
Universität Augsburg

Determinate STG Decomposition

of Marked Graphs

Mark Schäfer and Walter Vogler

Report 2000-12 Juli 2004

Institut für Informatik

D-86135 Augsburg

Copyright c© Mark Schäfer and Walter Vogler

Institut für Informatik

Universität Augsburg

D–86135 Augsburg, Germany

http://www.Informatik.Uni-Augsburg.DE

— all rights reserved —

Abstract

STGs give a formalism for the description of asynchronous circuits based

on Petri nets. To overcome the state explosion problem one may encounter

during circuit synthesis, a nondeterministic algorithm for decomposing STGs

was suggested by Chu and improved by one of the present authors. To find

the best possible result the algorithm might produce, it would be important to

know to what extent nondeterminism influences the result, i.e. to what extent

the algorithm is determinate.

The result of the algorithm clearly depends on the partition of output

signals that has to be chosen initially. In general, it also depends on the order

of computation steps. We prove that for live and bounded marked graphs —

a subclass of Petri nets of definite practical importance in the area of circuit

design — the decomposition result depends only on the signal partition. In

the proof, we also characterize redundant places in these marked graphs as

shortcut places; this easy graph-theoretic characterization is of independent

interest.

2

1 Introduction

Signal Transition Graphs (STG) are a formalism for the description of asyn-

chronous circuits. An STG is a labelled Petri net where the labels denote signal

changes between logical high and logical low. The synthesis of circuits from

STGs is supported by several tools, e.g. PETRIFY [CKK+97], and it often

involves the generation of the reachability graph, which may have a size ex-

ponential in the size of the STG (state explosion). To cope with this problem,

Chu suggested a nondeterministic method for decomposing an STG into several

smaller ones [Chu87]. While there are strong restrictions on the structure and

labelling of STGs in [Chu87], the improved decomposition algorithm given in

[VW02] works under – comparatively moderate – restrictions on the labelling

only. To find a decomposition into components with small reachability graphs,

some insight into the space of decompositions the algorithm might produce

would clearly be desirable; in other words, one would like to know to what

extent the algorithm is determinate.

Roughly, the decomposition algorithm works as follows. Initially, a partition

of the output signals has to be chosen, and for each set in this partition a

component producing the respective output signals will be constructed. The

result clearly depends on this partition, so we will only consider the case that it

has been fixed, and we will concentrate on the construction of one component.

For each component, one finds a set of signals that (at least initially) can be

regarded as irrelevant for the output signals under consideration; then, one

takes a copy of the original STG and turns each transition corresponding to

an irrelevant signal into an internal (λ-labelled) transition; finally, one tries to

remove all internal transitions by so-called secure transition contractions and

deletions of (structurally) redundant places.

In general, one might find during this process that additional signals are

relevant; then, one has to start anew from a suitably modified copy of the orig-

inal STG – which eventually gives a correct component as proven in [VW02].

Even in simple cases, the order of operations may influence for which signals

this backtracking is performed, resulting in different components as shown in

[VW02, Fig. 7]. Since this does not give much hope for reasonable determinacy-

results, we will not consider backtracking in this paper; we will mostly concen-

trate on the subclass of live and bounded marked graphs, for which backtrack-

ing is never needed as already noted in [VW02, p. 178]. This class of STGs

is particularly prominent in benchmark examples studied in the asynchronous

circuit community.

3

As a result of the above considerations, we can abstract from all signals or

signal changes, and study the problem under which circumstances the following

algorithm is determinate: given an unlabelled Petri net where some transitions

are marked as internal, apply secure transition contractions and redundant

place deletions as long as possible.

The paper is organized as follows. In the next section, Petri nets and their

basic notions are introduced, as well as redundant places and secure transition

contractions. In Section 3, as the first main result, we characterize redundant

places in marked graphs as so-called shortcut places. This easy graph-theoretic

characterization is of independent interest, but it is also a main ingredient to

prove our second main result in Section 4: the algorithm we study is determi-

nate for live and bounded marked graphs, i.e. it produces a unique result (up

to isomorphism). As a technical result for general Petri nets, we also show that

secure transition contractions satisfy a weak diamond property. We conclude

with Section 5. Many proofs and some explanations have been moved to the

appendix.

4

2 Basic Definitions

Definition 1. A Petri net is a 4-tuple N = (P, T, W, MN) with

– P the finite set of places, T the finite set of transitions with P ∩ T = ∅,

– W : P × T ∪ T × P → N0 the weight function,

– MN the initial marking, where a marking is a function P → N0

A Petri net can be considered as a bipartite graph with weighted and

directed edges between its nodes. A marking is a function which assigns a

number of tokens to each place; markings are extended to sets as usual. A

node is a place or a transition. ut

Definition 2. Let N be a Petri net. The preset of a node x is denoted as •x

and defined by •x = {y ∈ P ∪ T | W (y, x) > 0}, the postset of a node x is

denoted as x• and defined by x• = {y ∈ P ∪ T | W (x, y) > 0}. We say that

there is an arc from each y ∈ •x to x. We write •x• as shorthand for •x ∪ x•.

All these notions are extended to sets as usual. ut

Whenever a Petri net N, N ′, N1, etc. is introduced, the corresponding tuples

(P, T, W, MN), (P ′, T ′, W ′, MN ′), (P1, T1, W1, MN1
) etc. are introduced implic-

itly. In a graphical representation of a Petri net places are drawn as circles,

transitions as rectangles, the weight function as directed arcs xy (labelled with

W (x, y) if W (x, y) > 1) and a marking of a place as a number or as a set of

small dots drawn in the interior of the corresponding circle.

Definition 3. Let N be a Petri net. A path w is a sequence x0x1 . . . xn, n ≥ 0

of different nodes such that W (xi, xi+1) > 0 ∀i = 0, . . . , n − 1. A cycle c is

a sequence x0x1 . . . xnx0, n ≥ 1 with x0 . . . xn is a path and W (xn, x0) > 0.

Frequently, we will treat paths and cycles like sets consisting of the respective

nodes. ut

Definition 4. Let N be a Petri net. A transition t is enabled under a marking

M if M(p) ≥ W (p, t) ∀p ∈ •t, which is denoted by M [t〉. An enabled transition

can fire or occur yielding a new marking M ′, which is written as M [t〉M ′ if

M [t〉 and M ′(p) = M(p) − W (p, t) + W (t, p) ∀p ∈ P .

A transition sequence v = t0t1 . . . tn is enabled under a marking M if

M [t0〉M0[t1〉M1 . . .Mn−1[tn〉Mn, and we write M [v〉, M [v〉Mn resp., v is called

firing sequnece if MN [v〉. The empty transition sequence is written as λ and

enabled under every marking.

M ′ is called reachable from M if a transition sequence v with M [v〉M ′

exists. The set of all markings reachable from M is denoted by [M〉. For [MN 〉

we just write reachable markings (of N).

