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Abstract

Signal Transition Graphs (STGs) are a version of Petri nets for the specifica-
tion of asynchronous circuit behaviour. It has been suggested to decompose such
a specification as a first step; this leads to a modular implementation, which
can support circuit synthesis by possibly avoiding state explosion or allowing
the use of library elements.

In a previous paper, the original method was extended and shown to be
much more generally applicable than known before. But further extensions
are necessary, and some are presented in this paper, e.g.: to avoid dynamic
auto-conflicts, the previous paper insisted on avoiding structural auto-conflicts,
which is too restrictive; we show how to work with the latter type of auto-
conflicts. This and another simple extension makes it necessary to restructure
presentation and correctness proof of the decomposition algorithm.

1 Introduction

Decomposition of Signal Transition Graphs (STGs) has been suggested as a method
to alleviate the problem of state space explosion. As a significant improvement com-
pared to previous efforts, it was shown in [VW02] with a comparatively simple cor-
rectness proof that decomposition can be applied quite generally. Nevertheless, the
study of benchmark examples has revealed that further improvements of the method
are needed. In the present paper, we give several improvements, also restructuring
the correctness proof in a way that should make the incorporation of further im-
provements easier. Since this paper builds so much on [VW02], there are numerous
quotations from [VW02]; we even have to repeat some proofs that we expand to give
new practically relevant results.

STGs, see e.g. [Wen77, RY85, Chu86], are a version of Petri nets for the specifica-
tion of asynchronous circuit behaviour; they are supported by the tools petrify (e.g.
[CKK+97]) and CASCADE [BEW00], which in many cases can synthesize a circuit

∗This work was partially supported by the DFG-project ‘STG-Dekomposition’ Vo615/7-1 /
Wo814/1-1.
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from an STG. The transitions are labelled with the rising and falling edges of input
and output signals; the latter are thought to be controlled by the circuit, the former
by its environment. If the occurrence of an input signal in some state is not specified,
this formulates the assumption on the environment not to produce this signal; this is
in contrast e.g. to I/O-automata [Lyn96].

To study the principle ideas of decomposition, STGs were only labelled with signals
instead of signal edges in [VW02]. Here, we consider signal edges; in practical STGs,
rising and falling edges of a signal have to alternate, i.e. the STGs have to be consistent.
As one improvement we show in the present paper that decomposition of a consistent
STG results in consistent components.

Being Petri nets, STGs allow a causality-based specification style, and they give
a compact representation of the desired behaviour since they represent concurrency
explicitly. As a first step in the synthesis of a circuit corresponding to a given STG N ,
one usually constructs the reachability graph, where one might encounter the state
explosion problem; i.e. the number r of reachable states (markings) might be too large
to be handled. To avoid this, one can try to decompose the STG into components Ci;
their reachability graphs taken together can be much smaller than r since r might be
the product of their sizes. Even if this is not achieved, it might already be interesting
enough if each component has a smaller reachability graph: the reachability graph of
N might be too large for the available memory space; even if memory is no limiting
factor, further steps of the circuit synthesis might easily take quadratic time in the
number of states. Decomposition can also be useful independently of size considera-
tions: there are examples where N cannot be handled by a specific synthesis method,
while the Ci can; also, one may be able to split off a library element, and this is
valuable in particular for arbiters, which are complicated to synthesize; see [VW02]
for an example.

Thus, instead of synthesizing one large circuit from N , we decompose N into
components Ci, synthesize a circuit from each Ci (e.g. using tools or library look-ups)
and compose these circuits into one system of communicating circuits.

[Chu87a, Chu87b, KKT93] suggest decomposition methods for STGs, but these
approaches can only deal with very restricted net classes. [VW02] deals with STGs
of arbitrary graph-theoretic structure, but with some limitations on the labelling.
While there is not even a correctness definition in [KKT93], [Chu87a] proves that the
parallel composition of the components generated by decomposition of N is language
equivalent to N . In [VW02], it is argued that instead of language equivalence a new
bisimulation-type relation is more adequate, and this correctness definition is also
used here.

The method in [Chu87a] constructs for each output signal s a component Ci that
generates this signal; Ci has as inputs all signals that – according to the net structure
– may directly cause s. The component is obtained from the STG N by contracting all
transitions belonging to the signals that are neither input nor output signals for this
component; these transitions are internal in intermediate stages of the decomposition.
So-called secure transition contraction of internal transitions is also the main operation
in [VW02], and components may also generate several outputs as in [KKT93]. An
additional operation is the deletion of redundant places (see e.g. [Ber87] for an early
reference), which is already essential for the decomposition of the very simple marked
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graphs. For a more detailed discussion of the literature, see [VW02].

Our improvements of the decomposition method from [VW02] are motivated by
our study of examples from a collection of benchmark examples that circulate in the
STG-community. For example, the initial STG N was required to be deterministic in
[VW02], but some benchmark examples have internal (or dummy) transitions; it is a
simple observation that we can try to remove them with secure transition contractions,
which works in many cases. Further, it was required that N has no structural conflicts
between input and output signals; this ensures that there are no dynamic conflicts
between inputs and outputs, which in principle make it impossible to turn N into
a reliable (i.e. hazard-free) digital circuit. The whole correctness proof in [VW02]
makes this assumption, and ensures that there are no such structural conflicts in
the constructed components. Motivated by an example, we untangle the proof to
demonstrate: correctness of decomposition does not depend on this assumption; the
constructed components only have structural or dynamic conflicts between input and
output signals, if N has such conflicts between the same signals.

The notion of an admissible operation was introduced in [VW02] in order to struc-
ture the correctness proof, also with an eye on possible extensions of the method.
From our study of examples, we found that we should add another simple operation
besides secure transition contraction and deletion of redundant places: the deletion
of internal transitions that are connected to places only by loops. This operation is
quite trivial, but we could not insert it directly into the correctness proof of [VW02].
Therefore, we had to restructure this proof including a change to the notion of ad-
missible operation, and we present decomposition in this paper in a slightly different
way. This should also make further possible additions to the list of operations easier.

The rewritten proof also supports our main contribution concerning auto-conflicts,
i.e. conflicts between transitions labelled with the same signal edge. If such a conflict
is dynamic, then the STG is not deterministic and cannot be implemented directly
as a circuit; a simple condition that ensures the absence of dynamic auto-conflicts
without generating the reachability graph is to require the absence of structural auto-
conflicts. Therefore, it is required in [VW02] that the initial STG is free of structural
auto-conflicts; if a transition contraction introduces such a conflict, some form of
backtracking is applied. There are examples where there are structural auto-conflicts
initially which are not dynamic; decomposition as in [VW02] cannot handle such
examples.

We show that decomposition can be applied in such cases; if the contractions do
not introduce new structural auto-conflicts (something that can be checked locally),
the resulting components will not have a dynamic auto-conflict. Similarly, we can
carry on without backtracking if a structural auto-conflict is not a dynamic one; this
has the potential for better results, since backtracking leads to components with more
signals and, thus, larger reachability graphs.

For the time being, we assume that the user has to ensure that a structural auto-
conflict is not a dynamic one. Such user intervention is of course error-prone, and
in the presence of dynamic auto-conflicts the correctness proof fails, so there is the
danger that the result of the decomposition will exhibit incorrect behaviour. A nice
final touch to our presentation is the following result: if due to an error, a dynamic
auto-conflict is present in an intermediate stage of some component, then this is
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essentially preserved and therefore also present in the final component. Since for
circuit synthesis the reachability graph of this component will be built, the conflict
will be discovered and the utilization of a faulty component can be avoided.

After presenting basic definitions of STGs in Section 2, we have a closer look at
contractions in Section 3 refining the results of [VW02]. In Section 4, we give the
new description of our method in detail. The new features of the method have been
integrated in our tool DESI; we present some first results of our improvements in
Section 5. Topics for future research are discussed in the conclusion in Section 6.

We thank Jordi Cortadella, Mark Schäfer and Ralf Wollowski for very helpful
discussions, and Josep Carmona and Ivan Blunno for providing us with the benchmark
examples.

2 Basic Notions of Signal Transition Graphs

In this section, we introduce the kind of Petri nets we study in this paper, some
standard behaviour notions, and the operation of parallel composition. For general
information on ordinary Petri nets, the reader is referred to e.g. [Pet81, Rei85]. A
Signal Transition Graph or STG is a net that models the desired behaviour of an
asynchronous circuit. Its transitions are labelled with edges of signals from some
alphabet Σ or with the empty word λ, and we distinguish between input and output
signals. A transition labelled with λ represents an internal, unobservable signal, which
could be an internal signal between components of a circuit. In this paper, we use
λ-labelled transitions only in the initial STG, where we call them dummy transitions
which have to be removed in a first phase, or in intermediate phases of our algorithm,
where we call them divining transitions.

Thus, an STG N = (P, T, W, l, MN , In,Out) is a labelled net consisting of finite
disjoint sets P of places and T of transitions, the arc weight W : P ×T ∪T ×P → IN0,
the labelling l : T → In{+,−}∪Out{+,−}∪ {λ}, the initial marking MN : P → IN0

and the disjoint sets In ⊆ Σ and Out ⊆ Σ of input and output signals; IN0 denotes
the natural numbers including 0. Usually, an STG is required to be consistent (i.e.
signal edges are required to alternate) as defined below.

We usually use a, b, c for input and x, y, z for output signals; In{+,−} = {a+, a− |
a ∈ In} is the set of input signal edges, where a+ is the rising and a− the falling edge
of signal a – and the meaning of Out{+,−} or Σ{+,−} is analogous. For signal s, we
write s± for any one of its edges if the direction does not matter; writing s± several
times in some context refers to the same edge of s. If l(t) = s±, then s is the signal
of t and t is observable; if s ∈ In (s ∈ Out resp.), then t is an input (an output resp.)
transition, drawn as a black (a white resp.) box; if l(t) = λ, then t is an internal
transition, drawn as a line or a box with two lines in it. When we introduce an STG
N or N1 etc., then we assume that implicitly this introduces its components P , T ,
W , . . . or P1, T1, . . . etc.

