvature K 2 0, and the zero curvature
planes are spanned by X, Y E p with [X, Y] = 0, where g = fr@ p is an Ad( IO-invariant
decomposition of the Lie algebra. (In fact, O’Neill’s defect term in (2) which we omitted
shows that this condition is also sufficient [12,5].)

In particular, let us consider normally homogeneous metrics on a Lie group G itself:
If K is any subgroup of G, then G o := G x K acts transitively on G by

((9, k), 9’) -+ ss’k-l,
and the isotropy group of the identity element 1 E G is

AK := {(k,k) ] k E K} c G x K.

Consider a biinvariant metric (. , .)o on G and the induced metric on K. This gives us
a biinvariant metric on G x K and an induced normally homogeneous metric (. , .) on
G = (G x K)/AK, so that the map

@:GxK-+G, @(g, k) = gk-I
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becomes a Riemannian submersion. A vector (X, Y) E g $ C is horizontal with respect
to @ iff it is perpendicular to (2, 2) for all 2 E P, i.e.

0 = ((X, Y), (&Z)> = (X t Y, z>o.

Thus Y = -Xk, where Xk denotes the projection of X into P. Let p be the orthogonal
complement of P in g. So the horizontal subspace is

4 = {(Xl t x2, 42) I Xl E #,X2 E q.

On the other hand,

9*(X1 + x2, -X,) = x1 + x2 + x2 = xr + 2x2 =: x

and the new metric on g is

llXl12 = 11x1 + x211: + Ilx2ll; = IlXdlE + 2llX2ll~*
Since the components of X in p and P are

X, = X1, XI, = 2X’&

we get

Ilxl12 = Ilx,ll; + $1xkll;.

Hence in the new metric, all vectors in t are shortened by the factor 2-li2.
Now a horizontal plane 0” C g $ P spanned by (XI t X2, -X2) and (Yr t Yz, -Yz)

has curvature zero in G x K iff

[X2,Y2] = 0, [XI t X2,& t Y2] = 0.

In general, this is not a pleasant condition, but if G/K is a symmetric space, i.e. if
h41 C h then [Xl,K] E P and [XI,%] t [Xz,Yr] E p. Hence, both terms must vanish.
Thus, c+’ has zero curvature if and only if

[xk, yk] = 0, [x, y] = 0, (N)
where X = @*(X1+X2, X2) and Y = @*(Yr tY2, Yz). Thus by Fact 2, (N) is a necessary
(in fact also sufficient) condition for zero curvature on a 2-plane u c g spanned by X
and Y.

Example. We consider the groups G = U(3) and K = U(2) x U(1) c U(3). Then
(G, K) is a symmetric pair since G/K is the symmetric space CP2. We start with the
biinvariant metric

(X, y>o = Re trace XY*

on G and pass over to the normally homogeneous metric (. , -) as described above. Let
C+ = Span(X,Y) C g be a 2-plane with zero curvature for the metric (. , -). Then by
(N), [X, Y] = 0 and [Xk, Yk] = 0. C onsequently, [X,, YP] = 0. Since 4 does not contain
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linearly independent commuting vectors (CP2 has positive curvature), the projection
of 0” onto p is l-dimensional. Hence we may assume that Y E P, and

[X,, Y] = 0, [X,, Y] = 0.

Case 1. d’ c P. Let 42) be the subalgebra of trace-0 matrices in u(2). Then the
map mu @ 1w 4 u(2), (X,t) c--t X + i .tl is an isomorphism of Lie algebras, and
6u(2) contains no linearly independent commuting vectors. Thus the projection of cr”
in P = mu $ Iw $ u(l) onto the first factor is 0- or l-dimensional. Hence cr” contains
an element

Hr := i - diag(t, t, s)

for some s, t E IR with (s, t) # (0,O). (By diag(ar,. . . , a,) we denote the diagonal matrix
with entries al,. . . , a,.) This condition is also sufficient since Hr is in the center of P.

Case 2. aA < t. Then crA = Span(X,Y) with Y E P and X, # 0. We have

Y=i(t $, XP=(: c)

where A is some hermitian 2 x 2-matrix, t E R and 2 E C2\0. Now [X,,Y] = 0 iff
Ax = tx. Thus Y is conjugate in K to

Hz = i diag(s, t, t)

for some s, t E R with (s, t) # (0,O).