5

A Petri net is called live if for every transition t and every reachable marking

M a marking M ′ ∈ [M〉 exists which enables t. ut

Definition 5. A place p of a Petri net N is bounded if for some k ∈ N, M(p) ≤

k holds for every reachable marking M . N is bounded if every place is bounded.

A marking M is a home marking or a home state of N if it is reachable from

every reachable marking. N is called reversible if MN is a home marking. ut

Definition 6. A Petri net N is a marked graph (MG) (or T-system) if:

(1) ∀p ∈ P. |•p| = 1 = |p•|

(2) ∀x, y ∈ P ∪ T.W (x, y) ≤ 1 ut

Due to this, we often identify •p and t if •p = {t}, and analogously for p•.

Definition 7. [Ber87] A place p of a Petri net N is structurally redundant

if there is a set of places Q – called reference set – with p 6∈ Q, a valuation

V : Q ∪ {p} → N and some d ∈ N0 which satisfy the following properties for

all transitions t:

(1) V (p)MN (p) −
∑

q∈Q V (q)MN (q) = d

(2) V (p)(W (t, p) − W (p, t)) −
∑

q∈Q V (q)(W (t, q) − W (q, t)) ≥ 0

(3) V (p)W (p, t) −
∑

q∈Q V (q)W (q, t) ≤ d ut

The first two items ensure that p is something like a linear combination of

the places in Q with factors V (q)/V (p). Indeed, for the case d = 0, the first

item says that p is such a combination initially; the second item, in the case

of equality, says that this relationship is preserved when firing any transition.

The proof that p is indeed semantically redundant argues that the valuated

token number of p is at least c larger than the valuated token sum on Q for

all reachable markings, while the third item says that each transition needs at

most d ‘valuated tokens’ more from p than from the places in Q; this shows

that for the enabling of a transition the presence or absence of p does not

matter. Therefore, the deletion of a redundant place in N turns each reachable

marking of N into one of the transformed Petri net that enables the same

transitions and all reachable markings of the latter net can be obtained this

way.

Throughout this paper, if a place p (p′, p1, . . .) is considered to be redun-

dant, a corresponding reference set Q (Q′, Q1, . . .) and valuation function V

(V ′, V1, . . .) are implicitly given. If only some valuation function V is given, the

reference set is implicitly determined as its support by Q = {p ∈ P | V (p) >

0}.

6

Furthermore, it is useful to distinguish between different types of redundant

places as introduced in the following definition.

Definition 8. Let p be a place of a Petri net N .

– p is an extended duplicate of place p′ ∈ P if ∀t ∈ T. W (p, t) = W (p′, t) ∧

W (t, p) = W (t, p′) and MN (p) ≥ MN(p′).

– p is a loop-only place place if ∀t ∈ T. MN (p) ≥ W (p, t) ≤ W (t, p).

– If N is a marked graph, p is a shortcut place if a path w = •p . . . p• exists

with p 6∈ w and MN (p) ≥ MN (w∩P). A loop-only place can be considered

to be a shortcut place with the path w = •p. ut

Although a loop-only place is a special form of a shortcut place, it will often

be useful to treat them separately in our further considerations for marked

graphs.

������
���
������
���

������
���
������
���
������
���
������
���

��

	�	�	�	�	�		�	�	�	�	�	
�
�
�
�
�

�
�
�
�
�
 ����������������������
����������������������

p’ p

�
�
�
�
�
�

�
�
�
�
�
�
����������������������

��

������
���
������
���
������
���
������
���

p

1 1

23

������
���
������
���

������
���
������
���

������
���
������
���������

���
������
���

������
���
������
��� ������
���
 � �
 �

!�!�!�!�!�!�!!�!�!�!�!�!�!"�"�"�"�"�""�"�"�"�"�"

#�#�#�#�#�##�#�#�#�#�#$�$�$�$�$�$$�$�$�$�$�$

%�%�%�%�%�%%�%�%�%�%�%&�&�&�&�&�&&�&�&�&�&�&

'�'�'�'�'�'�''�'�'�'�'�'�'(�(�(�(�(�((�(�(�(�(�(

p

(a) (b) (c)

Fig. 1. Examples for redundant places. The redundant place is always labelled p.

(a) Extended duplicate. Observe that p is an extended duplicate of p′ but not vice versa. (b) Loop-

only place. (c) Shortcut place. Observe that in (b) and (c) MN (p) cannot be decreased.

Proposition 9.

(1) Extended duplicates, loop-only places and shortcut places are redundant.

(2) If p is a redundant place of a Petri net N , it is a loop-only place iff some

reference set Q is empty.

Proof. (1) For an extended duplicate p of place p′ set Q = {p′}, V (p) =

V (p′) = 1. For a loop-only place p set Q = ∅, V (p) = 1. For a shortcut place p

with corresponding path w, set Q = w ∩ P, V (p) = 1 and V (q) = 1 for q ∈ Q.

(2) The first direction follows from the proof of part (1). Therefore assume

the reference set Q to be empty. Since p is redundant we get immediately

∀t ∈ T :

7

V (p)MN (p) = d

V (p)(W (t, p) − W (p, t)) ≥ 0

V (p)W (p, t) ≤ d

Dividing by V (p) and combining the first and the last equation yields: ∀t ∈

T.MN (p) ≥ W (p, t), W (t, p) ≥ W (p, t), which is equivalent to the definition

of a loop-only place. ut

Definition 10. Let N be a Petri net and t ∈ T . If t is not incident to an arc

with weight greater 1 and •t∩t• = ∅, we define the t-contraction of N , denoted

by N
t
or just N , as follows:

T = T − {t} P = {(p, ?)|p 6∈ •t ∪ t•} ∪ {(p1, p2)|p1 ∈
•t, p2 ∈ t•}

W ((p1, p2), t
′) = W (p1, t

′) + W (p2, t
′)

W (t′, (p1, p2)) = W (t′, p1) + W (t′, p2)

M((p1, p2)) = M(p1) + M(p2)

In this definition ? 6∈ P ∪ T is a dummy element used to make all places of

N to be pairs; we assume M(?), W (?, t′) and W (t′, ?) to be 0.

If more than one contraction is applied to a net N , e.g. N
t1

t2

, this is denoted

by N
t1,t2

and analogously for more than 2 transitions.

A t-contraction is called secure iff (•t)• ⊆ {t} or •(t•) = {t}. ut

The rationale for secure transition contractions is explained in [VW02]; for

this paper it is only important that for marked graphs, all contractions are

secure.

p1 p2

p3 p4

t 1 t 2

t 3

t 4 t 6
t 5

����������������������
����������������������

����������������������
����������������������

����������������������
����������������������

����������������������
����������������������

	�	�	�	�	�		�	�	�	�	�	

�
�
�
�
�

�
�
�
�
�
 ����������������������

����������������������

t 1 t 2

t 4 t 6
t 5

(,)p1 p3 (,)pp2 3

p1 p4(,) (,)p p42

�
�
�
�
�

�
�
�
�
�

����������������������

����������������������
����������������������

����������������������
����������������������

����������������������
���������������������� ����������������������

����������������������

N N
t3

Fig. 2. Example of a transition contraction.