We say that there is an arc from x ∈ P ∪ T to y ∈ P ∪ T if W (x, y) > 0. For
each x ∈ P ∪ T , the preset of x is •x = {y | W (y, x) > 0} and the postset of x is
x• = {y | W (x, y) > 0}. If x ∈ •y ∩ y•, then x and y form a loop. A marking is a
function P → IN0 giving for each place a number of tokens. We now define the basic
firing rule.
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• A transition t is enabled under a marking M , denoted by M [t〉, if W (., t) ≤ M .

If M [t〉 and M ′ = M + W (t, .) − W (., t), then we denote this by M [t〉M ′ and
say that t can occur or fire under M yielding the follower marking M ′.

• This definition of enabling and occurrence can be extended to sequences as
usual: a finite sequence w ∈ T ∗ of transitions is enabled under a marking M ,
denoted by M [w〉, and yields the follower marking M ′ when occurring, denoted
by M [w〉M ′, if w = λ and M = M ′ or w = w′t, M [w′〉M ′′ and M ′′[t〉M ′ for
some marking M ′′ and transition t. If w is enabled under the initial marking,
then it is called a firing sequence.

• We extend the labelling to sequences of transitions as usual, i.e. l(t1 . . . tn) =
l(t1) . . . l(tn); note that internal signals are automatically deleted in this image
of a sequence. With this, we lift the enabledness and firing definitions to the
level of signal edges: a sequence v of signal edges from Σ{+,−} is enabled under
a marking M , denoted by M [v〉〉, if there is some transition sequence w with
M [w〉 and l(w) = v; M [v〉〉M ′ is defined analogously. If M = MN , then v is
called a trace. The language L(N) is the set of all traces. We call two STGs
language equivalent if they have the same traces.

An STG is consistent (which is usually required) if, for all signals s, in every
trace of the STG the edges s+ and s− alternate and there are no two traces
where s+ comes first in the one and s− in the other.

• A marking M is called reachable if MN [w〉M for some w ∈ T ∗. The reachability
graph of N consists of the reachable markings as vertices (with MN as a des-
ignated initial vertex) and with an edge from M to M ′ whenever M [t〉M ′ for
some transition t; such an edge is labelled t or l(t), depending on the context.
The STG is k-bounded if M(p) ≤ k for all places p and reachable markings M ;
it is safe if it is 1-bounded and bounded if it is k-bounded for some k.

Often, STGs are assumed to be safe and to have only arcs with weight 1. In the
first place, we are interested in such STGs; but we also deal with bounded STGs with
larger arc weights, in particular since they can turn up in our decomposition algorithm.
Note that there is no additional problem to synthesize a circuit from such an STG if
the reachability graph is used as an intermediate construction [VYCLdM94, Wol97].

W.r.t. consistency, we have the following obvious result:

Lemma 2.1 Let N and N be STGs with N being consistent. If L(N) ⊆ L(N), then
N is consistent, too.

The idea of input and output signals is that only the latter are under the con-
trol of the circuit modelled by an STG. The STG requires that certain outputs (or,
more precisely, output signal edges) are produced provided certain inputs have oc-
curred, namely those outputs that are enabled under the marking reached by the
signal occurrences so far. At the same time, the STG describes assumptions about
the environment that controls the input signals: if some input signal is not enabled,
the environment is supposed not to produce this input at this stage; if it does, the
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specified system may show arbitrary behaviour, and it might even malfunction. Inputs
and outputs will become really important in Section 4.

In this paper, we mainly deal with specifications that completely specify the desired
behaviour in the sense of determinism: an STG is deterministic if it does not have
internal transitions and if for each of its reachable markings and each signal edge s±,
there is at most one s±-labelled transition enabled under the marking. It is useful to
distinguish two forms how determinism can be violated.

• Two different transitions t1 and t2 are enabled concurrently under a marking M
if W (., t1)+W (., t2) ≤ M , i.e. if there are enough tokens for both transitions to-
gether. If both transitions are labelled with the same signal edge s± ∈ Σ{+,−},
then s is enabled auto-concurrently under M . (Note that this cannot happen
in a consistent STG; there, t1 and t2 cannot even have the labels s+ and s−.
With the former observation, some proofs of the present paper could be sim-
plified; we try to make little use of consistency in our proofs in order to allow
application of our results outside the area of circuit design.) An STG is without
auto-concurrency, if no signal is enabled auto-concurrently under any reachable
marking.

• Two different transitions t1 and t2 are in conflict under a marking M if they are
not enabled concurrently under M , but M [t1〉 and M [t2〉. If both transitions
are labelled with the same signal edge s± ∈ Σ{+,−}, then s is in auto-conflict
under M and the STG has a (dynamic) auto-conflict if M is reachable. (Note
that, for a consistent STG, t1 and t2 cannot have the labels s+ and s−.) If the
signal of one of the transitions is an input signal, while the signal of the other is
an output signal, then there is an input/output-conflict under M and the STG
has a (dynamic) input/output-conflict if M is reachable.

• Two different transitions t1 and t2 – and also their signals – are in structural
conflict if •t1 ∩ •t2 
= ∅. If both transitions are labelled with the same signal
edge s± ∈ Σ{+,−}, then s is in structural auto-conflict and the STG has such
a conflict. If t1 is an input (or a λ-labelled) and t2 an output transition, then
they form a structural input/output conflict (or a structural λ/output conflict)
and the STG has such a conflict.

a+ b+

x+ x+

a+ b+

x+ x+

Figure 1
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Figure 1 shows on the left an STG with a structural but without a dynamic
auto-conflict. The STG on the right has a dynamic (and thus also a structural) auto-
conflict; without the marked place in the middle, it would have auto-concurrency
instead of an auto-conflict.

Clearly, an STG without internal transitions is deterministic if and only if it is
without auto-concurrency and without dynamic auto-conflict; the latter is ensured if
there are no structural auto-conflicts. Note that internal transitions enabled concur-
rently or being in conflict do not introduce auto-concurrency or -conflict.

Simulations are a well-known important device for proving language inclusion or
equivalence. A simulation from N1 to N2 is a relation S between markings of N1 and
N2 such that (MN1 , MN2) ∈ S and for all (M1, M2) ∈ S and M1[t〉M ′

1 there is some
M ′

2 with M2[l1(t)〉〉M ′
2 and (M ′

1, M
′
2) ∈ S. If such a simulation exists, then N2 can go

on simulating all signals of N1 forever.

Theorem 2.2 If there exists a simulation from N1 to N2, then L(N1) ⊆ L(N2).

Often, nets are considered to have the same behaviour if they are language equiv-
alent. Another, more detailed behaviour equivalence is bisimilarity. A relation B is
a bisimulation between N1 and N2 if it is a simulation from N1 to N2 and B−1 is a
simulation from N2 to N1. If such a bisimulation exists, we call the STGs bisimilar;
intuitively, the STGs can work side by side such that in each stage each STG can
simulate the signals of the other. For deterministic STGs, language equivalence and
bisimulation coincide.

In the following definition of parallel composition ‖, we will have to consider the
distinction between input and output signals. The idea of parallel composition is
that the composed systems run in parallel synchronizing on common signals. Since a
system controls its outputs, we cannot allow a signal to be an output of more than
one component; input signals, on the other hand, can be shared. An output signal
of one component can be an input of one or several others, and in any case it is an
output of the composition. A composition can also be ill-defined due to what e.g.
Ebergen [Ebe92] calls computation interference; this is a semantic problem, and we
will not consider it here, but later in the definition of correctness.

The parallel composition of STGs N1 and N2 is defined if Out1 ∩Out2 = ∅. Then,
let A = (In1 ∪ Out1) ∩ (In2 ∪ Out2) be the set of common signals. If e.g. s is an
output of N1 and an input of N2, then an occurrence of an edge s± in N1 is ‘seen’
by N2, i.e. it must be accompanied by an occurrence of s± in N2. Since we do
not know a priori which s±-labelled transition of N2 will occur together with some
s±-labelled transition of N1, we have to allow for each possible pairing. Thus, the
parallel composition N = N1 ‖ N2 is obtained from the disjoint union of N1 and N2

by combining each s±-labelled transition t1 of N1 with each s±-labelled transition
t2 from N2 if s ∈ A. In the formal definition of parallel composition, ∗ is used as a
dummy element, which is formally combined e.g. with those transitions that do not
have their label in the synchronization set A. (We assume that ∗ is not a transition
or a place of any net.) Thus, N is defined by
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P = P1 × {∗} ∪ {∗} × P2

T = {(t1, t2) | t1 ∈ T1, t2 ∈ T2, l1(t1) = l2(t2) ∈ A{+,−}}
∪{(t1, ∗) | t1 ∈ T1, l1(t1) /∈ A{+,−}}
∪{(∗, t2) | t2 ∈ T2, l2(t2) /∈ A{+,−}}

W ((p1, p2), (t1, t2)) =

⎧⎪⎨
⎪⎩

W1(p1, t1) if p1 ∈ P1, t1 ∈ T1

or
W2(p2, t2) if p2 ∈ P2, t2 ∈ T2

W ((t1, t2), (p1, p2)) =

⎧⎪⎨
⎪⎩

W1(t1, p1) if p1 ∈ P1, t1 ∈ T1

or
W2(t2, p2) if p2 ∈ P2, t2 ∈ T2

l((t1, t2)) =

{
l1(t1) if t1 ∈ T1

l2(t2) if t2 ∈ T2

MN = MN1∪̇MN2 , i.e. MN ((p1, p2)) =

{
MN1(p1) if p1 ∈ P1

MN2(p2) if p2 ∈ P2

In = (In1 ∪ In2) − (Out1 ∪ Out2)
Out = Out1 ∪ Out2

Clearly, one can consider the place set of the composition as the disjoint union of
the place sets of the components; therefore, we can consider markings of the compo-
sition (regarded as multisets) as the disjoint union of markings of the components;
the latter makes clear what we mean by the restriction M Pi

of a marking M of the
composition.

