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ABSTRACT. Random systems, dynamical systems and control systems can all be described
as flows on (finite or infinite dimensional) spaces, which allows for the use of unified
concepts in the analysis of their qualitative long term behavior. In particular there is
a close connection between the attractors of an undisturbed system, the stationary and
ergodic solutions of the system under Markovian parameter noise, the invariant control
sets of an associated control system, and the (chaotic) attractors of the corresponding
control flow. This correspondence is used to analyze the possible changes in the ergodic
behavior of controlled random nonlinear systems. Discussing four examples in some detail
reveals a link to stochastic bifurcation theory.

1. Introduction.

Random vibrations occur in physical systems (often modelled by ordinary differential
equations), which are subjected to noise. As long as the resulting system is Gaussian
and Markov (in particular the solution of a linear stochastic differential equation with
additive noise), there is a well-known range of techniques for the analysis of such sys-
tems. Parameter excited and/or nonlinear systems are in general non-Gaussian, and
a wide range of approaches have been developed to deal with these situations analyti-
cally, approximately or numerically, among them in particular stochastic linearization,
averaging for systems on different time scales, computation of solutions of the corre-
sponding Kolmogorov (or Fokker-Planck) equations. The textbooks of Dimentberg {17]
and Sobczyk [26], as well as many papers in this volume describe the current state of art
in these areas. They all have in common that they deal with the statistical properties
of random systems, i.e. in the case of solutions of stochastic differential equations these
approaches are based on the generator of the diffusion process.

However, for certain properties of the trajectories, like their exponential convergence,
it is not appropriate to consider the generator: Baxendale [5] has an example, where
for processes with the same generator the Lyapunov exponents, indicating exponential
convergence or divergence with probability one of the trajectories, can be negative or
positive. These exponents depend on the dynamics, i.e. the vectorfields of the random
system. In recent years, the dynamical analysis of stability and bifurcations in stochastic
systems based on Lyapunov exponents has made considerable progress, we just mention
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the papers of Arnold and Boxler [2], Boxler [7], and of Ariaratnam, Sri, and Wedig in
these Proceedings.

In this paper we present another aspect of the dynamical analysis of random systems:
we will gain insight by using concepts from the theory of dynamical systems and of con-
trol systems. We concentrate on the qualitative long term behavior, i.e. on stationarity
and ergodicity, and analyze its change via deterministic control. (Note that this prob-
lem of controlling the dynamics of a random system is different from stochastic optimal
control with adapted control processes.) After the introduction of some concepts and
notations in Section 2, we will present an outline of the theory, linking stationarity to
chaos and controllability. The examples in Section 4. show, how to apply this theory in
some obvious and not so obvious situations. Besides for the control of random dynam-
ics, these ideas also prove valuable for stability and stabilization of stochastic systems
via Lyapunov exponents. We refer to [20], [9], and [10], where the last two papers also
show some connections with stabilization theory for uncertain (deterministic) systems.
Some of the common background material, which is needed for the following sections,
can be found in the survey paper {20].

2. Random Vibrations, Stochastic Flows and Control Flows.
As a mathematical model of random vibrations we will use the following set-up: Given
is a (deterministic) ordinary differential equation on a smooth manifold M, dim M = d,

i = Xo(2), (2.1)

where Xj is a smooth vectorfield, describing a physical system. The random system is

i = Xo(z) + Zm: £Xi(z) on M, (2.2)

i=1

where (6:)i=1 . = & is an m-dimensional noise process, and the vectorfields X; ... X,
describe, how the noise enters into the system. This model covers parameter and/or
additive noise (in the latter case the vectorfields X, ... X, are constant). In this paper
we consider the case, where ¢, is bounded (in particular non-Gaussian), i.e. we assume
that & has values in a compact, convex set V C R™, which contains 0 in its interior.
Furthermore, since we are interested in stationary behavior, we assume that &, is (strict
sense) stationary, i.e. all finite dimensional distributions are invariant under time shift.