3. Biquotients with K > 0

Let G, K, (. , -) be as above and
rically on G by

-1
((W,U2)rS) + Ul!wz *

U a closed subgroup of G x K. Then U acts isomet-

An element g E G is a fixed point of (~1, ~2) E U iff

U2 = g-‘vrg.

Therefore U acts without fixed points if ~1 is not conjugate to u2 for all (q,uz) E
U\{ l}, and then the orbit space G/U is again a Riemannian manifold of nonnegative
curvature, called a biquotient. This construction was used first by Gromoll and Meyer
[lo] to construct a metric of nonnegative curvature on an exotic 7-sphere.

The vertical subspace of the submersion G 4 G/U at g E G is

q{%P$ I (WU2)E u> = {(&7)*X1 +,)*x2 I (XlJ2)E 4.
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Using left translation back to TrG, we get

gg = (+)&(Ug)) = {Ad(C1)Xr - X2 I (&,X2) E ~1.
Thus G/U has positive curvature if no two linear independent vectors X, Y satisfying
(N) lie in the orthogonal complement _cjg of !Ug in g, for any g E G.

Example. We start with the flag manifold over @P2, namely

F := u(3)/U(1)3 = u(3)/u(1)2z

where

2 = {diag(z,z,z) 1 z E @, JtJ = l}.

Since 2 is the center of U(3), right and left translations agree, so we can write equally
well

F = z\u(3)/u(1)2

which denotes the orbit space of 2 x U(1)2, where 2 acts by left and U(1)2 by right
translation. Now we replace 2 with

2’ := {diag(a,z,E) ( z E C, (zj = l}

and put

F’ = Z’\U(3)/U(1)2,

i.e. F’ is the orbit space of U = 2’ x U(1)2 acting on G = U(3) by (ur, 74) + L,, R,;I.
This action is free: We have ‘111 = diag(z, z, 2) and 14 = diag(zr, z2,l). These are
conjugate if both matrices have the same eigenvalues. This implies z = 1 (or Z = 1)
and hence zr = 22 = 1, so ur = u2 = I.

The flag manifold F is base space of infinitely many simply connected S1-bundles,
namely

where

MT&s = U(3)I%P

Up,q = {diag(zP,zq, 1) 1 JzJ = l}

for relative prime integers p, Q; note that F = U(3)/U(1)2Z’ and that U(1)2/UP,, is a
circle. These spaces have been described by Aloff and Wallach [l]; they have positive
curvature iff p - q > 0. Likewise, F’ is the base space of simply connected circle bundles
ML,q, namely

M;,q = Z’\U(3)/UP,,.

Now we show that F’ and M&q for p, q > 0 carry a metric of positive curvature.
However, we have to interchange the factors, i.e. we rather put

F’ = U(1)2\U(3)/Z’, M;,q = UP,,\U3>/~'.
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On G := U(3) we take the normally homogeneous metric with K = U(2) x U(1) which
was introduced in Section 2; note that U(1)2 x 2’ c G x K acts by isometries with
respect to this metric.

Theorem 1. The induced metrics on F’ and il~$,~ for p, q > 0 have positive curvature.

Proof. Let G = U(3). All we have to show is that no zero curvature plane &’ c g is
perpendicular to the subspace

(Lf, = Ad(g-%p, ,  t ii’,
i.e. perpendicular to B and Ad(g-‘)A, for any g E G where

A = i. diag(p, q, 0), B = i.diag(l, 1, -1).

So, let us consider a zero curvature plane (T” c g which is already perpendicular to B.
By Section 2, two cases are possible:

Case 1. Hr = iediag(t,t,s) E V” for some (s,t) # (0,O). For all X E g,Y E P we
have (X,Y) = i(X,Y)u. Thus

0 = (Hr, B) = ;(H1, B)O = 32t - s),

and so we assume

Hr = iadiag(l,l,2).