We will denote a marking M1∪̇M2 of the composition also by (M1, M2). By defini-
tion of ‖, the firing (M1, M2)[(t1, t2)〉(M ′

1, M
′
2) of N corresponds to the firings Mi[ti〉M ′

i

in Ni, i = 1, 2; here, the firing of ∗ means that the empty transition sequence fires.
Therefore, all reachable markings of N have the form (M1, M2), where Mi is a reach-
able marking of Ni, i = 1, 2.

If the components do not have internal transitions, then also their composition has
none. To see that N is deterministic if N1 and N2 are, consider different transitions
(t1, t2) and (t′1, t

′
2) with the same label that are enabled under the reachable marking

(M1, M2). The transitions differ in at least one component, say the first, and since it
cannot be the case that t1 is a transition while t′1 = ∗ (then we would have l((t1, t2)) ∈
In1{+,−} ∪ Out1{+,−} but l((t′1, t

′
2)) 
∈ In1{+,−} ∪ Out1{+,−}), t1 and t′1 are

different transitions with the same label enabled under the reachable marking M1,
which contradicts that N1 is deterministic. But note that N might have structural
auto-conflicts even if none of the Ni has.

It should be clear that, up to isomorphism, composition is associative and com-
mutative. Therefore, we can define the parallel composition of a family (or collection)
(Ci)i∈I of STGs as ‖i∈I Ci, provided that no signal is an output signal of more than one
of the Ci. We will also denote the markings of such a composition by (M1, . . . , Mn) if
Mi is a marking of Ci for i ∈ I = {1, ..., n}. We close with a result on consistency.
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Proposition 2.3 If (Ci)i∈I is a family of consistent (deterministic resp.) STGs and
C =‖i∈I Ci is defined, then C is also consistent (deterministic resp.).

Proof: For determinism, see above. Take a signal s of C and w.l.o.g. let s be a signal
of C1. For v ∈ L(C), let v1 be the projection of v to In1 ∪ Out1; one can show that
v1 ∈ L(C1). Therefore, the edges of s alternate along each such v1 appropriately, and
thus they do so on each v ∈ L(C). �

3 Transition Contraction and Redundant Places

We now introduce and study transition contraction (see e.g. [And83] for an early
reference), which will be most important in our decomposition procedure. We repeat
largely from [VW02], where further discussions can be found, but we will also add
some results which are important for our generalization of the decomposition method.
In the following definition, we add the notion of a new conflict pair.

Definition 3.1 Let N be an STG and t ∈ T with W (., t), W (t, .) ∈ {0, 1}, •t∩ t• = ∅
and l(t) = λ. We define the t-contraction N of N by

P = {(p, ∗) | p ∈ P − (•t ∪ t•)}
∪ {(p, p′) | p ∈ •t, p′ ∈ t•}

T = T − {t}

W ((p, p′), t1) = W (p, t1) + W (p′, t1)

W (t1, (p, p
′)) = W (t1, p) + W (t1, p

′)

l = l T

MN((p, p′)) = MN (p) + MN(p′)

In = In Out = Out

In this definition, ∗ 
∈ P ∪T is a dummy element; we assume W (∗, t1) = W (t1, ∗) =
MN (∗) = 0.

We say that the markings M of N and M of N satisfy the marking equality if for
all (p, p′) ∈ P

M((p, p′)) = M(p) + M(p′).

For two different transitions t1, t2 with t1 
= t 
= t2, we call {t1, t2} a new conflict
pair whenever •t ∩ •t1 
= ∅ and t• ∩ •t2 
= ∅ in N . �

Note that, in general, N might fail to be consistent; we will have to study for
which cases it is consistent, since this is usually required.

Figure 2 (a) shows a part of a net and the result when the internal transition is
contracted. In many cases, the preset or the postset of the contracted transition has
only one element, and then the result of the contraction looks much easier as e.g. in
Figure 2 (b). Here, the b+- and the c+-labelled transition form a new conflict pair;
note that this is also true, if they already have a common place (not drawn) in their
presets in N .
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(a)

t-contraction

t-contraction

(b)

N �

a+

543

21

d+

e+

b+

c+

t

3

�

2

1

x+c+

b+

a+

N

t
1,2

1,3

x+c+

b+

a+

N

a+

d+

e+

b+

c+

1,3 1,4 1,5

2,3 2,4 2,5

N

Figure 2

For the rest of this section, we fix an STG N with a transition t satisfying the
requirements of Definition 3.1 and denote its t-contraction by N . Furthermore, we
define the relation B as {(M, M) | M and M satisfy the marking equality }.

The first theorem will show that contraction preserves behaviour in a weak sense,
i.e. that all the traces of N will still be possible in N . We begin with an important
lemma which relates the transition firing of a net before and after contraction in two
markings related by the marking equality.

Lemma 3.2 Let M and M be markings of N and N satisfying the marking equality.

1. M [t〉M ′ implies M((p, p′)) = M ′(p) + M ′(p′).

2. If M [t1〉M ′ for t1 
= t, then M [t1〉M ′, and M ′ and M ′ satisfy the marking
equality.

3. M [v〉〉M1 implies M [v〉〉M1 such that also M1 and M1 satisfy the marking equal-
ity.

For the refined method we will present in this paper, we need the second part of
the following theorem, for which we introduce a new notion:

Definition 3.3 An operation transforming an STG S into an STG S ′ is auto-cc-
preserving if the following holds: if there are equally labelled observable transitions
enabled under the same reachable marking of S, then the same is true for S ′. (In
other words, if S has auto-concurrency or an auto-conflict, then so has S ′.) �

Theorem 3.4 1. B is a simulation from N to N ; in particular, L(N) ⊆ L(N).

10



2. Transition contraction is auto-cc-preserving.

Proof: The first part follows from the last part of Lemma 3.2, since the initial
markings satisfy the marking equality. The second part follows from the second part
of Lemma 3.2. �

The next two results show that under additional assumptions contraction preserves
behaviour in a stronger sense, i.e. the t-contraction is bisimilar or at least language-
equivalent in these cases. In both theorems, the fourth and the new fifth part (the
latter being implied by the new third part) are what is really needed for the remainder
of the paper. A further comment on the assumptions can be found after Theorem 3.6.

Theorem 3.5 Assume that (•t)• ⊆ {t}. Then:

1. B is a bisimulation from N to N .

2. If t1 and t2 with t1 
= t2 are concurrently enabled under a reachable marking
M of N , then there is a reachable marking M ′ of N that satisfies the marking
equality with M and also enables t1 and t2 concurrently.

3. If t1 and t2 with t1 
= t2 are in conflict under a reachable marking M of N , then
they are also in conflict under some reachable marking M ′ of N satisfying the
marking equality with M .

4. The contraction preserves boundedness and freedom from auto-concurrency.

5. If N is free of dynamic auto-conflicts, then so is N .

Proof: First observe that the last two parts follow from the other three, hence we
concentrate on these. In particular, if each reachable marking of N satisfies the
marking equality with some reachable marking of N and N is k-bounded, then N is
2k-bounded.

If •t = ∅, then P = P − t• and the marking M satisfying the marking equality
with some marking M of N is given by M = M P . Since t can put arbitrarily many
tokens onto t•, the three claims are quite easy to see; hence, let •t 
= ∅.

B is a simulation by Lemma 3.2, hence we only have to show that B−1 is a sim-
ulation, too. Let (M, M) ∈ B and M [t1〉M1. Firing t under M as often as possible
gives a marking M ′ that still satisfies the marking equality with M by Lemma 3.2
and M ′(p0) = 0 for some p0 ∈ •t. (For the latter, we use W (p0, t) = 1 according to
the precondition on t in Definition 3.1.) We check the places p ∈ P to see that M ′

enables t1:

p 
∈ •t ∪ t•: W (p, t1) = W ((p, ∗), t1) ≤ M((p, ∗)) = M ′(p)
p ∈ •t: W (p, t1) = 0 by assumption
p ∈ t•: W (p, t1) = W (p0, t1) + W (p, t1) = W ((p0, p), t1) ≤ M((p0, p))

= M ′(p0) + M ′(p) = M ′(p)

11



Now we have M ′[t1〉M ′
1 for some M ′

1 and (M ′
1, M1) ∈ B by Lemma 3.2. Since a

sequence of t’s followed by t1 has the same label as just t1, we have shown the first
part.

For the second part, one finds a pair (M, M) ∈ B and then constructs M ′ similarly
as above, and also the check that M ′ enables t1 and t2 concurrently is very similar;
e.g. for p 
∈ •t ∪ t•, we have:

W (p, t1) + W (p, t2) = W ((p, ∗), t1) + W ((p, ∗), t2) ≤ M((p, ∗)) = M ′(p)

For the third part, assume that there is a conflict between t1 and t2 under M .
First of all, t1 and t2 are enabled under M , and hence also under M ′ as above. Now
assume the conflict is due to (p′, p), i.e. W ((p′, p), t1) + W ((p′, p), t2) > M((p′, p));
observing W (p′, ti) = 0 for i = 1, 2 by assumption, we get W (p, t1) + W (p, t2) >
M ′(p′) + M ′(p) ≥ M ′(p). �

Theorem 3.6 Assume that •(t•) = {t}; in particular, t• 
= ∅. Further, assume that
∃p0 ∈ t• : MN(p0) = 0; then:

1. {(M, M) ∈ B−1 | ∃q0 ∈ t• : M(q0) = 0} is a simulation from N to N ; N and
N are language equivalent.