In order to link the random system (2.2) with dynamical and control systems, we
describe it as a stochastic flow. This means first of all that we need an appropriate
probability space for {;: Let V = {v: R = V C R™, locally integrable} be the trajectory
space of {;. Then the standard Kolmogorov construction (see e.g. Rozanov [24]) yields
a o- algebra B and a probability measure P on (V, B) such that: If §,: V¥ — V, defined
by 8.v(-) = v(t + -), denotes the time shift on V, then §,P = P, i.e. shift invariance
of P on V corresponds to shift invariance of the finite dimensional distributions of &,
indicating stationarity. Now take (V, B, P) as the probability space, then &(v) = v(¢)
for v € V is the equivalent noise model, which we will use from now on.
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To capture the random dynamics of (2.2) we consider the family of differential equa-
tions

& =Xo(z) + Y _v'(t)Xi(2) (2.3)
i=1 A
with (v')i=1,...m = v € V. The solutions are denoted by o(t,z,v) for (v,z) € V x M,
with initial value ¢(0,z,v) = z and using v € V on the r.h.s. of (2.3). Putting things
together, we arrive at the random flow description of (2.2):

G RXVXM-—-VXM

5
(t,v,z) = (60, 0(t,z,v)) (2:4)
where the first component (i.e. the shift § with invariant measure P) describes the
stationary noise, and the second component describes the dynamics of the system under
the noise. (2.4) is called a flow on V x M, because it has the group property ¢:0¢, = ¢r+,
for all times ¢,s € R (we have used the notation ¢; = ¢(t,-,-)). The shift component &;
is also a flow (on V), but the second component by itself does not satisfy this property,
because of the time varying noise. It is called the skew component of ¢, and the notion
‘skew product flow’ is often used for a flow ¢ on a product space with skew component.
(If & is not a bounded, stationary process but white noise, one can also construct a
corresponding stochastic flow for the system, see e.g. Kunita [21], Arnold and Crauel
[3], or the survey paper [20].)

For the topological analysis of (2.4) as a dynamical system or a control system we
need a topology on the trajectory space V (and we disregard the measure P of the
stochastic flow). For control theoretic purposes the appropriate one is the weak* topol-
ogy of L=®(R,R™) = (L*(R, R™))" (see e.g. [12]), since convergence of v, — v in V
then implies uniform convergence of the solutions @(+yz,vn) — ¢(:,z,v) on finite time
intervals. With this topology ¢ is continuous in all its components.

The next section is devoted to the study of ¢ from stochastic, dynamical systems, and
control systems points of view. We will do this under an assumption which guarantees
that we have the “right” state space for (2.2), namely

dim LA{X(, X1,..., X} (z)=d forallz € M. (H)

This Lie algebra rank condition, which is discussed in detail e.g. in [20], means that the
noise dynamics is sufficiently rich, i.e. that the set of points reached by some solution of
(2.2) up to time ¢ > 0 has nonvoid interior, or, in the language of Markov processes, that
the supports of the transition probabilities up to time ¢ > 0 have nonvoid interior. In
fact, it is this assumption, on which in the white noise case the famous support theorem
of Stroock and Varadhan is based, saying intuitively that the trajectories of (2.2) as a
random system “agree” with the trajectories of (2.2) as a control system, see Stroock
and Varadhan [27], or the survey [20] for details. In what follows, we develop a theory
for real (bounded) noise systems, which reflects some of the consequences of the support
theorem.
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3. Stationary Random Systems, Controllability, and Chaotic Attractors.

In this section we will analyze the problem, under which conditions the random
systems (2.2) has a bounded stationary solution. This is the basis for the subsequent
discussion about changing the dynamical behavior via control.

As indicated in Section 2, stationarity means finding a flow invariant probability
measure, i.e. for the stationarity of (2.2) under stationary noise ¢;: Find an invariant
measure g on VY x M, such that ¢,u = p for all ¢ € R. Furthermore. since £, and hence
P on V are given, we need that the marginal of 4 on V is P. This amounts to the
following construction: 4 on V x M can be desintegrated as u = u, P, where for each
v €V p, is a measure on M with the invariance property (¢, -, v)i, = pg,., see e.g.
[11]. In order to find these measures, one has to study the ergodic properties of the
flow ¢ on V x M. This can be done using the limit structure of ¢. Carrying out this
program, however, is quite a technical task, if done in full generality, and we refer to
{11} and the references therein for several results in this direction.

Fortunately, the solution is much simpler, if we work in the context of Markov pro-
cesses, i.e. stochastic processes, for which past and future are independent, given the
presence. Since physical systems, described by ordinary differential equations, do not
foresee their future, this seems to be a natural class of noises to consider for random

vibrations. In particular, it includes the following models, which are quite common in
random mechanics (colored noise):

dne = Zo(me)dt + | Zi(n) o dw; (3.1)

=1

is a (nondegenerate) stationary diffusion process on a compact manifold N and f: N —
V a smooth map with f[N} = V, and with coordinate functions fi,..., fm. 7 is the
m

‘background’ noise, which enters the system z = Xy(z) + 3. fi(1:)Xi(z) via the trans-
i=1

formation f. In this set-up we have: 7, is a Markov diffusion process, the pair (1, z¢)
is 2 Markov diffusion process, and supp P =V, where .V is the trajectory space of 7;.
(Strictly spaeking we also need that the initial values of 7, and of z; are independent
of the driving Wiener process W{.) From now on we assume that these properties are
satisfied.