It is well known that the extremal values of the height function

f : Ad( ---, R, f(X) = (X,&)o

are attained on the set Ad( n {d ia g onal matrices} (see Lemma below) which con-
sists of the matrices i - diag(a, b, c) where (a, b, c) is a permutation of (p, q, 0). So the
extremal values of f are in the set {p t q,p t 2q, 2p t q} C (0, cm) which shows
(Ad(g)A,H1) > 0 for all g E G.

Case 2. Ad(K)H2 E 0” for some IG E I<, where H2 = i - diag(s, t, t). Then

0 = (Ad(k) B) = (H2,Ad(K1)B) = (Hz, B) = is,

since B commutes with all elements of K = U(2) x U(1). Thus we may assume Hz =
i - diag(O, 1,l). Then

2(Ad(g)A Ad(W2) = (Ad(g)4 Ad( = @@-%)A, H2)0,

and as above we see that extremal values of (X, Hz)0 for X E Ad( are within the
set {p,q,p t q} c (0, oo), and so Ad(k)H 2 is never perpendicular to Ad(g Thus
no curvature-zero plane crh c g can be perpendicular to rrJ, for any g E G, and the
theorem is proved. Cl
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Lemma. Let G be a compact Lie group with biinvariant metric (-, .)o. Let f c g be
a maximal abelian subalgebm and H E t. Let M = Ad(G)H c g. Then the extremal
values of the height function

fH : M + R, fH(x) = (K X>o

are attained on M II t.

Proof. Suppose first that H E t is regular, i.e. that it lies in no other maximal abelian
subalgebra. A point X E M is a critical point for fH iff HlTxM = Ad(g)X, i.e. iff
0 = W,Xl,H>o = @‘,KHl) 0 f or any 2 E g, which means [X, H] = 0. Since H is
regular, X E f. In particular, the extremal values of fH are taken on A4 II f. Since the
regular vectors are dense in t, the same fact holds for any H E f. Cl

Remarks. (1) Note that 17 r = ~p,~ + 3’ is the vertical space corresponding to the
homogeneous spaces MPtq. So, we have also proved that MP,9 and F have positive
curvature, where p, q > 0.

(2) The projections

M;,4 = UP,,\U(3)P + U( l)‘\U(3)/2’ = F’,

F’ = U(1)2\U(3)/Z’ ---f U(2)\U(3)/2’ = S5/Z’ = @P2

are Riemannian submersions. However, note that the fibres are not totally geodesic
and that the metric on CP2 is not homogeneous (it has cohomogeneity one).

(3) Note that the map U(3)/.??’ ---f SU(3) sending the coset A.27 onto A.diag(&, or, o)
for any A E U(3) with cr := det A, is a diffeomorphism. This shows that MP,q and ML,q
can be considered as quotient spaces of SU(3) (cf. [l, S]) and in particular, they are
simply connected. More precisely, we have MP,q = SU(S)/UL,, and M&q = SU(3)/U&
with

UL,s = {diag(z-P,z-q,zP+q) 1 z E S’},

ULq = {(diag(tP, zq, l), diag(aP+q, z~+~, z-“-“)) ( z E Sr}.

(4) There are many more positively curved 7-dimensional biquotients of SU(3)
(cf. [S]). In fact, if a, b E Z3, then

U a$, := { (diag(z”‘, zaz, za3),diag(tb1, zb2, zb3)) 1 (t( = 1)

acts on SU(3) iff Ca; = Cb;, and it acts freely if any integer n dividing all components
of a - A,b for some permutation matrix A, also divides a; - bj for all i, j E { 1,2,3}.
Moreover, SU(3)/U& has positive curvature if and only if

b; 4 [amin, amax]

for i E {1,2,3}, where a min(amax) is the minimum (maximum) of al, a2, ag (cf. [8,
p. 451). In particular, the condition p - q > 0 is also necessary for Mi,q to have positiv:
curvature.

(5) It has been shown in [8] that among the even dimensional biquotients of any
simple compact Lie group with a left invariant metric which is right invariant with
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respect to some maximal torus, F’ is the only one which is positively curved and not
diffeomorphic to a homogeneous space of positive curvature.