2. If t1 and t2 with t1 
= t2 are concurrently enabled under a reachable marking
M of N , then there is a reachable marking M ′ of N that satisfies the marking
equality with M and also enables t1 and t2 concurrently.

3. If t1 and t2 with t1 
= t2 are in conflict under a reachable marking M of N , then
they are also in conflict under some reachable marking M ′ of N satisfying the
marking equality with M or {t1, t2} is a new conflict pair .

4. The contraction preserves boundedness and freedom from auto-concurrency.

5. If N is free of dynamic auto-conflicts, but N is not due to some t1 and t2, then
{t1, t2} is a new conflict pair.

Proof: First observe that last two parts follow from the other three, hence we con-
centrate on these. In particular, each reachable marking of N satisfies the marking
equality with some reachable marking of N ; hence, if N is k-bounded, then N is
2k-bounded.

To show the first part, observe that the initial markings are related by hypothesis.
Now assume (M, M) is in the given relation, q0 ∈ t• with M(q0) = 0, and M [t1〉M1.

We choose p1 ∈ t• such that m1 = W (p1, t1)−M(p1) is maximal; since W (q0, t1)−
M(q0) = W (q0, t1) ≥ 0, m1 is not negative. We check that t can fire m1 times
under M : for all p ∈ •t, we have M(p) + M(p1) = M((p, p1)) ≥ W ((p, p1), t1) =
W (p, t1) + W (p1, t1) , and thus M(p) ≥ W (p1, t1) − M(p1) + W (p, t1) ≥ m1. Firing t
under M m1 times gives a marking M ′, which satisfies the marking equality with M by
Lemma 3.2. By choice of p1, we have: (∗) M ′(p1) = W (p1, t1) and M ′(p) ≥ W (p, t1)
for all p ∈ t•.

We check that t1 is enabled under M ′ by considering all places p:
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p 
∈ •t ∪ t•: W (p, t1) = W ((p, ∗), t1) ≤ M((p, ∗)) = M ′(p)
p ∈ t•: M ′(p) ≥ W (p, t1) by (∗)
p ∈ •t: W (p, t1) + W (p1, t1) = W ((p, p1), t1) ≤ M((p, p1)) = M ′(p) + M ′(p1)

= M ′(p) + W (p1, t1) by (∗), hence W (p, t1) ≤ M ′(p)

Now we have M ′[t1〉M ′
1 for some M ′

1. Since W (t1, p1) = 0 by hypothesis, we have
M ′

1(p1) = 0 by (∗). Therefore (M1, M
′
1) is in the given relation by Lemma 3.2. As

above, since a sequence of t’s followed by t1 has the same label as just t1, we have
shown the first claim.

Language equivalence follows since, together with Theorem 3.4, we have simula-
tions in both directions.

The second part can be shown in a similar way. If M is reachable, it is related to
some reachable M by the simulation of the first part; let q0 ∈ t• with M(q0) = 0.

We construct M ′ as above and check that M ′ enables t1 and t2 concurrently as
above by adding in the above argument to every atomic term containing t1 an analo-
gous term containing t2. E.g. we choose p1 ∈ t• such that m1 = W (p1, t1)+W (p1, t2)−
M(p1) is maximal; due to q0, m1 is not negative.

For the third part, we find a pair (M, M) in the given relation, m1 for t1 as above
and m2 for t2 analogously. We assume that {t1, t2} is not a new conflict pair.

Now we distinguish several cases. First assume that (•t1 ∪ •t2) ∩ t• = ∅. In this
case, we have m1 = m2 = 0 and the respective M ′ (which equals M) enables t1 and
t2 as above. If the conflict under M is due to some (p, ∗), then W (p, t1) + W (p, t2) =
W ((p, ∗), t1) + W ((p, ∗), t2) > M((p, ∗)) = M ′(p). If the conflict is due to some
(p, p′), then we have due to W (p′, t1) = W (p′, t2) = 0 that W (p, t1) + W (p, t2) =
W ((p, p′), t1) + W ((p, p′), t2) > M((p, p′)) ≥ M ′(p). In any case, t1 and t2 are in
conflict under M ′.

Second, we assume that, say, •t1 ∩ t• 
= ∅ while •t2 ∩ t• = ∅; due to assumption, we
also have •t2 ∩ •t = ∅. We construct M ′ due to m1, hence M ′ enables t1 as above; for
t2, we only have to check the p 
∈ •t∪ t•, which works as in the proof for the first part.
Thus, M ′ also enables t2; the conflict under M must be due to some (p, ∗), which
implies a conflict under M ′ as in the first case.

In the third case, we have •t1 ∩ t• 
= ∅ and •t2 ∩ t• 
= ∅; thus, by assumption, we
have •t1 ∩ •t = ∅ and •t2 ∩ •t = ∅. W.l.o.g. we have m1 ≥ m2, and we construct
M ′ from m1 as above. Thus, M ′ enables t1. For the enabledness of t2, we only have
to check p 
∈ •t ∪ t• (works as before) and p ∈ t•; for the latter, firing t m2 times
would already have ensured M ′(p) ≥ W (p, t2) – and firing t more often does not
make this wrong; hence, M ′ also enables t2. If the conflict under M is due to some
(p, ∗), we derive a conflict under M ′ as in the first case. If the conflict is due to some
(p, p′), then we have due to W (p, t1) = W (p, t2) = 0 that W (p′, t1) + W (p′, t2) =
W ((p, p′), t1) + W ((p, p′), t2) > M((p, p′)) ≥ M ′(p′); also in this case, t1 and t2 are in
conflict under M ′. �

If the preconditions of Definition 3.1 and Theorem 3.5 or 3.6 are satisfied, then we
call the contraction of t secure (of type 1 or type 2).

The last two theorems show that, for a secure contraction of t, each reachable
marking of N can be determined from a reachable marking of N via the marking
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equality. Furthermore, a marking M of N enabling t will be related to the same
marking of N as the marking M ′ with M [t〉M ′. This implies that the contracted net
has at most as many reachable markings as N , and usually less.

To explain the definition of a secure contraction, assume that there are transitions
t1 and t2 with t1 
= t 
= t2, p1 ∈ •t1 ∩ •t and p2 ∈ t2

• ∩ t•. After contracting t, t2
can put a token onto (p1, p2) and t1 can take it, such that, intuitively speaking, the
token flows from the postset of t back to the preset; clearly, this backfiring can lead to
completely new behaviour in N , such that on the one hand we cannot expect language
equivalence, while on the other hand auto-concurrency could be introduced.

As to our results about the introduction of auto-conflicts, observe that this would
be rather trivial for structural auto-conflicts: If N obtained from N by contraction
has a structural auto-conflict, while N has not, then certainly this is due to a new
conflict pair – and this holds for an arbitrary contraction, secure or not. For dynamic
auto-conflicts as treated in the above theorems, the situation is different. Figure 3
shows an STG N and the STG N obtained by a non-secure contraction: while N is
actually dead (i.e. no transition can fire), N has a dynamic auto-conflict.

t-contraction

b+

a+

b+

3

1,2

N

�t

b+

a+

b+

32

1

N

Figure 3

We call an operation on STGs consistency-preserving, if it turns a consistent STG
into one that is consistent again. With this notion, we have the following corollary to
Lemma 2.1 and Theorems 3.5 and 3.6.

Corollary 3.7 Secure transition contractions are consistency-preserving.

We conclude this section by defining redundant places; the deletion of such a place
(including the incident arcs) is another operation that can be used in our decomposi-
tion algorithm. A place p of an STG N is (structurally) redundant (see e.g. [Ber87]) if
there is a set of places Q with p 
∈ Q, a valuation V : Q∪ {p} → IN and some c ∈ IN0

which satisfy the following properties for all transitions t:

• V (p)MN(p) − ∑
q∈Q V (q)MN(q) = c

• V (p)(W (t, p) − W (p, t)) − ∑
q∈Q V (q)(W (t, q) − W (q, t)) ≥ 0

• V (p)W (p, t) − ∑
q∈Q V (q)W (q, t) ≤ c
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The first two items ensure that p is something like a linear combination of the
places in Q with factors V (q)/V (p). Indeed, for the case c = 0, the first item says
that p is such a combination initially; the second item, in the case of equality, says
that this relationship is preserved when firing any transition. The proof that p is
indeed redundant argues that the valuated token number of p is at least c larger
than the valuated token sum on Q for all reachable markings, while the third item
says that each transition or at least each output transition needs at most c ‘valuated
tokens’ more from p than from the places in Q; this shows that for the enabling of a
transition the presence or absence of p does not matter. Therefore, the deletion of a
redundant place in N turns each reachable marking of N into one of the transformed
STG that enables the same transitions, hence the deletion gives a bisimilar STG –
which is consistent if N is.

A special case of a redundant place is a loop-only place, i.e. a marked place p such
that p and t form a a loop with arcs of weight 1 for all t ∈ •p ∪ p•. Another simple
case is that of a duplicate: place p is an (extended) duplicate of place q, if for all
transitions t W (t, p) = W (t, q), W (p, t) = W (q, t) and MN (p) ≥ MN (q).

4 Decomposing a Signal Transition Graph

4.1 Correctness Definition

For this section, we assume that we are given a fixed STG N as a specification of some
desired behaviour. Our aim is to decompose it into a collection of components (Ci)i∈I

that together implement the specified behaviour; in particular, this should help to
avoid the state explosion problem, and therefore we have to avoid the complete state
exploration for N .