In the Markov context stationarity of (2.2) can be described through the control
structure of (2.3), which is quite surprising, because controllability is a finite time result,
while stationarity and invariant measures refer to the long term behavior as t — co.
We need the following definitions and notions for the system (2.3):

Denote by Ofr(z) = {y € M; thereis v € V and 0 < ¢t < T with ¢(t,z,v) = y}
the so called positive orbit of a point z € M up to time T > 0, and let OF(z) =
Urso O;T(I)'

3.1. Definition. A set D C M is a control set of (2.3), if O+(z) D D for all z € D,
and D is maximal with this property. C C M is an invariant control set, if furthermore
O+(z) = C for all z € C. (For a set A we denote by 4 its closure.)
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In the context of this paper we are interested only in those control sets that have
nonvoid interior, denoted by int D. Under our standing assumption (H), this is always
true for invariant control sets, see e.g. [20].

In order to obtain concepts for the flow ¢ in (2.4), we have to lift the control sets D
of (2.3), which are subsets of M, to the product space V x M. We define

D =ct{(v,z) €V X M; o(t,z,v) €int D for all t € R}, (3.2)

where “cf” is the closure in ¥V x M with respect to the described topologies. The
interplay between the control structure of (2.2) and the dynamical systems structure of
(2.3) yields the following result:

3.2. Theorem. (control and chaos)

(i) Let D C M be a control set of (2.3) withint D # ¢, and D its lift to V x M.
Then the flow (D, §) is chaotic, i.e. (a) thereis a dense set of periodic points, (b)
(D, ¢) is maximal topologically transitive (and mixing), (c) (D, ¢) has sensitive
dependence on initial values.

(i1) Vice versa, if D C V x M is maximal topologically transitive (or mixing) with
int IIyyD # ¢, then there is a control set D C M of (2.3) withint D =int IID
and cfD = cfllyyD. Here Ilps: V x M — M denotes the projection.

Theorem 3.2 says that the sets, in which the system (2.3) can be controlled, corre-
spond to the chaotic components D of the flow ¢. We will briefly recall the concepts used
in Theorem 3.2: Let ¥»: R x § — S be a continuous flow on a complete metric space.
For a subset 4 C S the limit set w(A) is defined as w(A4) = D cl{p(r,A); T € [t,00)}

>0

and similarly for w*(A) using ¢t < 0.

(S,¥) is called topologically transitive, if there is s € § with w(s) = S, and topo-
logically mixing, if for any two open sets V;,V> C S there are times Ty € R, T} > 0
such that ¥(—nTy + Ty, V1) N V2 # ¢ for all n € N. (S, ¢) has sensitive dependence on
initial values, if there is a uniform § > 0 such that for all s € S and all neighborhoods
NV of s there are p € N and t > 0 with d(¥(t,s),¥(t,p)) = 6. Here d(-,-) is the met-
ric (distance) on S. Finally s € S is a periodic point of %, if there is a time T with
¥(t,8) = Y(T +t,s) for all t € R, and denseness means that the closure of the set of
periodic points is all of S. (See e.g. Maiié [22] or Devaney [16] for these definitions.)
Setting S = V x M and 1 = ¢ one obtains the corresponding statements in Theorem
3.2, where “maximal” of course means a maximal (with respect to set inclusion) set
with these properties.

A flow with the properties (a)-(c) from Theorem 3.2(i) is ‘chaotic’ (compare e.g.
Devaney [16}), because it has the three ingredients: a dense set of regular (periodic)
points, mixing, and nearby trajectories drift apart everywhere. (In differentiable dy-
namics, which we do not have because of the shift component 8, a concept similar to
(¢) can be based on hyperbolicity and Lyapunov exponents, see e.g. Maiié [22].)

Because of the maximal mixing in Theorem 3.2(ib), we expect the following ‘meta
theorem’ to hold: Control sets D of (2.3) correspond to maximal mixing components
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D of ¢, which correspond to the recurrent components of the stochastic flow ¢, since
recurrence is a mixing property, namely that the solution process visits every open
set infinitely often. For general stationary noises this meta theorem is ‘almost’ true,
compare Section 4. in [11]. In the Markov context we arrive at an even stronger result,
for which we need the following concepts.