8

3 Redundant Places in Marked Graphs

This section deals with redundant places in marked graphs. The main result

will be that every redundant place in a marked graph is a shortcut place. We

start with some well-known statements about marked graphs.

Lemma 11. (e.g. [DE95]) Let N be a marked graph.

(1) N is live iff for the initial marking each cycle contains at least one token.

(2) If N is live, it is reversible.

Throughout the rest of this section, all Petri nets and in particular marked

graphs are assumed to be live and bounded.

The following definition introduces essential notions for this section. Since

the main idea of the central proof is to decrease the size of the reference set Q

of a redundant place, it is useful to distinguish different types of subsets of a

given reference set.

Definition 12. Let p be a redundant place of a Petri net N .

(1) A path (cycle, set) w is a Q-path (Q-cycle, Q-set) if w ⊆ Q∪ •Q•, q ∈ w∩Q

implies •q• ∈ w.

(2) A Q-path (t0q0 . . .) is called open-origin if •t0 ∩ Q = ∅ and p 6∈ t0
•.

(3) A Q-path (. . . qntn+1) is called open-end if tn+1
• ∩ Q = ∅ and p 6∈ •tn+1.

(4) A Q-set Q′ is called isolated if there is no element of Q \ Q′ ∪ {p} which

is adjacent to a transition of Q′. ut

The last requirement for a set to be a Q-set is needed to exclude useless

transitions from it, i.e. transitions which occurrence will not affect the marking

of the Q-set. Unfortunately, loop-only places considered as shortcut places are

not covered by this definition, in the sense that the corresponding path cannot

be a Q-path because Q = ∅. As mentioned before, this leads to a separate

treatment of loop-only places.

Definition 13. Let p be a redundant place of a Petri net N . V is called

balanced if V (p)(W (t, p)−W (p, t))−
∑

q∈Q V (q)(W (t, q)−W (q, t)) = 0 ∀t ∈ T .

ut

Lemma 14. Let p be a redundant place of a Petri net N with at least one

home marking. Then V is balanced and there exists no open-origin or open-

end Q-path.

9

Proof. Let MH be a home marking of N , Using part 2 of Definition 7, it can be

shown that ∀t ∈ T.M1[t〉M2 ⇒ V (p)M1(p)−
∑

q∈Q V (q)M1(q) ≤ V (p)M2(p)−
∑

q∈Q V (q)M2(q) (∗).

Let MH [v1〉M [v2〉MH , such that v1 contains every transition t ∈ T at least

once. Such a sequence v1 exists because N is live, v2 exists because MH is a

home marking. Together with (∗) we get:

V (p)MH(p) −
∑

q∈Q

V (q)MH(q)

≤ V (p)M(p) −
∑

q∈Q

V (q)M(q)

≤ V (p)MH(p) −
∑

q∈Q

V (q)MH(q)

Since N is live, there exists a marking M1 ∈ [MH〉 for each transition t with

M1[t〉M2 and

V (p)M1(p) −
∑

q∈Q

V (q)M1(q) = V (p)M2(p) −
∑

q∈Q

V (q)M2(q)

Together with M2(s) = M1(s) − W (s, t) + W (t, s) ∀s ∈ P this leads to:

V (p)M1(p) −
∑

q∈Q

V (q)M1(q)

= V (p)(M1(p) − W (p, t) + W (t, p)) −
∑

q∈Q

V (q)(M1(q) − W (q, t) + W (t, q))

= V (p)M1(p) − (
∑

q∈Q

V (q)M1(q)) + V (p)(W (t, p) − W (p, t)) −
∑

q∈Q

V (q)(W (t, q) − W (q, t))

⇒ V (p)(W (t, p) − W (p, t)) −
∑

q∈Q

V (q)(W (t, q) − W (q, t)) = 0

This implies directly that V is balanced.

We show the second statement by contradiction. Let w = t0q0 . . . be an

open-origin-path and V be a valuation function for p. Lemma 14 implies with

Definition 7 (2) that the set (•t0 ∩ Q) ∪ (t0
• ∩ {p}) is not empty or V (q0) = 0.

In the first case w is not open-origin in the latter case w is not a Q-path. ut

Lemma 15. Let p be a redundant place of a marked graph N . Let c = q1t1 . . . qntnq1

be a Q-cycle with places q1, . . . , qn. Then p is redundant due to the valuation

V ′ and its according reference set Q′ with:

V ′(q) =

{

V (q) − minc if q ∈ c ∩ Q

V (q) else
and minc = min

q∈c∩Q
V (q)

10

Proof. First observe that p 6∈ c ∩ Q, since c is a Q-cycle. Obviously part 1 of

Definition 7 is fulfilled because:

d′ = V ′(p)MN(p) −
∑

q∈Q′

V ′(q)MN(q) ≥ V (p)MN (p) −
∑

q∈Q

V (q)MN(q) = d ≥ 0

Additionally, Lemma 11 implies that at least one token lies on c and therefore

d′ − d ≥ minc.

By Lemma 11 and 14 V is balanced and V ′ is balanced again since the

valuation of the pre- and postset of every transition is decreased by the same

amount and part 2 holds, too.

Let us proceed to part 3. This inequality is automatically fulfilled for every

transition t′ 6= p• since V (p)W (p, t′) = 0 in this case. Therefore let p• = {t′}.

If t′ 6∈ c ∩ T we are done. If not, let q′ be the only element of c ∩ •t′. Then

(V ′(p)W (p, t′) −
∑

q∈Q′

V ′(q)W (q, t′)) − (V (p)W (p, t′) −
∑

q∈Q

V (q)W (q, t′))

= V (q′) − V ′(q′) = minc ≤ d′ − d

From this, it follows immediately: V ′(p)W (p, t′) −
∑

q∈Q′ V ′(q)W (q, t′) ≤ d′.

ut

Lemma 15 is essential for this section. It allows us to delete superfluous

places from a reference set in order to simplify its structure. As it will be

shown, this can be done until it becomes clear that p is actually a shortcut

place. To achieve this, we might have to change V (p), and for this we need a

variant of Lemma 15, which we will prove now.

In part 2 of Definition 7, the redundant place p is treated like an element

of Q except for the sign of V (p). In order to unify the handling of places, one

can change Definition 7 and demand that V (p) be negative or – what is done

in this paper – treat p as if it were both, an element of the preset of •p and

an element of the postset of p•, i.e. virtually changing the direction of the arcs

incident to p, see Figure 3.

q1 qnp

p�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

Fig. 3. Virtual cycles.