In particular in the area of circuit design, it seems most often to be the case that,
if an input or output is specified, then its effects are specified without any choices;
therefore, we assume that N is deterministic. In contrast to [VW02], we do not require
N to be free of structural auto-conflicts. As in [VW02], we will concentrate on the
construction of components that are also deterministic.

The first new observation of the present paper concerns the following: it seems to
be convenient to allow λ-transitions in N . The understanding of such so-called dummy
transitions is that they do not represent state changes, i.e. what really matters about
N is just its language [J. Cortadella, priv. comm.]; hence, when synthesizing a circuit
via the reachability graph of N , one can remove the resulting λ-arcs in the reachability
graph by well-known automata-theoretic methods. The problem is that we want to
avoid the construction of this graph.

With the results of the previous section, we can instead contract the dummy
transitions provided these contractions are secure. Since such contractions preserve
the language, we can just as well work with the resulting STG if it is free of dynamic
auto-conflicts.

Besides determinism, it is further assumed in [VW02] that N is free of structural
input/output conflicts; this ensures that there are no dynamic input/output conflicts,
which are very hard to implement, since the input, which is under the control of the
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environment, might occur at roughly the same time as the output, which is under
the control of the system, and can therefore not prevent the output as specified;
technically, this may even lead to malfunction. But in the literature, we have found
an example with a structural input/output conflict, which is even also a dynamic one;
cf. stg blunno in Section 6. We take this as motivation to generalize the approach of
[VW02] to STGs with input/output conflicts; but given the problems such conflicts
can create, we still regard it as important that our method does not introduce any
new input/output conflicts. In applications, N will be bounded and most often even
safe; but our results also hold in the general case.

We first repeat the definition when a collection of components is a correct imple-
mentation of N ; for a detailed explanation and a discussion of related work, we refer
to [VW02]. We will additionally show that the components our algorithm generates
are consistent if N is.

Definition 4.1 A collection of deterministic components (Ci)i∈I is a correct decom-
position or a correct implementation of a deterministic STG N , if the parallel com-
position C of the Ci is defined, InC ⊆ InN , OutC ⊆ OutN and there is a relation B
between the markings of N and those of C with the following properties.

1. (MN , MC) ∈ B
2. For all (M, M ′) ∈ B, we have:

(a) If a ∈ InN and M [a±〉〉M1, then either a ∈ InC and M ′[a±〉〉M ′
1 and

(M1, M
′
1) ∈ B for some M ′

1 or a 
∈ InC and (M1, M
′) ∈ B.

(b) If x ∈ OutN and M [x±〉〉M1, then M ′[x±〉〉M ′
1 and (M1, M

′
1) ∈ B for some

M ′
1.

(c) If x ∈ OutC and M ′[x±〉〉M ′
1, then M [x±〉〉M1 and (M1, M

′
1) ∈ B for some

M1.

(d) If x ∈ Out i for some i ∈ I and M ′
Pi

[x±〉〉, then M ′[x±〉〉. (no computation
interference)

Here, and whenever we have a collection (Ci)i∈I in the following, Pi stands for PCi
,

Out i for OutCi
etc. �

The important features are the following. We allow C to have fewer input and
output signals than N ; this is possible for input signals which are irrelevant for pro-
ducing the right outputs and for outputs that actually never have to be produced. (In
fact, our algorithm only produces C with OutC = OutN .) There is no clause requir-
ing a match for inputs of C; this implies that N and C are not necessarily language
equivalent, as e.g. required in [Chu87a, Chu87b]; see [VW02] for a discussion why
this is adequate and useful. Clause (d) is important for a correct functioning; if it is
violated, then component Ci could produce some output that some other component
is not ready to accept, which could lead to malfunction of this other component. Fi-
nally, it should be pointed out that the chosen style of this definition is technically
useful in the correctness proof.
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We repeat from [VW02], that it would also be possible to require in (b) only
M ′[y±〉〉 for some y ∈ OutC : (c) would ensure that this output is specified and the
ensuing behaviour matches the specification; but this clause would only say that, in
case of several specified outputs, at least one will be performed. Whether the others
are possible or not cannot be observed, since once an output is performed, it cannot
be checked whether others had been possible as well; this view is e.g. taken in [Seg93].
Our decomposition algorithm guarantees the stronger form of correctness given in
clause (b) above.

In the next subsection, we describe our decomposition algorithm, which uses what
we call totally admissible operations. In the third subsection, we prove that it indeed
produces correct components, and in the fourth, we show that certain contractions as
well as certain place and transition deletions are totally admissible.

4.2 The Decomposition Algorithm

We start with a rough description of our algorithm, where the unknown notions will
be described in this and the next subsection:

Given are a deterministic STG N (possibly obtained by securely contracting
dummy transitions as explained above) as a specification, and a feasible partition
of its signals. The algorithm constructs from these an initial decomposition (Ci)i∈I .
Then it repeatedly applies a totally admissible operation (from some list of such op-
erations) or backtracking to one of the Ci after the other until it does not contain any
λ-transitions anymore.

To initialize the algorithm, one has to choose a feasible partition of the signals of
N ; our condition (C1) for such a partition is different from [VW02], since we allow
input/output-conflicts in this paper. A feasible partition is a family (In i,Out i)i∈I for
some set I such that the sets Out i, i ∈ I, are a partition of OutN and for each i ∈ I
we have Ini ⊆ InN ∪ OutN \ Out i, and furthermore:

(C1) If signal s and output signal x of N are in structural conflict, then x ∈ Out i

implies s ∈ Ini if s ∈ In and s ∈ Out i if s ∈ Out for each i ∈ I.

The rationale for this relies on the above discussion of input/output conflicts:
clearly, a component responsible for output signal x must at least ‘see’ any signal
that could be in dynamic conflict with x in N ; if such a signal is an output as
well, the component should also produce it, because otherwise we would have a
new input/output conflict.

(C2) If there are t, t′ ∈ TN with t• ∩ •t′ 
= ∅ and the signal of t′ is in Out i for some
i ∈ I, then the signal of t is in Ini ∪Out i. (The latter signal gives concession to
the first one. It might be in Ini even if it belongs to Out ; in this case, it will be
produced by some other component, and the ith component just listens to it.)

For a feasible partition, the initial decomposition is (Ci)i∈I , where each initial
component Ci = (P, T, W, li, MN , Ini,Out i) is a copy of N except for the labelling and
the signal classification; li(t) = l(t) if the signal of t is in Ini ∪ Out i and li(t) = λ
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otherwise. For reasons that will become clear later on in the correctness proof, we
call these λ-transitions divining transitions.

Observe that all the initial components are free of dynamic auto-conflicts and auto-
concurrency, since N is deterministic. Furthermore, if one of them has a structural,
dynamic resp., input/output-conflict, then already N has one for the same signals.

The main idea of the algorithm is now to remove the λ-transitions using secure
transition contractions. Unfortunately, the algorithm could get stuck, e.g. when no
secure contraction is applicable although there are still λ-transitions left; therefore, it
can also do the following:

• Backtracking: backtracking applied to some Ci and some signal s 
∈ Ini∪Out i

adds s to Ini and replaces Ci by the respective new initial component.

Observe that this modifies the feasible partition in such a way that the resulting
partition is feasible again; in particular, Ci already has all signals that are in
structural conflict to an output signal of Ci.

Backtracking undoes all the totally admissible operations that have already been
performed on Ci. In many cases, it will be possible to perform some of these
also on the new initial component; hence, we will study in the future how to
implement backtracking such that not always all the operations are undone.

Here is the list of totally admissible operations we use in this paper. The first is
the heart of the algorithm, and should definitely be on any such list; the other two
improve the results. In the context of STG-decomposition, RedPD was suggested for
the first time in [VW02], while RedTD is new; further operations may turn up in the
future.

• SecTC: Perform a secure transition contraction to some t of some Ci, provided
this gives an STG without dynamic auto-conflicts.

If there is such a conflict, the algorithm will perform backtracking on Ci and the
signal of t next – but this should not be seen as part of SecTC. The rationale for
this is: the dynamic auto-conflict shows that Ci should better know about the
signal edge labelling t in N in order to decide which of the two equally labelled
transitions to fire.

It is not obvious how to detect dynamic auto-conflicts without building the
reachability graph; one way to avoid such conflicts (chosen in [VW02]) is to
apply SecTC only if no structural auto-conflict is created. New results of this
paper also allow other possibilities, and we will discuss them at the end of
Subsection 4.5.

• RedPD: Delete a redundant place in some Ci.

• RedTD: Delete a divining transition t in some Ci, where either each place
p ∈ •t ∪ t• forms a loop with t with two arcs of the same weight (t is a loop-
only transition) or some other divining transition has arcs to and from the same
places with the same weight as t (which is a duplicate transition).
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The latter two operations seem rather trivial since they clearly do not change the
behaviour of the respective Ci. Still, both of them have turned out to be essential for
good results in some cases; furthermore, both operations change the net structure,
and since our proof below refers to the net structure, some care should be taken when
adding them to the list. In fact, we structure the presentation of the algorithm and of
the proof differently from [VW02], partly because it was not possible to add RedTD
directly to the algorithm as described in [VW02].

There, operations are from the beginning restricted to SecTC and RedPD, while
backtracking was explicitly described in the algorithm as exception handling in case
of auto-conflicts. Our new presentation treats this as an implementation detail, as
a strategy for choosing the next operation; this seems much better suited for adding
further operations.

Note that the algorithm is nondeterministic; as an extreme case, one could choose
to apply backtracking only, which clearly does not give a useful result. A sensible
implementation only applies backtracking if there is no alternative; but also then,
backtracking might be applied so often that some resulting Ci becomes too large. In
an extreme case, some Ci could be equal to N except for the classification of signals
as inputs or outputs. But even in such a case, the result might be useful if e.g. an
arbiter has been split off; see [VW02] for such an example. This is in fact a very
relevant case of finding a library element that can be employed.