Consider the control system (2.3) and its control sets D,, a € I. where I is some
index set. We define a (partial) order on the control sets through

D, < Dg if there exists £ € D,, v € V and t > 0 such that (¢, z,v) € Dy  (3.3)

in other words, if D3 can be reached from D, (but not vice versa, since control sets are
maximal sets with the reachability condition in Definition 3.1). A control set D, is said
to be maximal with respect to the order ‘<’, if, whenever D, < Ds, then D, = Dj. It
is easy to see that invariant control sets are maximal w.r.t. <.

Conceming the existence of invariant control sets for a control system (2.3) we men-
tion that in each bounded, invariant subset of the state space M (in particular, if M
itself is compact) there exists at least one (and at most finitely many) invariant control
sets C; C is closed and has nonvoid interior. Furthermore, C is said to be isolated if
there is an open neighborhood N of C such that ITypw(v,N) C C for all v € V. With

these preparations we can state the following results on the generic behavior of the
trajectories of (2.3);

3.3. Theorem. (genericity and attractors)

(i) The set {(v,z) € V x M, there is tg > 0 such that (t,z,v) € int C, some
invariant control set for all t > ty, or v(t,z,v) — oo for t — oo} is an open and
dense set in V x M.

(i1) IfC C V x M is the lift of an isolated invariant control set C C M, thenC is a

chaotic attractor of the flow (V x M, g).

Part (i), whose proof can be found in [13] , says that, except for a thin set of control
functions v € V and initial values z € M, all trajectories will end up in an invariant con-
trol set or go towards the boundary of M. In particular, for all initial values in a bounded
invariant subset of M, these trajectories will enter some invariant control set and stay
there. Concerning part (ii), we first have to make precise the concept of an attractor: We
are interested in the structure of the union of all w-limit set U{w(v,z); (v,z) € V¥ X M }.
Since this set is difficult to describe, it is replaced in dynamical systems theory by a
(possibly somewhat larger) set CR of chain recurrent points, see e.g. Conley [15]: For
a dynamical system (S,1) we define z € CRif forall € > 0, T > 0 there are n € N,
times tg,...,ta—y > T, and points £ = z¢,...,z, = z in S with d(¢(t;, i), Ti41) < €
fori =0,...,n—1. The connected components M4, @ € J (J is again some index set)

of CR are the Morse sets of (S,). Between the Morse sets there is a (partial) order
defined by

Mg < Mg if there is s € S with w*(s) C M, and w(s) C Mg. (3.4)
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An attractor is a maximal Morse set w.r.t. the order <, see e.g. Ruelle [25]. Using these
concepts for the flow (V x M, ¢) and for the lifts C of isolated invariant control sets C
one can now easily prove statement (ii).

In the Markov set-up described above, we obtain the following consequence:

control set, for all t > tq, or o(t,z,v) — oo} =1 for all z € M.

3.4. Corollary. P{v € V; there is to > 0 such that @(t,z,v) € C, some invariant

It is clear from this corollary that solutions of (2.2), such that (&,z,) is a Markov
process, can be stationary only in the invariant control sets C of (2.3). In order to show
that there actually is a stationary solution in each C, one needs a tightness condition
on the transition probabilities, see e.g. Hasminskii [19]. Since we are only interested in
bounded stationary solutions, the situation is simple:

3.5. Corollary. Let &, be given by a background noise n, as in (3.1). Then we have:

(i) In each bounded invariant control set C of (2.3) there exists a stationary so-
lution (n?,z?) of (2.2). The corresponding invariant probability measure u of
(n?,29) is a solution of the (stationary) Fokker-Planck equation for (e, T¢),
whose marginal on the state space N of n, is the invariant measure ofng. p
has a smooth density with support N x C, in particular the stationary Markov
solution on C is unique.

(i1) All bounded stationary and ergodic Markov solutions of (2.2) are concentrated
on N x C for some bounded invariant control set C of (2.3), ie. they are
of the form (i). All bounded stationary Markov solutions are finite convex
combinations of these ergodic processes.

(i) Any Markovian solution of (2.2), which enters some C with probability 1, will
converge (in distribution) to the unique ergodic process in C, according to the
strong law of large numbers.

For remarks on the proofs of the Corollaries 3.4 and 3.5 see [20] and [11].
The results 3.3-3.5 allow the precise formulation of our meta theorem above in the
Markovian context:

3.6. Theorem. Let M be a bounded, invariant set and assume that the invariant
control sets C C M are isolated. Then the invariant control sets C C M of (2.3)
correspond exactly to the (chaotic) attractors C of (V x M, 4), which in turn correspond
exactly to the stationary, ergodic Markov solutions (n{,z?) of (2.2) on N x M.