11

From this point of view, every Q-path of the form (•p)q1 . . . qn(p•) is part

of something like a cycle containing p. This is formalised in the following

definition.

Definition 16. Let p be a redundant place of a marked graph. If w = (•p)q1 . . .

. . . qn(p•) is a Q-path, the sequence pwp is called a virtual cycle. ut

Analogous to Lemma 15, virtual cycles can be removed from Q under cer-

tain circumstances. Different from Lemma 15, we need to show that V (p)

remains greater 0.

Lemma 17. Let p be a redundant place of a marked graph N with Q not

containing any Q-cycles. Let c = p(•p)q1 . . . qn(p•)p = pwp be a virtual cycle.

If MN (w ∩ Q) > MN(p), p is redundant for the valuation V ′ and the ac-

cording reference set Q′ with V ′(p) ≥ 1.

V ′(q) =

{

V (q) − minc if q ∈ c ∩ P

V (q) else
minc := min

q∈c∩P
V (q)

Proof. Condition 1 of the redundancy definition is fulfilled because:

d′ = V ′(p)MN (p) −
∑

q∈Q′

V ′(q)MN(q)

= (V (p) − minc)MN (p) − (
∑

q∈w∩Q

(V (q) − minc)MN(q) +
∑

q∈Q\w

V (q)MN (q))

= V (p)MN (p) −
∑

q∈Q

V (q)MN (q) + minc · ((
∑

q∈w∩Q

MN (q)) − MN (p))

= d + minc · ((
∑

q∈w∩Q

MN (q)) − MN (p)) > d ≥ 0

Obviously, condition 2 is fulfilled, since — as in the proof of Lemma 15 —

the valuation of the preset and the postset of each transition is decreased by

the same amount.

For the proof of condition 3, it is sufficient to examine the transition t′ = p•,

because for all other transitions t the term V ′(p)W (p, t)−
∑

q∈Q′ V ′(q)W (q, t)

is ≤ 0. Therefore let q′ be the only element of •t′ ∩ w. We get:

V ′(p)W (p, t′) − V ′(q′)W (q′, t′)

= (V (p) − minc)W (p, t′) − (V (q′) − minc)W (q′, t′)

= V (p)W (p, t′) − V (q′)W (q′, t′) + minc(W (q′, t′) − W (p, t′))

≤ d ≤ d′ (since W (q′, t′) − W (p, t′) = 0)

Additionally, V ′(p)MN(p)−
∑

q∈Q′ V ′(q)MN (q) = d′ > d ≥ 0 implies V ′(p) ≥ 1.

ut

12

Lemma 18. Let p be a redundant place of a marked graph N . If p is no loop-

only place, •p and p• are connected by a Q-path.

Proof. We can assume that Q is not empty (Proposition 9 (2)) and does not

have Q-cycles, since each application of Lemma 15 decreases their number.

Furthermore, we know from Lemma 14 that at least one Q-path starts at
•p. Lemma 14 also implies that no Q-path is open-end and therefore, for every

Q-path w = (•pq0 . . . qntn) starting at •p, we get that p ∈ •tn or t•n ∩Q 6= ∅. In

the latter case, we can extend w by qn+1 ∈ t•n and q•n+1, which is not on w by

absence of Q-cycles.

Since N is finite, such Q-paths can only be extended finitely often and at

least one path ends at p•. ut

We are now ready to prove the main theorem of this section.

Theorem 19. Every redundant place in a live and bounded marked graph is

a shortcut place.

Proof. Let p be a redundant place. If p is a loop-only place we are done.

Therefore let us exclude this case and assume that Q 6= ∅.

Lemma 18 implies that a Q-path between •p and p• exists, but we cannot

make assumptions about the markings of this Q-path. In the following Q is

reduced in a way that eventually only Q-paths between •p and p• remain.

As a first step, all Q-cycles are removed from Q by repeated application of

Lemma 15. This automatically removes all isolated Q-sets.

Then, by repeated application of Lemma 17 all virtual cycles are removed.

Let Q′ and V ′ denote the result. At least one Q′-path w = (•p) . . . (p•) exists

and because the lemma is applicable no longer, we know that MN (p) ≥ MN(w∩

Q) and p is a shortcut place. ut

A weaker version of this theorem could be proved using Theorem 2.25 from

[DE95] – and we thank Javier Esparza, who pointed this theorem out to us.

Assume p is a redundant place of a live and bounded marked graph N (or more

generally: free-choice net N); then the removal of p results again in a live and

bounded marked graph N ′, which is (roughly speaking) strongly connected by

[DE95, Theorem 2.25]; in particular the transitions •p and p• are connected

by a path in N ′. This result is close to the above theorem, but it is in fact

not useful for the purpose of the present paper, since it does not make any

statements about the marking of such a path; the pure existence of a path is

not sufficient for a place to be redundant. In Figure 4 an example for such a

place is given.

13

t 1

t 2

t 3

p1

p2

p3

p4

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

�����������
�����������
�����������

�����������
�����������
�����������

Fig. 4. Example for a non-redundant place with shortcut path

The set of firing sequences of the given net does not contain t2t3t3, but

this a firing sequence of the net obtained by deleting p1. Therefore p1 is not

redundant, although a ‘shortcut path’ t1p2t2p3t3 exists.

To determine whether a place is structurally redundant, one can set up an

instance of linear programming [STC98]. Our theorem leads to a more effi-

cient algorithm for live and bounded marked graphs: to check whether place

p is structurally redundant, regard each place p1 as an edge from •p1 to p•1,

weighted according to the initial marking. Remove the edge corresponding to p

and determine the shortest path from •p to p•; if its length (i.e. its cumulated

weight) is at most MN (p), p is redundant. With the basic version of Dijkstra’s

algorithm, this takes time O(n2), where n is the number of transitions. Dijk-

stra’s algorithm determines all distances from •p in increasing order; hence,

one cannot only stop when the distance for p• has been found, one can also

stop with a negative answer if all transitions with distance at most MN (p) have

been found and p• is not among them. If MN (p) = 0, one can delete all edges

corresponding to initially marked places, and simply check for a path from •p

to p• in the remainder e.g. with depth first search in time linear in the number

of transitions and places.

14

4 Determinacy of Petri Net Operations

In this section the determinacy of the decomposition method — with its op-

erations of secure transition contraction and redundant place deletion — is

studied. For this, we view these Petri net operations as a terminating reduction

system, such that determinacy is related to confluence and local confluence.

The notion ’reduction system’ comes from the field of term rewriting. The

following definition and lemma are taken from [BN98], where a detailed intro-

duction can be found.

Definition 20. Let A be a nonempty set with a, a′, . . . ∈ A.