Still, in some cases the algorithm might fail to produce something useful. This is
actually not surprising, since one cannot expect to fight state explosion successfully in
all cases. All one can hope for are reasonable results reasonably often; in the examples
we have checked, the algorithm most often performed quite well.

It should also be remarked that the result of our algorithm is not uniquely deter-
mined, even in case of a sensible implementation. [VW02] shows an example where the
order of trying to apply transition contractions decides for which signal backtracking
(due to an auto-conflict) will be performed; this results in two different decomposi-
tions. This issue deserves further investigations, in particular since we want to find
components with small reachability graphs.

4.3 The Correctness Proof I

We will first discuss the issue of termination. For the definition of a totally admissible
operation, one has to fix a function (possibly referring to N) from STGs with signals
in In ∪Out into some set with a well-founded ordering as a termination function; we
choose here the function that gives for such an STG C the triple (sc, tc, pc), where sc
is |In ∪Out | − |InC ∪OutC | (the number of signals missing in C), tc is the number of
transitions, and pc is the number of places of C. We order such triples lexicographically
according to the standard ≤ on natural numbers.

When extending the above list of operations in future work, it might be necessary
to modify this termination function; in this sense, our approach should be seen as
parametric with the termination function as parameter.

A totally admissible operation is an admissible operation that applied to an STG
with signals in In ∪ Out does not change the sets of input and output signals and
makes the value of the termination function smaller.
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As long as there is still some divining transition in some Ci, an operation can
be applied – we can always choose backtracking. When backtracking is applied, the
number of signals missing in Ci goes down and so the value of the termination function
decreases for all operations applied in the algorithm; hence, the algorithm terminates.

Backtracking changes the feasible partition; had we started out with this new
partition, the operations performed on some other Cj before the backtracking would
give the same result. Further, we have already concluded that backtracking can only
be applied finitely we often. Thus, the result of the algorithm can be seen as being
obtained (from a modified feasible partition) by totally admissible operations alone
(without any backtracking), and it suffices to show correctness for such a case. We
will do so in the next subsection.

The precise definition of an admissible operation is tuned to this correctness proof
and rather technical; hence, we will postpone it for the moment. Instead, we collect
the correctness results we will obtain in the rest of this section. For this, we need one
further notion.

Definition 4.2 An operation transforming some STG S to an STG S ′ does not in-
troduce io-conflicts if, for any structural, dynamic resp., input/output-conflict in S ′,
S already has one for the same signals. �

Theorem 4.3 1. The decomposition algorithm terminates for each deterministic
STG N ; the resulting components (Ci)i∈I are deterministic and form a correct
implementation of N .

2. If the decomposition algorithm uses only the operations presented in this paper,
we have additionally: if N is consistent, then so are the components (Ci)i∈I ; if
some of the components has a structural, dynamic resp., input/output-conflict
then N has one for the same signals.

Proof: 1. This follows from our above considerations and from Lemma 4.5.2 and
Theorem 4.8 below.

2. First, assume that N is consistent. Then, each initial component is also con-
sistent, since its language is the projection of L(N) to the signals of this component.
In Subsection 4.5, we will show that each of our totally admissible operations is
consistency-preserving.

The second claim holds for the initial components due to (C1), since they have
the same reachable markings as N . In Subsection 4.5, we will show that none of our
totally admissible operations introduces io-conflicts. �

We will further show that each of our totally admissible operations is auto-cc-
preserving. This and Theorems 3.5.5 and 3.6.5 will become relevant, when we discuss
the implementation of SecTC at the end of the present section.

In the rest of the section, we will define admissible operations, show that they
guarantee correctness, and prove that the operations on the list above are indeed
admissible. It is easy to see that then they are also totally admissible: the number
of missing signals is unchanged by all three operations; SecTC reduces the number of
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transitions, which also holds for RedTD; RedPD leaves this number unchanged but
reduces the number of places.

As in [VW02], our (slightly different) notion of an admissible operation structures
our proofs, allows us to do the correctness proof in the next subsection only once
instead of several times for each of the operations, and it supports a possible future
reuse of this proof.

4.4 The Correctness Proof II

When we speak of applying an operation to an STG, this always implies in the fol-
lowing that all signals of this STG belong to In∪Out . Each admissible operation will
be pre-admissible in the following sense:

Definition 4.4 An operation is pre-admissible if, whenever applied to an STG with-
out auto-concurrency and dynamic auto-conflicts and satisfying (a) and (b) below, it
gives an STG satisfying these four properties again:

(a) There is no structural λ/output conflict.

(b) If t2 is an output transition and t1
•∩•t2 
= ∅, then t1 is not an internal transition.

�

Two easy consequences of this definition are formulated in the following lemma,
which will be needed when proving correctness formulated in Theorem 4.8.

Lemma 4.5 1. At each stage of the algorithm, each Ci satisfies (a) and (b) of
Definition 4.4 and is free of auto-concurrency and dynamic auto-conflicts.

2. When the algorithm terminates, the resulting Ci and hence also C are determin-
istic.

Proof: The initial Ci satisfy (a): if an output transition of Ci is in structural conflict
with another transition, then the signal of the latter is also a signal of Ci due to
condition (C1) in the definition of a feasible partition; hence, the latter transition is
not labelled λ. They satisfy (b) by condition (C2) of this definition. Furthermore,
they are free of auto-concurrency and dynamic auto-conflicts since N is. Hence, the
first claim follows from Definition 4.4.

Now the second claim follows from Part 1, since the algorithm only terminates
when there are no divining transitions left. �

We now come to another central notion in our correctness proof; it is a variant of
a bisimulation with an angelic treatment of internal transitions, and it is (like a loop
invariant) needed to describe in what sense the intermediate stages of our algorithm
are correct. If there is an internal transition in an initial Ci, then this corresponds
to a signal edge of the system that this component does not ‘see’; if we assume that
by some angelic intervention (or by its capability to divine) such a transition, which
is internal to Ci and not connected in any way to the outside, fires if the signal edge
occurs, then the Ci together work as intended, and this sort of behaviour is captured
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with an angelic bisimulation. For the final Ci, an angelic bisimulation guarantees
correctness, since there are no internal transitions.

Clearly, if we synthesized a circuit for an intermediate Ci with internal transitions,
we could not assume that the internal transitions of the circuit would behave well, i.e.
in accordance with the angelic bisimulation. Hence, this is not a ‘real-life’ correctness
notion; angelic correctness is just a mathematical tool for our proof.

We regard it as highly interesting that this kind of bisimulation is useful even
though we do not assume any angelic nondeterminism in our correctness definition
(4.1). In the future, we will study decompositions where components communicate
with each other by signals that are internal to the implementation; these internal sig-
nals will certainly have to be of a different kind compared to the divining λ-transitions
we study here.

Definition 4.6 A collection of components (Ci)i∈I is an angelically correct decom-
position or implementation of a deterministic STG N , if the parallel composition C
of the Ci is defined, InC ⊆ InN , OutC ⊆ OutN and there is an angelic bisimulation
relation B between the markings of N and those of C, i.e. B satisfies the following
properties.

1. (MN , MC) ∈ B
2. For all (M, M ′) ∈ B, we have:

(a) If a ∈ InN and M [a±〉〉M1, then either a ∈ InC and M ′[a±〉〉M ′
1 and

(M1, M
′
1) ∈ B for some M ′

1 or a 
∈ InC and M ′[λ〉〉M ′
1 and (M1, M

′
1) ∈ B

for some M ′
1.

(b) If x ∈ OutN and M [x±〉〉M1, then M ′[x±〉〉M ′
1 and (M1, M

′
1) ∈ B for some

M ′
1.

(c) If x ∈ Out i for some i ∈ I and M ′
Pi

[x±〉〉, then some M ′
1 and M1 satisfy

M ′[x±〉〉M ′
1, M [x±〉〉M1 and (M1, M

′
1) ∈ B.

�

This definition looks very much like Definition 4.1; the differences are that here
[x±〉〉 in C might involve additional λ-transitions besides an x±-labelled transition,
that in 2(a) internal transitions are allowed to match an input of N that is not one
of C, and that 2(c) is a combination of 4.1.2(c) and (d) and guarantees a matching
only for some M ′

1 – this is an angelic part of the definition. It is also angelic that we
do not require a match for the firing of only internal transitions in C.

We come to the final definition of an admissible operation, which leads to the
correctness result.

Definition 4.7 We call a pre-admissible operation applied to some member of a
family (Ci)i∈I that satisfies (a) and (b) of Definition 4.4 admissible if it preserves
angelic correctness w.r.t. N . �

Theorem 4.8 When the algorithm terminates, the resulting Ci are a correct decom-
position of N .

22



Proof: Due to B = {(M, (M, . . . , M) | M is reachable in N}, the initial decom-
position is angelically correct. The defining clauses for an angelic bisimulation are
satisfied, since the firing of a transition t in N or in some Ci can be matched by firing
all copies of this transition in N and all the Ci.

The only problem is case (c); assume M ′
Pi

[x±〉〉. This image-firing involves an
x±-labelled transition t. We have already convinced ourselves that Ci satisfies (b) of
Definition 4.4; hence, only firing internal transitions cannot help to enable t, and thus
t must already be enabled under M Pi

. Therefore, the required match is obtained by
letting all copies of t in N and the initial components fire.

Admissible operations preserve angelic correctness by definition, since the Ci al-
ways satisfy conditions (a) and (b) of Definition 4.4 by Lemma 4.5. Hence, the
resulting Ci are an angelically correct decomposition of N .