4. Topology of F and F’

We start by considering the homogeneous space

F” = {(x ,[y ]) E S5 x @P2 1 xl[y]}.
Clearly, U(3) acts transitively on F*, and the stabilizer subgroup of (es, [er]) is U(l)2 =
{diag(o,P, 1) I a,P E S’>, h ence FA = U(3)/U(1)2. The projection onto 5” makes F”
into a CP1-bundle over S5, namely the projectivization of the C2-bundle

EA = {(Z, y) E s5 x c3 1 ylCs}.

The complement of EA in the trivial bundle S5 x C3 is the trivial bundle

TA = {(z,Xx) ) 2 E S5,X E e} F S5 x C.

Now we let Sr = S c U(3) b e a subgroup which acts freely on S5. It is easy to see that
up to conjugation there are only two such subgroups, namely 2 and 2’. The group S
acts on EA by bundle isomorphisms. Hence, E = EA/S is a c2-bundle over S5/S, and
A4 := FA/S = S\U(3)/U(l) 2 is the projectivization of E. Moreover, T = TA/S is the
trivial bundle (S5/S) x C since s(z,Xz) = ( sx, Xsz) for any s E S, i.e. the S-action
fixes the c-factor. Therefore, E is stable equivalent to the C3-bundle Eo = (S5 x C”)/S.
If S = 2, this is 3-times the inverse Hopf bundle over S5/Z = @P2 : Eo = B $ l? $ I?
where fi = (S5 x Q/S1 with the S1-action z(u,A) = ( ZW, zX) on S5 x c. If S = 27, we
note that the map

a : s5 + s5, Q(W~2,53) = (%X2,23)

conjugates the actions of 2’ and 2 on S5. Thus the map

o x id : S5 x UZ3 + S5 x c3

descends to a bundle isomorphism between Eo over S5/Z’ and fi $ a $ H over S5/Z =
c’P2, where H = (S5 x Q/S’ with the action z(u,X) = (ZV, A) on S5 x @. Thus we
have shown:

Theorem 2. The manifolds F and F’ are diffeomorphic to the projectivizations of
C2-bundles over @P2 which are stably equivalent to fi $ rf $ H and I? $ I? $ H.

Now it is easy to compute the cohomology of these manifolds. In fact, by the the
Leray-Hirsch theorem, the (integer) cohomology ring of the projectivization PE of a
c2-bundle E over @P2 is a truncated polynomial algebra over H*(CP2), namely

H*(PE) = H*P2) [YI /(y2 + @)Y + c2(E))
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where c;(E) E H2i(@p2) are the Chern classes of E and y E H2(PE) is the first Chern
class of the inverse Hopf bundle over PE (cf. [4, p. 2701). Since cl(H) = z where z
denotes the canonical generator of H*(@P2), we get

c(H $ H $ H) = (1+ z)(l +x)(1 - x) = 1+ 2 - z2

so in this case, cl(E) = 2, c2(E) = -x2 and therefore

H*(F) = z[x, y]/(y2 + zy - x2, x3).

Using the substitution x = ‘11, y = u + II, we receive

H*(F) = z[u, VI/(?&” + 3UV + D2, u3).

In the other case we get cl(E) = 3x, Q(E) = 3x2 which shows

H*(F) = z[x, y]/(y2 + 3xy + 3x2, z”).

With the substitution x = u, y = v - u this becomes

H*(F) = z[?L, w]/(u” + 212, + V2, u”).

Note that the quadratic form u2 + uv + v2 is positive definite while x2 + xy - y2 is
indefinite, so F and F’ have nonisomorphic cohomology rings already over the reals.
This shows that F’ is not homotopic to any other known space which carries a metric
of positive curvature.

Remark 1. Alternatively, the bundle PE can also be considered as the unit sphere
bundle of an IW3-bundle V over CP2. These bundles are’classified by the first Pontrjagin
class PI(V). It is not difficult to compute that

PI(V) = cl(E)2 - 4~0).

In particular, the Pontrjagin numbers of the IW3-bundles corresponding to F’ and F are
5 and -3.

Remark 2. The cohomology of SU(S)/U,,b has been computed in [8,9]. The invariant
which distinguishes these spaces is the order T = il(ll~[/~ - llbll”)l of the torsion group
H5. So by Remark 3 in Section 3 we have

Q$,) = P2 f cl2 t 3JF7,

+&,& = p2 + q2 t pq.
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