(1) A reduction system is a pair (A,→) with →⊆ A × A. The relation → is

called reduction or reduction rule; →∗ denotes the reflexive and transitive

closure of →, and →= the reflexive closure.

(2) A reduction →

(a) is terminating if there exists no infinite chain a0 → a1 → a2 . . .

(b) is confluent if a →∗ a1, a →∗ a2 implies a1 →
∗ a′, a2 →

∗ a′

(c) is locally confluent if a → a1, a → a2 implies a1 →
∗ a′, a2 →

∗ a′

(d) has the diamond property if a → a1, a → a2 implies a1 → a′, a2 → a′

(3) An element a is

(a) in normal form if ¬∃a′. a → a′

(b) a normal form of a′ if a′ →∗ a and a is in normal form.

Lemma 21.

(1) A terminating relation is confluent iff it is locally confluent.

(2) If → is terminating and confluent, every element has a unique normal form.

Next we model the behaviour of the decomposition algorithm as a reduc-

tion system. As explained in the introduction, we can restrict ourselves to the

processing of one net, where repeatedly structurally redundant places are re-

moved and transitions from a distinguished set are securely contracted. Also,

we concentrate on live and bounded marked graphs, although the reduction

rules below are actually defined for general nets; Theorem 26 gives a result for

general Petri nets.

Definition 22. Let MGR := {(N, Λ)|N is a live and bounded marked graph,

Λ ⊆ T}, where Λ denotes the set of internal transitions to be contracted. We

define the following reduction rules on MGR.

(1) (N, Λ) →stc (N
t
, Λ − {t}), where secure contraction of t ∈ Λ is applied.

15

(2) (N, Λ) →rpd (N ′, Λ) if N ′ is obtained from N by deleting a redundant place.

(3) →red = →stc ∪ →rpd ut

Proposition 23. Applying →red preserves the marked graph properties (Def-

inition 6) as well as liveness and boundedness.

Proof. For boundedness refer to [VW02]. Deleting a redundant place does not

change the firing sequences of the net and therefore liveness is preserved. Since

the other places are not affected, the marked graph properties remain valid.

Let p′ = (p1, p2) be a place resulting from a secure transition contraction.

Since p1 has exactly one place in its preset, so has p′, and analogously for the

postset. Since the contraction of a transition t shortens each cycle c containing

t but leaves MN (c) unchanged, the cycles of N
t
still contain at least one token

each, and thus N
t
is live. ut

Furthermore, →red is a terminating reduction, as noted in [VW02] for gen-

eral Petri nets: only finite nets are considered, →stc reduces the number of

transitions, this stays the same under →rpd, and →rpd reduces the number of

places.

Each normal form of (N, Λ) ∈ MGR is a possible result of the decompo-

sition algorithm; thus, by Lemma 21, it suffices to show that →rpd is locally

confluent in order to prove decomposition to be determinate, because in this

case every element of MGR has a unique normal form.

To show the local confluence of →red, we need to show the local confluence

for every of the three combinations of →stc and →rpd as shown in Figure 5.

(N, Λ) →stc (N1, Λ1)

↓stc ↓∗red

(N2, Λ2) →∗

red (N ′, Λ′)

(N, Λ) →rpd (N1, Λ)

↓stc ↓∗red

(N2, Λ2) →∗

red (N ′, Λ′)

(N, Λ) →rpd (N1, Λ)

↓rpd ↓∗red

(N2, Λ) →∗

red (N ′, Λ′)

Fig. 5. The three possibilities for the local confluence of →red. The left and the upper application

of a reduction rule is specified, the existence of an appropriate (N ′, Λ′) has to be shown for each

case.

Local Confluence of →stc

We will show now the local confluence for secure transition contractions in

marked graphs. Before that, a result for arbitrary Petri nets similar to lo-

cal confluence is given, namely Theorem 26, which is something like a weak

diamond property.

16

Definition 24. Let N be an STG and N ′ an STG obtained from N by con-

tracting arbitrary transitions. Each p′ ∈ P ′ is a structured tuple with compo-

nents from P ∪ {?}. M
N ′

N (p′) is defined as the multi-set of those places p ∈ P

occurring in p′. ut

Lemma 25. Let N be a Petri net, N ′ be obtained from N by two transition

contractions and p′1, p
′
2 ∈ P ′. From M

N ′

N (p′1) = M
N ′

N (p′2) it follows that p′1 = p′2.

Theorem 26. Let N be a Petri net and t1, t2 ∈ T . If both N
t1,t2

and N
t2,t1

are defined then they are isomorphic.

Proof. Let N1 = N
t1,t2

and N2 = N
t2,t1

. Furthermore, f ⊆ P1 × P2 ∪ T1 × T2

is defined by f |T1×T2
= Id and (p1, p2) ∈ f ⇔ M

N1

N (p1) = M
N2

N (p2). We will

show that f is an isomorphism.

a) f is a function: Let (p1, p2), (p1, p
′
2) ∈ f ⇒ M

N2

N (p2) = MN2

N (p′2). Lemma

25 implies p2 = p′2.

b) f is injective: Let f(p1) = f(p′1) ⇒ M
N1

N (p1) = M
N1

N (p′1). From Lemma

25 follows p1 = p′1.

c) f is surjective, since p2 ∈ P2 matches one from the cases in Table 3 and

M
N2

N (p2) = M
N1

N (p1) holds for all possible corresponding places p1 in column

’reverse order’ (where exactly one of them exists).

d) f preserves the structure, i.e. W1(p1, t) = W2(f(p1), f(t)), W1(t, p1) =

W2(f(t), f(p1)) ∀p1 ∈ P1, t ∈ T1. This follows rather obviously from the defini-

tion of transition contraction. Since the weight of an arc incident to a composite

place is the sum of the related weights of the component places, we derive that

W1(p1, t1) =
∑

p∈M
N1
N

(p1)
W (p, t1) =

∑

p∈M
N2
N

(f(p1))
W (p, t1) = W2(f(p1), f(t1)).

Analogous for the second case. ut

The proof for the following lemma uses Theorem 26; if this is not applicable,

we show that – since N ∈ MGR – in N1 and N2 loop-only places can be

deleted such that the contraction of t2 and t1 resp. is applicable afterwards.

After the contraction, extended duplicates can be deleted such that the results

are isomorphic.

Lemma 27. Let (N, Λ) ∈ MGR, (N, Λ) →stc (N1, Λ1) and (N, Λ) →stc (N2, Λ2).

Then an (N ′, Λ′) ∈ MGR exists with (N1, Λ1) →
∗
red (N ′, Λ′) and (N2, Λ2) →

∗
red

(N ′, Λ′).

Local Confluence of →rpd

We will now proceed to the next part of the local confluence proof. Although

the local confluence of redundant place deletion seems rather obvious, some

effort is already needed to prove it at least for marked graphs.