Furthermore, the Ci and C are deterministic by Lemma 4.5. Therefore, (a), (b)
and (c) of Definition 4.6 immediately give (a), (b) and (d) of Definition 4.1. Further,
M ′

1 in (c) of 4.1 is uniquely determined by M ′ and x± by determinism of C, thus it
is the M ′

1 in (c) of 4.6 and therefore also (c) of 4.1 follows. �

It is useful to note the following:

Lemma 4.9 Let a pre-admissible operation be given that, applied to some member
of a family (Ci)i∈I satisfying (a) and (b) of Definition 4.4, transforms some Cj to a
bisimilar Cj with the same input and output signals. Then the operation is admissible.

Proof: Assume (Ci)i∈I is angelically correct for N due to the angelic bisimulation B.
Assume j = 1 and J = I \ {1} such that we can write the markings of C =‖i∈I Ci

as pairs (M ′, M ′′) with M ′ a marking of C1 and M ′′ a marking of C ′ =‖i∈J Ci; for
C = C1 ‖ ‖i∈J Ci, the markings can be written as (M ′, M ′′) with M ′ a marking of C1

and M ′′ a marking of C ′. Let R be a bisimulation between C1 and C1.
We define B as {(M, (M ′, M ′′)) | (M, (M ′, M ′′)) ∈ B and (M ′, M ′) ∈ R}.

Clearly, B satisfies Definition 4.6.1. For Definition 4.6.2, we check e.g. the case that
(M, (M ′, M ′′)) ∈ B, a ∈ InN , M [a±〉〉M1 and a ∈ InC . In the match (M ′, M ′′)[a±〉〉
(M ′

1, M
′′
1 ), C1 and C ′ perform a sequence of transitions with image a± or λ; C1 can per-

form a sequence with the same image as C1 from M ′ such that (M ′, M ′′)[a±〉〉(M ′
1, M

′′
1 )

and (M ′
1, M

′
1) ∈ R. Thus, (M1, (M ′

1, M
′′
1 )) ∈ B.

The other cases are similar, except for the case x ∈ Out1 and M ′[x±〉〉. Since
(M ′, M ′) ∈ R}, we also have M ′[x±〉〉; then, we apply (c) for B to get (c) for B as
above. �

4.5 Admissible Operations

It remains to prove that all the operations on our list are admissible operations; we also
check that each operation is consistency-preserving and that none of them introduces
io-conflicts. The latter ensures, as already noted, that an STG N without structural,
dynamic resp., input/output-conflicts (which we assume to be the standard case)
is decomposed into component STGs that neither have structural, dynamic resp.,
input/output-conflicts.
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By definition, a pre-admissible operation applied to an STG satisfying all four
properties in Definition 4.4 gives an STG again satisfying these properties. It is a
stronger result, if e.g. one of these properties is preserved on its own, like RedPD
applied to an STG satisfying (a) of Definition 4.4 gives an STG again satisfying (a).
Since such stronger preservation results might become useful in the future, we list them
now and leave it to the reader to check this list while reading the proofs below: RedPD
and RedTD preserve (a) and (b) of Definition 4.4 separately, while SecTC preserves
their combination (i.e. their conjunction); all these operations preserve freeness from
dynamic auto-conflicts, where in the last case this is by force – a transition contraction
is not allowed if it introduces such a conflict; RedTD and SecTC preserve freeness
from auto-concurrency, while RedPD preserves the combination freeness from dynamic
auto-conflicts and from auto-concurrency.

We have already argued in Section 3, that the deletion of a redundant place turns
each reachable marking of the original STG into one of the transformed STG that
enables the same transitions, hence the deletion gives a bisimilar STG (from which
consistency-preservation follows) and it is auto-cc-preserving. Still, it is not com-
pletely obvious that such deletions are admissible operations, since the latter are de-
fined w.r.t. the structure of STGs, which certainly changes, and since such a deletion
can increase the concurrency.

Theorem 4.10 RedPD is consistency- and auto-cc-preserving, it is an admissible
operation and it does not introduce io-conflicts.

Proof: We have already argued for the first two claims. To check pre-admissibility
for the second claim, take an STG S that is without auto-concurrency and dynamic
auto-conflicts and satisfies properties (a) and (b) of Definition 4.4.

First assume that the deletion of redundant place p introduces auto-concurrency
or an auto-conflict, say the equally labelled transitions t and t′ are enabled under the
reachable marking M ′. Then, M ′ = M Pi−{p} for some reachable marking of S, and
t and t′ are also enabled under M . Thus, S has auto-concurrency or auto-conflict, a
contradiction.

Since the deletion of a place does not add structural conflicts or arcs, it is clear
that (a) and (b) of Definition 4.4 are preserved, and the third claim follows from
Lemma 4.9. The last claim is also clear.

�

Theorem 4.11 1. RedTD, i.e. the deletion of an (internal) loop-only or dupli-
cate transition, is consistency- and auto-cc-preserving and it is an admissible
operation.

2. RedTD does not introduce io-conflicts.

Proof: RedTD does not destroy (a) and (b) of Definition 4.4. The reachable markings
and the visible transitions they enable before and after the deletion are the same, so
the proof is similar to the last. �
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We now come to the main operation SecTC, the secure contraction of a transition.
To show that this operation is admissible, we give two lemmata corresponding to pre-
and full admissibility.

Lemma 4.12 1. A transition contraction applied to an STG satisfying conditions
(a) and (b) of Definition 4.4 preserves these properties.

2. SecTC is pre-admissible.

3. SecTC applied to an STG satisfying conditions (a) and (b) of Definition 4.4
does not introduce io-conflicts.

(a)

(b)
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Figure 4

Proof: Although we have changed the definition of a pre-admissible operation a little,
this proof is – except for the last part – largely a repetition from [VW02]. The second
claim follows from the first and Theorems 3.5 and 3.6. Hence, we concentrate on the
first claim now.

So assume contraction of t is applied to some STG S satisfying conditions (a) and
(b). Assume the result violates (a) due to some internal transition t1 and some output
transition t2. Then there are places pi ∈ •ti such that p1 ∈ •t and p2 ∈ t• or vice
versa; compare Figure 4(a). In the first case, t and t2 violate (b) in S; in the second
case, t and t2 violate (a) in S.

Finally, assume the result violates (b) due to some internal transition t1 and some
output transition t2. Then there are places p1 ∈ t1

• and p2 ∈ •t2 such that p1 ∈ •t
and p2 ∈ t• or vice versa; compare Figure 4(b). In the first case, t and t2 violate (b) in
S; in the second case, t and t2 violate (a) in S. (Note that in this case the contraction
is not secure, but such contractions are considered in the first part, too.)
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For the third part, we refer to the third parts of Theorems 3.5 and 3.6. For the
latter case observe: if an output transition were involved in a new conflict pair, then
we would have a violation of (a) or (b) before the contraction. �

The following is the essential lemma for the treatment of SecTC; it shows what
we need (a) and (b) of Definition 4.4 for in our approach. Except for rewriting signals
to signal edges, we take the proof from [VW02].

Lemma 4.13 SecTC applied to some member of a family (Ci)i∈I that satisfies (a)
and (b) of Definition 4.4 preserves angelic correctness w.r.t. N .

Proof: Assume contraction of t is applied to Cj and results in Cj , C resp.; assume
further that B is an angelic bisimulation for N and (Ci)i∈I . We define B as {(M, M) |
there is (M, M ′) ∈ B such that M ′ and M satisfy the marking equality }. Similarly,
we will denote by M1 the marking of C that satisfies the marking equality with the
marking M1 of C.

We check that B is an angelic bisimulation for N and (C ′
i)i∈I , where C ′

j is Cj and

C ′
i = Ci otherwise. Clearly, the initial markings of N and C are related since the

initial markings of N and C are.
So let (M, M) ∈ B due to (M, M ′) ∈ B.

(a) Let a ∈ InN and M [a±〉〉M1. Either a ∈ InC and for some M ′
1 M ′[a±〉〉M ′

1

and (M1, M
′
1) ∈ B; then we get M [a±〉〉M1 by Lemma 3.2.3 and (M1, M1) ∈ B. Or

a 
∈ InC and for some M ′
1 M ′[〉〉M ′

1 and (M1, M
′
1) ∈ B; again we get M [〉〉M1 by

Lemma 3.2.3 and (M1, M1) ∈ B.

(b) analogously.

(c) Let x ∈ Out i for some i ∈ I and M P ′
i
[x±〉〉. We have two subcases:

i 
= j: M and M ′ coincide on P ′
i = Pi, hence M ′

Pi
[x±〉〉.

i = j: The image-firing of signal edge x± involves an x±-labelled transition t1.
Since SecTC is pre-admissible, also C ′

j satisfies (a) and (b) of Definition 4.4; by (b),
only firing internal transitions cannot help to enable t1, and thus t1 must already be
enabled under M P ′

i
. By (a) and (b) of Definition 4.4 in Cj, no place in •t1 can be

in •t ∪ t•; therefore, •t1 is the same in Cj and C ′
j, M and M ′ coincide on •t1, and

M ′
Pi

[x±〉〉.
In either case, some M ′

1 and M1 satisfy M ′[x±〉〉M ′
1, M [x±〉〉M1 and (M1, M

′
1) ∈ B,

and we are done as in (a). �

Together with Theorem 3.4.2, Corollary 3.7 and Lemma 4.5, the above two lem-
mata give the following result.

Theorem 4.14 1. SecTC is an admissible operation, and it is consistency- and
auto-cc-preserving.

2. When applied in the algorithm, SecTC does not introduce io-conflicts.
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It remains to discuss one vital issue about SecTC: how can we check whether a
secure transition contraction has introduced some auto-conflict? There are a number
of strategies to deal with this question:

Conservative strategy: In [VW02], it was suggested to restrict attention to STGs
without structural auto-conflicts, i.e.: the input specification N has to be free of
structural auto-conflicts, and a transition contraction is forbidden if it would create a
structural auto-conflict. (Then, instead, backtracking is performed.)