If the invariant control sets are not isolated, the statement above remains true with
‘attractor’ replaced by ‘maximal topologically mixing component’, where maximality is
understood w.r.t. the order defined in (3.3).

Theorem 3.6 connects several interpretations of (2.4) as a control, a dynamical, and
a random system. It does, however, not relate these interpretations to the behavior
of the undisturbed physical system (2.1). We will now explain such a relationship for
small, Markovian noise.

Scale the noise range V through V¢ = ¢-V C R™ for ¢ > 0, then (1 V* = {0},
>0

which corresponds to the undisturbed system (2.1). Denote by Ma, a € J the Morse
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sets of (2.1), defined as in the explanations after Theorem 3.3, but now for the flow
x: R x M — A induced by (2.1) on the state space M. Assume that x has finitely
many attractors A4;... A, in M. A point z in one of these attractors is called in inner
point, if for all ¢ > 0 there exist times T, S > 0 such that (7T, z,0) € int O%(z). Here
¢(t, z,0) is the trajectory of the undisturbed system, and O¢* is the positive orbit of the
control system (2.3) with range V"¢, compare the notation introduced before Definition
3.1. The inner point property is discussed in [13] (see also (20]) and can be verified
through a Lie algebraic criterion similar to (H).

3.7. Theorem. Consider the control system (2.3%) with control range V¢. Assume that

for some € > 0 M is a bounded, invariant set of (2.3¢) with finitely many attractors

k
Ay ... A of the undisturbed system (2.1), such that all points z € |J A; are inner

1=1
points. Then there exists :° > 0 such that
(i) for all 0 < ¢ < £° there exist invariant control sets C{ of (2.3°) such that
AiCint Cf foralli e {1,...,k};
(i) vice versa, if for a family C*, 0 < ¢ < &%, of invariant control sets we have

(| C* # ¢, then (| C® is one of the attractors Ay,..., Ax.
>0 €>0

This theorem says that for all ¢ the attractors of (2.1) “blow up” to corresponding
invariant control sets of (2.3°). The result is a special case of Theorem 4.12 in [13].

Thus, we obtain under the assumptions of Theorems 3.6 and 3.7 an extension of our
meta theorem:

3.8. Corollary. For ¢ > 0 small enough, the following objects are in one-to-one corre-
spondence:

(a) attractors of the undisturbed system (2.1) on M,
(b) invariant control sets of the control system (2.3°) on M,
(¢) (chaotic) attractors of the flow ¢ in (2.4) on V x M,

(or maximal topologically mixing components of ¢, if the invariant control sets are not
isolated),

(d) stationary, ergodic solutions (n?,z%) of (2.2) on N x M.

Note that this correspondence also holds, if the attractors of (2.1) are not chaotic,
even for linear systems with additive noise, if the origin is the unique attractor of
2 = Az. The chaotic nature of the attractor of the flow ¢ on V x M comes from
its infinite dimensional component, described by the shift on the space V of bounded
trajectories. Corollary 3.8 applies in particular to stable fixed points and stable limit
cycles of & = Xy(z), around which one finds, for small noises, unique stationary, ergodic
solutions of the random system (2.2).

4. Control of Long Term Random Dynamics.

Section 3. was devoted to the study of the long term behavior of the random system
{(2.2). Now we introduce an additional control component and analyze the possible
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changes of the qualitative behavior via deterministic control functions. Let us consider
i = Xo(e)+ 3 €Xu(2) + 3 u,(O¥;(a), (4.1)
i=1 j=1

where the Y;...Y, are again smooth vectorfields on the state space M, and the ad-
missible control functions (u;(t));.;, .. = u(t) have values in a bounded set U C R",
again with 0 € int U, so that for u = 0 the uncontrolled system corresponds to (2.2).
We address the following problem: Find a control function u(t) such that (4.1) has a
stationary solution (or converges towards a stationary solution) with prescribed behav-
ior. By prescribed behavior we mean here: possesses an invariant measure in a certain,
given area. (We are not interested in the shape of the resulting invariant density, only
in its support, since in this very general set-up analytical statements about the shape
are not possible.) Recall that by the law of large numbers almost surely the trajectories
of z, will visit any open set in the support of the invariant measure infinitely often.
Our results will therefore describe the area, in which the trajectories of the controlled
system fluctuate.

We will continue to consider the Markov set up with noise processes described by
(3.1), and we will use the correspondence between invariant control sets and ergodic
solutions from Section 3. If the controlled equation is to have stationary solutions for ¢
sufficiently large, then the vector fields in (4.1) have to be time independent for ¢ > £,
(see Hasminskii [19]), i.e. the controls u(t) have to be constant for t > to. As we will
see, this relates the problem studied here closely to the Markovian bifurcation theory
of random systems.