17

Let p1, p2 be redundant places of N ∈ MGR with p1 6= p2. Due to Theorem

19 we can assume that p1 and p2 are shortcut places and the reference sets

consist of the places of the corresponding paths.

We will distinguish three cases: 1) p1 6∈ Q2, p2 6∈ Q1, 2) p1 6∈ Q2, p2 ∈ Q1

(w.l.o.g.) and 3) p1 ∈ Q2, p2 ∈ Q1.

The first case obviously fulfils the diamond property, since the deletion of

one of the redundant places does neither affect the other one nor its reference

set. Furthermore, it includes the case that one place, lets say p1, is a loop-only

place. Then p2 6∈ Q1 = ∅ and p1 6∈ Q2, because p1 is only adjacent to one

transition.

For the second case take a look at Figure 6. Since p1 is not a loop-only

place, p2 lies on a Q1-path w1 = •p1q
1
1 . . . qm

1 p1
•. Since p2 is not a loop-only

place either, a Q2-path w2 = •p2q
1
2 . . . qn

2 p2
• exists. This implies that there is a

path w connecting •p1 and p1
• and using only places from q1

1 . . . qm
1 excluding

p2 and from q1
2 . . . qn

2 . MN (p1) ≥
∑m

i=1 MN (qi
1) and MN (p2) ≥

∑n

i=1 MN(qi
2)

(Definition 7(1)) directly imply that MN (p1) ≥
∑m

i=1 MN (qi
1) − MN (p2) +

∑n

i=1 MN(qi
2); hence, w also shows that p1 is redundant; the corresponding

reference set does not contain p2 and we are done by case (1).

p1

p2q1
1 q1

m

q2
nq2

1

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
����

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

Fig. 6. Two redundant places p1, p2 with p1 6∈ Q2, p2 ∈ Q1

The last case p1 ∈ Q2, p2 ∈ Q1 is impossible, because it implies

MN (p1) ≥
∑

q∈Q1\{p2}

MN (q) + MN (p2) MN(p2) ≥
∑

q∈Q2\{p1}

MN (q) + MN (p1)

From this we get immediately:

MN (p1) = MN (p2) and
∑

q∈Q1\{p2}

MN(q) =
∑

q∈Q2\{p1}

MN(q) = 0 (∗)

Since p1 ∈ Q2, there are Q2-paths •p2 . . . •p1 and p•1 . . . p•2 not using p1,

and analogously there are Q1-paths •p1 . . . •p2 and p•2 . . . p•1 not using p2.

Therefore, either a cycle c using only places from (Q1 ∪ Q2) \ {p1, p2} exists

which contradicts N being live by Lemma 11, since (∗) implies MN (c) = 0; or

18

(Q1∪Q2)\{p1, p2} = ∅. In the latter case, p1 and p2 are extended duplicates of

each other with the same initial marking; thus, removing either of them gives

the same net up to isomorphism.

Altogether the following lemma holds.

Lemma 28. Let (N, Λ) ∈ MGR, (N, Λ) →rpd (N1, Λ1) and (N, Λ) →rpd

(N2, Λ2). Then an (N ′, Λ′) ∈ MGR exists with (N1, Λ1) →=
rpd (N ′, Λ′) and

(N2, Λ2) →
=
rpd (N ′, Λ′).

Observe that two steps of →rpd fulfil the diamond property or lead to

isomorphic results; in particular we have not used →stc.

Local confluence of →stc and →rpd

Lemma 29. Let (N, Λ) ∈ MGR, (N, Λ) →rpd (N1, Λ1) and (N, Λ) →stc

(N2, Λ2). Then an (N ′, Λ′) ∈ MGR exists with (N1, Λ1) →∗
red (N ′, Λ′) and

(N2, Λ2) →
∗
red (N ′, Λ′).

Proof. Let p be the redundant place and t the transition to be contracted. In

marked graphs p is either a loop-only place or a shortcut place.

In the first case t and p are not adjacent because the contraction of t

is possible for (N, Λ), i.e. p forms a loop with another transition and the

operations can be performed independently.

If p is not a loop-only place, there are the following possibilities: 1) t is

neither adjacent to p nor part of the path making p redundant; then both

operations are independent of each other again. 2) t is part of the path but not

adjacent to p. The contraction of t shortens the path but does not interrupt

it, and also the sum of the markings remains unchanged; therefore the two

operations are independent. 3) t is adjacent to both the path and p – leading to

two sub-cases, one of them shown in Figure 7(a). In the other one, analogously

the path starts from t and p ∈ t•.

We will only consider the case depicted in (a), with the results of contraction

and deletion shown in (b) and (c) resp. Each place (ps, pxi) in (b) is a shortcut

place of {(p1, ∗), . . . , (pn−1, ∗), (pn, pxi)} because they give a path and the

initially marking of this path as well as MN(ps) are increased by the same

value MN (xi). Therefore, these shortcut places can be deleted yielding a Petri

net which also results from (c) when contracting t. ut

Altogether, our results can be collected in the central theorem of this sec-

tion.

Theorem 30. The reduction rule →red is confluent and terminating for marked

graphs.

19

3

n

x1 xk

x1 xk

1

1

s

2

n+1

n

���������������������������������������
���������������������������������������

�� ����������������������
����������������������

��

	�	�	�	�	�		�	�	�	�	�	
�
�
�
�
�

�
�
�
�
�

��

3x1 xk

1

(1,*)

n

2

(n,xk)

(s,xk)

(n,x1)

(s,x1)

�
�
�
�
�
�

�
�
�
�
�
�

�������������������������� ����������������������

����������������������

��������������������������
����������������������

��������������������������
����������������������

��������������������������
����������������������

3

x1 xk

x1 xk

1

n+1

n

1

2

n

��

�� ����������������������
����������������������

�������������������������� � � � � � � � � � �

!�!�!�!�!�!�!!�!�!�!�!�!�!!�!�!�!�!�!�!
"�"�"�"�"�""�"�"�"�"�""�"�"�"�"�"

#�#�#�#�#�#�##�#�#�#�#�#�#$�$�$�$�$�$$�$�$�$�$�$

(a) (b) (c)

Fig. 7. Confluence of shortcut place deletion and transition contraction. (a) p ≡ ps is a shortcut

place of {p1, . . . , pn} and t ≡ tn+1 is the transition to be contracted. The net in (b) is obtained by

contracting tn+1, (c) by deleting ps.

Corollary 31. The decomposition algorithm of [VW02] is determinate for

marked graphs.

20

5 Conclusion

We have shown that the STG decomposition algorithm presented in [VW02]

is determinate if applied to live and bounded marked graphs, a subclass of

considerable interest in the area of circuit design. The proof of this result is

based on several statements, and only one of them could be shown for general

Petri nets. It would be clearly interesting to generalise at least some other of

the partial results to other net classes. We currently look at nets where the

marked-graph requirements are only violated ‘in a few places’; such nets also

turn up often in circuit design. A problematic point is that our proofs relied

on the liveness characterization of marked graphs via the markings of cycles

several times.