Clearly, we cannot have a dynamic auto-conflict if there is not a structural one.
Also, it is easy to check for structural auto-conflicts, since they can only appear in
form of new conflict pairs. But just as clearly, this strategy is over-cautious in some
cases. In the first place, it makes it impossible to deal with STGs that have some
structural auto-conflict initially. In such a case, the specifier is responsible to ensure
that there is no dynamic auto-conflict.

Specifier-dependent strategy: Accept inputs with structural auto-conflicts, as
long as they are not dynamic ones. A secure transition contraction is only forbidden,
if it is of type 2 and a new conflict pair forms a structural auto-conflict. For example,
this strategy works well for vmecon, discussed in the next section.

This strategy relies on our new results in Theorems 3.5.5 and 3.6.5. Without these
results, the specifier guaranteeing absence of dynamic auto-conflicts would not ensure
this absence after some contraction, even if this contraction has not created new
conflict pairs. Alternatively, we could try to check that the structural auto-conflict
has not turned into a dynamic one due to the contraction, but we would have to repeat
this after each contraction – and all this can be avoided relying on Theorems 3.5.5
and 3.6.5. (Recall that only checking new conflict pairs might not be sufficient for
general transition contractions.)

Of course, this is still a very conservative strategy, since not each new structural
auto-conflict based on a new conflict pair has to be a dynamic one. We would have to
check this without constructing the reachability graph e.g. by using place invariants.
In many cases the user can possibly find a suitable one easily with human insight into
the desired circuit behaviour. Hence, a useful implementation could use the following:

Interactive strategy: Accept inputs with structural auto-conflicts, as long as they
are not dynamic ones. Only secure transition contractions of type 2 can be prob-
lematic: if such a contraction creates a new conflict pair forming a structural auto-
conflict, ask for human intervention; if the user can ensure that there is no dynamic
auto-conflict, the contraction can be performed, otherwise it is forbidden – and back-
tracking is performed instead.

We can add a final touch to our approach. One might worry that human inter-
vention is error-prone: the specifier’s guarantee might be wrong or the interactively
supplied assertion that a new conflict pair does not give rise to a dynamic auto-
conflict might be erroneous; as a consequence, the result of the algorithm might be
wrong without anyone noticing. Using the concept of auto-cc-preservation, we have
provided results to avoid this problem: Theorems 3.4.2, 4.11 and 4.10 show that a dy-
namic auto-conflict arising during a run will survive in the form of an auto-conflict or
auto-concurrency to the respective final component. When synthesizing a circuit from
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this component, one will generate its reachability graph, and during this generation
the problem will show up.

As an extreme application of these results, we can run the algorithm simply hoping
that new conflict pairs are no problem.

Risky strategy: Accept inputs with structural auto-conflicts, as long as they are
not dynamic ones. All secure transition contractions are allowed. In the end, build
the reachability graphs of the final components and check that no reachable marking
enables two equally labelled transitions; if the check fails, discard the result.

The risk is clearly that all time spent on the algorithm might be wasted. But if our
hopes are justified, we get a result with fairly small reachability graphs comparatively
cheap. An example where this works is locked2 discussed in the next section.

5 Examples

We will now demonstrate the new features of our improved algorithm for some realistic
examples, discussing two of them in some detail; for even more details see
http:// www.eit.uni-kl.de/beister/eng/projects/deco examples/main examples.html

The decomposition algorithm with the new features presented here has been imple-
mented in our tool DESI1; DESI can follow the conservative, the specifier-dependent
and the risky strategy. (At the time of writing, the tool only checks for loop-only and
duplicate places, but not for redundant places in general.) The table below gives a
numbered list of some examples we treated, where NEI is the NEI-arbiter from e.g.
[Wol97], while the others are from the benchmark examples. For each example, we
give the number of reachable markings and the numbers for the components of the
best decomposition we have found so far using the specifier-dependent strategy. (For
locked2 we also show a better result obtained with the risky strategy.) Recall that
it might already pay off if each of the latter numbers is smaller than the first one.
E.g. for tsend csm, synthesizing a circuit with petrify took 8.12 sec on an Intel Xeon
2.2Ghz with 1 GB memory, while DESI plus petrify on the components took 1.33 sec.

no name reach. markings for the components
1 locked2 168 70 6 6

(risky) 32 6 6
2 tsend csm 36 25 16
3 mux2 101 50 43
4 stg blunno 1241 102 102 44
5 vmecon 24 19 8
6 pe-send-ifc 117 68 32
7 NEI 42 21 12

Examples 1–4 have dummy transitions, which in these examples can now be han-
dled by DESI without any initial human adaption. As we will see below, the two small

1http://www.eit.uni-kl.de/beister/eng/projects/download.html
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components for locked2 are significantly smaller due to the new operation RedTD;
also for mux2, RedTD gives a small improvement. An additional improvement for the
large component of locked2 can be obtained with the risky strategy as shown in the
second line. Examples 4–8 all have structural auto-conflicts; treatment of these with
the decomposition method is only possible due to our improvements. Additionally,
stg blunno also has an io-conflict. NEI cannot be synthesized by petrify, but DESI
splits it into a standard ME-element, which was also used in [VW02], and a smaller
synthesizable STG.

Let us now have a look at the example locked2 shown in Figure 5. After contrac-
tion of the dummy transitions we get Figure 6, which results in Figure 7 as initial
component responsible for output reqa.
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Observe that it is very important that we can get rid of signal c: if we cannot,
then contraction of t0 or t1 will give a structural auto-conflict between t3 and t14, such
that with a conservative strategy we can also not get rid of signals a and D – giving
a comparatively large component. On top of this, we cannot contract t14 currently
because this would not be a secure contraction.

If we contract the crossed out transitions in Figure 7, we get Figure 8. Here, the
marked places are duplicates of each other; hence, we can delete two of them and
then contract again the marked transitions – giving Figure 9. The important point
is that t14 has now turned into a loop-only transition and can be removed. The rest
runs smoothly arriving at Figure 10.
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We close this section with a small example where there is some structural auto-
conflict initially: vmecon as shown in Figure 11 has a conflict between t3 and t10. A
component producing signal ds must see signals ldtack, drs and dsw, while a com-
ponent producing signal lds must see signals ds, ldtack, drs and dsw. Hence, the
only feasible partition of interest contains ({ldtack, drs, dsw}, {ds, lds}) and ({ds,
dsw}, {dtack}). For the first component, one has to contract t0, t7 and t9. Since no
new conflict pair turns up, the specifier-dependent strategy works without any back-
tracking – although there always is a structural auto-conflict. For the second com-
ponent, one finds new conflict pairs when contracting t3, t5, t10 and t11. But these
either involve at least one internal transition or t4 and t8; the latter two have the
same signal, but different labels, so for the second component the specifier-dependent
strategy works without any backtracking as well.

6 Conclusion and Future Work

STG decomposition can help in the synthesis of circuits: it may avoid state explosion,
it supports the use of library elements, and it leads to a modular implementation
that can be more efficient. [VW02] presented a decomposition algorithm that is much
more generally applicable than those known before, and we have presented further
improvements:

• We have given a number of results that allow us to deal with structural auto-
conflicts: the decomposition algorithm remains correct when there are no dy-
namic auto-conflicts. Hence, we can carry on even if there are structural auto-
conflicts initially or at intermediate stages, provided these are not dynamic ones.
If we do so, we only have to check new structural auto-conflicts that turn up
in a contraction. If such a check is passed by mistake – e.g. made by the user
in an interactive strategy –, this mistake was proven to be recognizable during
synthesis.

• We have added the deletion of loop-only transitions to the list of operations
allowed in the algorithm.

• We have restructured the correctness proof of [VW02] to cover the previous two
items. Already this proof was meant to be extendible to new operations; this
did not work out, but it certainly made our restructuring easier. We hope that
the new proof structure will turn out to support possible further operations.

• We have extended the algorithm and its correctness proof such that io-conflicts
can be dealt with. We have shown that the algorithm does not introduce new
io-conflicts, which is important since dynamic io-conflicts are hard to implement.

• We have shown that the algorithm preserves consistency.

• We have noted that we can often deal with dummy transitions in the initial
specification, simply by applying transition contraction.
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The improvements have been integrated in our tool DESI, and we have demon-
strated the usefulness of our improvements with some practical examples.

There are a number of open problems we will tackle in the near future. We
will improve the recognition of redundant places in our tool DESI. Often, essentially
the same operations have to be performed in different components; DESI should be
enabled to reuse the results of some operations. Also, backtracking makes DESI start
with a new initial component, while reuse of some operations performed before the
backtracking should be possible.

Depending on the choice of a feasible start partition and on the choices of sig-
nals for backtracking, we can arrive at different decompositions. We want to study
quality criteria (like the overall or the maximal number of reachable markings) for
decompositions, and methods to find good decompositions.

We have assumed that the given STG-specification N , its components Ci we have
constructed, and their parallel composition C are deterministic. One would get much
more freedom in finding components, if one allowed internal signals for the commu-
nication between components; then the composition C would not be deterministic
anymore, and to treat such STGs it becomes essential to use some form of bisimula-
tion that is not angelic. Also for N , it can be useful to allow nondeterminism: e.g. to
treat arbitration in general, it can be necessary to have several enabled and conflicting
transitions with the same label, and in [YKK+96], it is argued that auto-conflicts are
very useful when modelling so-called OR-causality.

Finally, as argued in [WB00], STGs are not always sufficient to specify the desired
behaviour; as an improvement, gSTGs are suggested. Therefore, we want to generalize
our approach to gSTGs, and we also want to generalize our correctness criterion to take
concurrency into consideration, where it seems to be natural to require the modular
implementation to exhibit at least the concurrency prescribed in the specification.

References
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