Four examples will be studied according to the following scheme: Given a random
system of the form (2.2) and control vectorfields Y; with control range U C R", and
given certain required properties concerning the stationary behavior of the controlled
system, is it possible to achieve this behavior. All examples will be in dimension 1 or
2, although the results work for any finite dimension, because the principles can be
explained in an intuitive way for low dimensional state spaces. A software package is
under development to compute the necessary invariant control sets (“CS” by Gerhard
Hackl, University of Augsburg), which was used for Example 3.

4.1. Example. Consider the Verhulst equation in R?
& = Xo(z) + &X1(2) + u(t)Yi(z) = az — 2* + &z + uz, (4.2)

a€R, & €V =[-6,6 CR, u(t) € R. The goal is to obtain a stationary solution with
support bounded away from 0.

For one dimensional systems it is convenient to represent the dynamics in the (u,z)-
plane as a ‘bifurcation diagram’, see Figure 1. The arrows indicate the sign of the right
hand side of (4.2), and the lines the zeros, i.e. the fixed points. Using the techniques
described in [4] or [11], it is easy to find the control sets for each u and a given noise
range V.
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Figure 1: Uncontrolled system Figure 2: Controlled system

For the uncontrolled system, i.e. u = 0, we obtain (see Figure 1): z = 0 is a fixed
point (independent of the noise trajectory), there is one variant control set D, and
no invariant control set (other than {z = 0}). Hence there is no stationary solution.
bounded away from 0. Actually we obtain for the limit behavior of this system, with
D =(a,b): z.(y) — 0 almost surely for t — oo for all initial values y > b, z4(y) — ~
almost surely for t — oo for y < a, and for y € D there are positive probabilities P°.
p™ such that P{z,(y) — 0} = p® and P{z.(y) — —oc} = p*™.

For the controlled system we have: (4.2) has a stationary solution, bounded away
from 0, iff ug > —a + 6, see Figure 2. Here C is a unique invariant control set in
R,. Increasing the control u means moving C, and hence the stationary solution.
further away from 0. Note that for this system z,(y) converges towards the stationary
solution iff the initial value y > 0. For nonpositive initial values the goal cannot be
accomplished. Looking at Figures 1 and 2, these results are not surprising, but rather
intuitive. We next consider a 2-dimensional system, which is also basically determined
by its deterministic structure.

4.2, Example. Consider the Lotka-Volterra (or predator-prey) system in R

(ﬁi) = Xo(z) +£.X1(2) + u(t)Yi(2) = (("“%”21) e, )+ (‘§3> ,

—7Z2 172
(4.3)
where a, 8, v are positive constants, {; € [a,b] C R4 and u(t) € U C Ry. The goals are
to (a) obtain a stationary solution in R, bounded away from the z;-and the z,-axs,
(b) obtain a stationary solution with z; = 0. Note that z; = 0 or z; = 0 indicates the
extinction of the corresponding species.

The uncontrolled system with u = 0: For & = v € [a,}], the solutions are closed
curves in R%, covering all of R2. Thus, even with the smallest noise in [a, b, a # b,
the system cannot have a bounded, stationary solution. Hence for all thresholds L > 1
and all initial values (y1,y2) € R% there exists a positive probability that the solution
Z+iy1,y2) will grow above L, and fall below ..
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Controlled system with u small, i.e. 0 < u < LiForf=ve la,b], the solutions

have a unique stable fixed point (%, ‘"’T_v“") in R%Z. Thus, by Proposition 2.4 in (8],

for each u € (0, %) there exists a unique compact invariant control set Cy C R%, on
which the system (4.3) has a unique stationary ergodic solution. If u increases within
this interval, the control set C, moves closer to the z;-axis, i.e. the z;-population
becomes smaller. For all initial values in R, the solutions of (4.3) convergence towards
the stationary one.

Controlled system with u large, 1.e. u > %”: There exists a unique stationary solution
with support [%, %] x {0} on the positive z;-axis, and all solutions of (4.3) with initial
value in R} converge towards this solution, i.e. the z,-population becomes extinct
w.p.1.

For a deterministic analysis of this system see e.g. Amann [1], for some aspects of a
white noise analysis see e.g. Dimentberg [17].

The next example shows a 2-dimensional system, whose deterministic part can be
controlled to stay in a certain area of the state space, while even small noise will drive
it into a different region.