Related to the determinacy result, but also of independent interest is our

conceptionally and algorithmically easy characterization of redundant places

in live and bounded marked graphs, a rather old concept. Again, we would like

to generalise this result; Until now, it is only clear that in S-Systems [DE95]

— which coincide with finite automata — no place can be redundant if every

place has at least one transition in its postset.

References

[Ber87] G. Berthelot. Transformations and decompositions of nets. In W. Brauer et al., editors,

Petri Nets: Central Models and Their Properties, LNCS 254, 359–376. Springer, 1987.

[BN98] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,

Cambridge, 1998.

[Chu87] T.-A. Chu. Synthesis of Self-Timed VLSI Circuits from Graph-Theoretic Specifications.

PhD thesis, MIT, 1987.

[CKK+97] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev. Petrify: a

tool for manipulating concurrent specifications and synthesis of asynchronous controllers.

IEICE Transactions on Information and Systems, E80-D, No. 3:315–325, 1997. More

information at http://www.lsi.upc.es/ jordic/petrify/petrify.html.

[DE95] J. Desel and J. Esparza. Free Choice Petri Nets. Cambridge University Press, Cambridge,

1995.

[STC98] M. Silva, E. Teruel, and J.M. Colom. Linear algebraic and linear programming techniques

for the analysis of place/transition net systems. In Lectures on Petri Nets I; Basic Models,

LNCS 1491, 309–373. Springer, 1998.

[VW02] W. Vogler and R. Wollowski. Decomposition in asynchronous circuit design. In J. Cor-

tadella et al., editors, Concurrency and Hardware Design, Lect. Notes Comp. Sci. 2549,

152 – 190. Springer, 2002.

21

Appendix

A Proofs

A.1 Proof of Lemma 25

Proof. This proof works with the tables 1 and 2. In the first one, all possibilities

for the structure of a place after two transition contractions are listed. In the

latter one these 6 cases are instantiated resulting in 30 possible combinations

of places from the original net.

In the following we will show the impossibility of different cases - esp. the

more complicated ones. For most cases this becomes clear at first sight, e.g.

if (p1, p1) is part of the place, which means that p1 ∈ •t and p1 ∈ t• for one

of the contracted t. For such a configuration an extension of the definition of

transition contraction seems possible. But for something like ((p1, ?), (p1, p2)) -

p1 is treated in two incompatible ways during the first contractions - a sensible

extension is not in sight.

Hence, the cases 2, 4, 6-9, 11-14, 16-22, 26 and 29 instantly drop out. The

remaining impossible cases 23-25, 27, 28 and 30 are considered in more detail.

Case 23 drops out, because p1 is part of the preset of the first transition

due the occurrence of (p1, p2) or otherwise p1 has to be element of the postset,

too, due to the occurrence of (p2, p1). Therefore p1 forms a loop with the

first contracted transition. With the same argumentation cases 24 and 28 are

impossible.

Case 25 leads to a circle or an arc with weight 2, see figure 8. Case 27 is very

similar to the previous one, only the pre - and postsets of t1 are exchanged.

At last case 30 remains which is more complicated but nevertheless turns

out to be impossible, see figure 9.

Obviously we can restrict our considerations to the cases in table 3, second

column. We can distinguish three cases for M
N ′

N (p′1).

(1) M
N ′

N (p′1) = {p1} = M
N ′

N (p′2). This is only possible if both p′1 and p′2 are in

the form of case 1 which implies p′
1 = p′2.

(2) M
N ′

N (p′1) = {p1, p2} = M
N ′

N (p′2). This implies p′1 ∈ {((p1, p2), ?), ((p2, p1), ?),

((p1, ?), (p2, ?)), ((p2, ?), (p1, ?))}. Each of these cases excludes the others

e.g. if p′1 = ((p1, p2), ?) there is no place p′′1 = ((p2, p1), ?), since the existence

of p′1 implies that p1 is an element of the first contracted transition but the

existence of p′′1 implies p1 is an element of the postset. This can be true but

then the contraction would not be possible. Therefore M
N ′

N (p′1) = M
N ′

N (p′2)

implies p′1 = p′2 for this case.

22

(3) M
N ′

N (p′1) = {p1, p2, p3} = M
N ′

N (p′2). Analogous to the second case we obtain

twelve possibilities for p1 which all exclude each other.

1 ((p1, p2), (p3, ?)) ((p1, ?), (p2, p3))

2 ((p1, p3), (p2, ?)) ((p1, ?), (p3, p2))

3 ((p2, p1), (p3, ?)) ((p2, ?), (p1, p3))

4 ((p2, p3), (p1, ?)) ((p2, ?), (p3, p1))

5 ((p3, p1), (p2, ?)) ((p3, ?), (p1, p2))

6 ((p3, p2), (p1, ?)) ((p3, ?), (p2, p1))

To see this, it is not necessary to consider all 66 cases. It suffices to show

that both cases in the first line exclude all other places since a suitable

renaming of the places from N results in them. ((p1, p2), (p3, ?)) is in conflict

with all places not containing (p3, ?) as a sub-place. Since (p3, ?) implies

that p3 is not adjacent to the first contracted transition the occurrence of

e.g. (p1, p3) implies the opposite. From the remaining three cases (ll. 3,5,6)

we can exclude the ones containing (p2, p1) as a component since p1 would

be a loop place. The last place (l. 5) cannot exist since (p1, p2) would be a

loop place. Analogous for ((p1, ?), (p2, p3)). ut

Group Structure

1 ((p, ?), ?)

2 ((p, p), ?)

3 ((p, ?), (p, ?))

4 ((p, ?), (p, p))

5 ((p, p), (p, ?))

6 ((p, p), (p, p))

Table 1. Structures of possible places. This table is obtained from all syntactically possible places

by omitting cases which contains a leading ?, e.g. (?, (p, ?)). Here a p is only a placeholder; in table

2 all possible allocations are considered.

A.2 Proof of Lemma 27

Proof. If both N
t1,t2

and N
t2,t1

are defined, Theorem 26 implies that the results

are isomorphic. In this case even the diamond property is fulfilled.

Therefore assume that w.l.o.g. N
t1,t2

is not defined. Since N1 = N
t1

is

defined by hypothesis, the contraction of t2 is not possible in N1, although it

is possible in N . Since N1 is a marked graph — in particular no arc weight

becomes greater than 1 —, the contraction of t1 in N must have generated a

loop place adjacent to t2, because t1 and t2 form a cycle with two places in N .

23

No. Group # Places Example Possible If not, why?

1 1 1 ((p1, ?), ?) •

2 2 1 ((p1, p1), ?) - loop

3 2 2 ((p1, p2), ?) •

4 3 1 ((p1, ?), (p1, ?)) - loop

5 3 2 ((p1, ?), (p2, ?)) •

6 4 1 ((p1, ?), (p1, p1)) - ` definition

7 4 2 ((p1, ?), (p1, p2)) - ` definition

8 4 2 ((p1, ?), (p2, p1)) - ` definition

9 4 2 ((p2, ?), (p1, p1)) - loop

10 4 3 ((p1, ?), (p2, p3)) •

11 5 1 ((p1, p1), (p1, ?)) - ` definition

12 5 2 ((p1, p1), (p2, ?)) - loop

13 5 2 ((p1, p2), (p1, ?)) - ` definition

14 5 2 ((p2, p1), (p1, ?)) - ` definition

15 5 3 ((p1, p2), (p3, ?)) •

16 6 1 ((p1, p1), (p1, p1)) - loop

17 6 2 ((p1, p1), (p1, p2)) - loop

18 6 2 ((p1, p1), (p2, p1)) - loop

19 6 2 ((p1, p2), (p1, p1)) - loop

20 6 2 ((p2, p1), (p1, p1)) - loop

21 6 2 ((p1, p1), (p2, p2)) - loop

22 6 2 ((p1, p2), (p1, p2)) - loop

23 6 2 ((p2, p1), (p1, p2)) - loop

24 6 3 ((p1, p2), (p3, p1)) - loop

25 6 3 ((p1, p2), (p1, p3)) - loop or weight 2

26 6 3 ((p1, p1), (p2, p3)) - loop

27 6 3 ((p2, p1), (p3, p1)) - weight 2

28 6 3 ((p2, p1), (p1, p3)) - weight 2

29 6 3 ((p2, p3), (p1, p1)) - loop

30 6 4 ((p1, p2), (p3, p4)) - loop
Table 2. All combinatory possible places (up to isomorphism) after two transition contractions.

This table is obtained from table 1 by instantiating p. The places pi are pairwise different. The

places which have an ’` definition’-entry are absolutely not possible, since a place is treated in two

incompatible ways. For the other impossible cases (with a ’circle’ or ’weight 2’-entry) an extension

of the definition is supposable which covers such cases.

24

(a)

����������������������
���������������������� ����������������������

����������������������

1

2 3

1 2

(b)

��������������������������
���������������������� ����������������������

����������������������

1

2 3

1 2

Fig. 8. Case 25 - p′ = ((p1, p2), (p1, p3)). p1 has to be an element of the preset of the first contracted

transition (t1), p2 and p3 have to be elements of the postset. To obtain p′, p1 has to be element of
•t2 and p2 or p3 have to be element of t2

• (a) leading to a circle when contracting in reverse order.

Alternatively, p2 can be element of •t2 and p3 element of t2
• (b) leading to an arc with weight 2

when contracting in reverse order.

1

2

3

4

1 2	�	�	�	�	�		�	�	�	�	�	

�
�
�
�
�

�
�
�
�
�
 ����������������������

����������������������

1

2

3

4

1 2
�
�
�
�
�

�
�
�
�
�

���������������������� ����������������������

����������������������

(a) (b)

Fig. 9. Case 30 - ((p1, p2), (p3, p4)). p1 and p3 have to be in the preset of the first transition to be

contracted (t1), p2 and p4 in the postset. For the connection to t2 there are several possibilities; all

of them satisfy that p1 or p2 (or both) are in the preset and p3 or p4 (or both) are in the postset,

which leads to 9 sub-cases. Exemplary two of them are considered. (a) leads to an arc with weight

2 when t2 is contracted first and (b) leads to a circle. The other cases are similar to these ones or

contain them.

Since N is a live marked graph, this cycle contains at least one token making

the loop place redundant.

This situation is schematically shown in Figure 10(a): each place represents

a set of places connected to t1 and t2 in the same way, e.g. places of type 1

are in the preset of t1 and not adjacent to t2. Figure 10(b) and (c) depict the

results of contracting t1 and t2 resp. in the same way, e.g. places of type (2, 4)

are pairs (p, p′) with p of type 2 and p′ of type 4.

Places of type (2, 5) and (5, 2) are loop-only places, which can be removed

as noted above; afterwards, the other transition contraction becomes possible.

These contractions give places of types ((1, 4), ∗), ((1, 5), (3, ?)), ((1, 5), (2, 4)),

((6, ∗), (2, 4)), ((6, ∗), (3, ∗)) in the first case and ((1, ∗), (4, ∗)), ((1, ∗), (5, 3)),

((6, 2), (5, 3)), ((6, 2), (4, ∗)), ((6, 3), ∗) in the second. We will argue that the

resulting nets are isomorphic after removal of some redundant places.

As noted in the proof of Theorem 26, the connections of these places to the

remaining transitions are determined by their at most four components, and

analogously for the initial marking. In particular, places of type ((1, 5), (2, 4))

25

No. Given Order Reverse Order

1 ((p1, ?), ?) ((p1, ?), ?)

2 ((p1, p2), ?) ((p1, ?), (p2, ?))

3 ((p1, ?), (p2, ?)) ((p1, p2), ?)

4 ((p1, ?), (p2, p3)) ((p1, p2), (p3, ?)) / ((p2, ?), (p1, p3))

5 ((p1, p2), (p3, ?)) ((p1, ?), (p2, p3)) / ((p1, p3), (p2, ?))

Table 3. Possible places after two transition contractions. These are the cases from table 2 which

turned out to be possible for Definition 10. In the column ’reverse order’ the places resulting from

contracting the transitions in reverse order are written.

(a)

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

���
���
���
���
���
���
���
���
���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�

1 2 3

4 5 6

1 2

(1,4)

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

2

(1,5)

(2,4) (3,*)

(6,*)

(2,5)

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

1

(1,*)

(4,*)

(5,2) (6,3)

(5,3)

(6,2)

(b) (c)

Fig. 10. (a) Scheme of a net fragment where contraction generates a loop (b) After t1-contraction

(c) After t2-contraction.

are connected in the same way as places of type ((1, 4), ∗) in the first case –

since t1 and t2 are not present anymore – and they carry even more tokens,

since at least one of a type-2 and a type-5 place is marked in N . Therefore,

places of type ((1, 5), (2, 4)) are extended duplicates, and so are places of type

(6, 2), (5, 3)); we remove them in the two nets.

For the other types, we find a matching between ((1, 4), ∗) and ((1, ∗), (4, ∗)),

((1, 5), (3, ∗)) and ((1, ∗), (5, 3)) etc., which matches each place of type ((1, 4), ∗)

to the place of type ((1, ∗), (4, ∗)) with the same component-places etc. By the

above, this gives an isomorphism between the remaining nets when the above

extended duplicates are removed. ut

26