4.3. Example. Consider the model of a well-stirred chemical reactor in M = (0, c0) X

(0,1)

(I;> = Xo(z) + £:.X1(2) + u(t)Vi(2)

z
—z; — 0.15(zy — z.) + 0.35(1 — z5)e** T, — I To— )
=(_xl+o.05§1‘-z2)°3n (o) )“‘( 0 )*“(t)< 0 )
(4.4)
where r; denotes temperature, zo product concentration and noise and control affect
the heat transfer coefficient. Noise and control affecting the same parameter means that
one cannot steer the system precisely, but the control input into the reactor is disturbed
by a (small) Markovian noise. For a discussion of the deterministic, uncontrolled system
see e.g. Golubitsky and Schaeffer [18] or Poore [23]. We choose u(t) € U = [~0.15,0.15]
and & € (—¢,€). The goal is to control the system such that the product concentration
z9 is as high as possible, under technological constraints.

The deterministic, controlled system (i.e. £ = 0) was analyzed in [14], and the
results are shown in Figure 3. and 4. The control system has 3 control sets, 2 are
invariant (the lower one, Ci, and the upper one, C;), and one is variant (the middle
one, D). Figure 3. shows these control sets, together with the phase portrait of the
uncontrolled system. The problem is that the upper control set C3, which is the most
desirable region of operation because of the high product concentration, is technically
not feasible, compare Bellman et al. [6]. However, the reactor with undisturbed controls
can be steered from the region of attraction of the variant control set D, shown in Figure
4., into D and it can be kept in this set using for each initial value an appropriate control
function u(t), compare [14].
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Figure 3: Control set of the undisturbed Figure 4: Region of attraction of the
reactor model (4.4) variant control set in (4.4)

Now, if the chosen control input u(t) is disturbed by noise & € [—¢,¢], then by
Corollary 3.4, for all ¢ > 0 however small, the system will tend towards one of the
invariant control sets, which means lower product concentration in case of Cp, and
destruction in case of Cy. Each of these possibilities will result with positive probabilicy.
if the initial value is in the region of attraction of D. If one starts to the left of this
region, one converges to C; w.p.1, and similarly to C, for starting values to the right.
This example shows that in order to stabilize input-disturbed systems in variant control
sets, one has to design the controls depending on the noise.

4.4. Example. This example shows that even in one dimensional systems some sur-
prising effects can occur. We will start with a ‘bifurcation diagram’ as in Figure 5. The
noise and the control have the same dynamics (see e.g. Example 4.1 or 4.3), although
the same effects can also occur, if this is not the case — the simple graphical represen-
tation, however, would not be possible. The size V of the noise is indicated in Figure
5. The goal is to obtain a stationary solution =, with values above the point z2. Figure
6 shows, for each control value u, the invariant control sets, corresponding to the noise
range V, as areas around parts of the stable bifurcation curves.

Figure 5: Bifurcation diagram of Pigure 6: Invariant controls set of
Example 4.4. Example 4.4
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For u = 0 there is a unique invariant control set with low z-values. Increasing the
control u leads for initial values < z; to unique invariant control sets in the area A
around the lower bifurcation curve, i.e. the goal cannot be reached. For initial values in
[z1,22) a control > ug leads to stationary solutions in the area B. However, increasing
u above u; will cause the system to converge towards a stationary solution in area A.
Finally, if the initial value is > z,, a control > u, will result in a unique stationary
solution in area C. Hence we see that, although the points 0 and z, are linked by a
continuous line of stable bifurcation branches, it is not possible to steer the system to a
stationary solution around z; for initial values < z,. This is prohibited by the random
dynamics of the Markov system. Note that this effect is present even for small noises;
increasing the range V' will lead to smaller areas B, and C will be shifted to larger
z-values. For V large enough, the area B will disappear completely.

The separation between areas A and B is an example of ‘noise induced symmetry
breaking’, while the separation between B and C (and the subsequent convergence
towards ) has not been discussed in the literature. These effects, and many others,
can be analyzed in the context of stochastic bifurcation theory for systems with bounded
Markov noise.

Conclusions. We summarize our findings in the examples above in a few rules:

(a) Control to stationary Markov solutions in prescribed areas of the state space
needs invariant control sets in these areas.

{b) The control to a stationary solution consisting of one point sq (i.e. the invariant
measure is the Dirac measure at ) requires the existence of a control u® € U
such that zo is a fixed point of & = Xo(z) + 3 £iXi(z) + 3 ulYj(z) for all
X1...Xm.

(c) The bifurcation behavior of the random systems with u as a (multidimensional)
bifurcation parameter, and its control structure determine the the possible sup-
ports of stationary, ergodic solutions.

(d) A deterministically controlled system may drastically change its behavior in the
presence of noise, if the control is designed independent of the noise.

References.

(1] Amann, H. (1983), ‘Gewohnliche Differentialgleichungen,” De Gruyter.

(2] Amold, L., P. Boxler (1991),'Stochastic bifurcation: Instructive examples in
dimension one,” to appear in: ‘Stochastic Flows,” Pinsky, M., V. Wihstutz
(eds.), Birkhauser.

(3] Arnold, L., H. Crauel (1991), Introduction to ‘Lyapunov Exponents, Proceed-
ings of the Oberwolfach Conference 1990,” Ammold, L., H. Crauel, J.-P. Eckmann
(eds.), Springer.

[4] Arnold, L., W. Kliemann (1983), ‘Qualitative theory of stochastic systems,’ In:
Probabilistic Analysis and Related Topics Vol. 3,’ Bharucha-Reid, A. T. (ed.},
Academic Press, 1-79.

[5] Baxendale, P. (1986), ‘Asymptotic behavior of stochastic flows of diffeomor-
phisms.” In: Proceedings of the 15th SPA, Nagoya 1985. LN Mathematics
1203, Springer, 1-19.

{6] Bellman, R., J. Bentsman, S. M. Meerkov (1983), ‘Vibrational control of sys-
tems with arrhenius dynamics,” J. Math. Anal. Appl. 91, 152-191.



346

[7)
(8}
(]

(10]
(11]

(12]
[13]
(14]
(15)
(16]
(17]
(18]
(19]

20]

21]

22
23

24
25

26
27

Boxler, P. (1989), ‘A stochastic version of center manifold theory,’ Probab. Th.

Related Fields 83, 509-545.

Colonius, F., W. Kliemann (1989), ‘Infinite time optimal control and periodic-

ity,” Appl. Math. Opt. 20, 113-130.

(1990), ‘Stability radii and Lyapunov exponents.’ In: Control

of Uncertain Systems, Hinrichsen D., B. Martensson (eds.) Birkhauser, 19-55.
(1991), ‘Stabilization of uncertain linear systems,’ to appear

in: Modeling and Control of Uncertain Systems, DiMasi, G.. A. Gombani, A.

Kurzhanski (eds.), Birkhauser.

(1991), ‘Remarks on ergodic theory of stochastic flows and

control flows,’ to appear in: ‘Stochastic Flows,’ Pinsky, M., V. Wihstutz (eds.),
Birkh&user.

(1991), ‘Some aspects of control systems as dynamical sys-
tems,’ submitted.

(1991), ‘Limit behavior and genericity for nonlinear control

systems,’ submitted.
(1991), ‘Kontrolltheorie and Dynamische Systeme,” submit-

ted.

Conley, C. (1978), ‘Isolated Invariant Sets and the Morse Index.’ Regional Con-

ference Series in Mathematics no. 38, American Mathematical Society.

Devaney, R. L. (1986), ‘An Introduction to Chaotic Dynamical Systems,’

Benjamin-Cummings.

Dimentberg, M. F. (1988), ‘Statistical Dynamics of Nonlinear and Time-Varying

Systems,’ Research Studies Press, Wiley.

Golubitsky, M., D. G. Schaeffer (1985), ‘Singularities and Groups in Bifurcation

Theory,’ Springer.

Hasminskii, R. Z. (1980), ‘Stochastic Stability of Differential Equations,’ Sijthoff

and Nordhoff. (Russian edition 1969).

Kliemann, W. (1988), ‘Analysis of nonlinear stochastic systems,’ in: Analysis

and Estimation of Stochastic Mechanical Systems, W. Schiehlen, W. Wedig

(eds.), Springer, 43-102.

Kunita, H. (1990), ‘Stochastic Flows and Stochastic Differential Equations,’

Cambridge University Press.

Maié, R. (1987), ‘Ergodic Theory and Differentiable Dynamics,’ Springer.

Poore, A. B. (1974), ‘A model equation arising from chemical reactor theory,’

Arch. Rational Mech. Anal. 52, 358-388.

Rozanov, Y. A. (1967), ‘Stationary Random Processes,” Holden Day.

Ruelle, D. (1989), ‘Elements of Differentiable Dynamics and Bifurcation The-

ory,’ Academic Press.

Sobezyk, K. (1991), ‘Stochastic Differential Equations,” Kluwer.

Stroock, D. W., S. R. S. Varadhan (1972), ‘On the support of diffusion processes

with applications to the strong maximum principle,” Proc. 6th Berkeley Symp.

Math. Stat. Probab., Vol. 3, 333-359.



