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of equilibria xa  of (1.1)°,

We study controllability properties of con
trol affine systems depending on a parameter 
and with constrained control values. If the un
controlled system is subject to a Hopf bifurca
tion, a continuum of periodic solutions bifur
cates from an equilibrium. This, together with 
an accessibility condition, induces for small 
control range a 2-parameter bifurcation of the 
control sets (i.e. the regions of complete con
trollability) around the equilibria and the pe
riodic solutions, respectively. The proofs are 
based on methods from dynamical systems the
ory applied to the associated control flow.

1. Introduction
The behavior of parameter-dependent con

trol systems near Hopf bifurcation points has 
been studied for some time, starting with [AF]. 
In this paper we study controllability near Hopf 
bifurcation points, and show that the bifurca
tion behavior of an (uncontrolled) differential 
equation is reflected in the controllability be
havior of the controlled system with ‘small’ 
control range.

More specifically, consider an ordinary dif
ferential equation

f1-1)“ ¿ = / 0 (x ,a)

with Jo : R1* x R -+ R1* a smooth (C°°) func
tion, and a  E I , an open interval.

Suppose that for a  =  a 0 a Hopf bifurcation 
occurs (cp. e.g.[Ru, MM]). Thus suppose that 
there is for a  close to a° a continuous family

(1.2) O =  /o(z a ,a) 

such that the Jacobian f O x (xa ,a) := 
has a pair of complex conjugate 

eigenvalues A“ , A* crossing the imaginary axis 
at a = n° with nonvanishing velocity. For a > 
a 0 , a continuous family of periodic solutions 
of (1.1)Q occurs approaching xa ° for a  \  a 0 . 
Now suppose that the differential equations 
(1.1)° are embedded into a 2-parameter fam
ily of control systems with a £ I,p  > 0,

m
i  = fo(x, a ) +

(1.3)“- '

(u,) £ Up := {u : R -  Rm ;u(i) £ Up 
a.e., measurable}

where f, : Rd x R —♦ Rd are smooth, U C Rm  
is a fixed compact convex set with 0 £ intU  
and Up := p • U, p > 0. We will show that 
the control sets of this family of control sys
tems are subject to a 2-parameter bifurcation. 
For (n,p) close to (a°,0) there exists a con
trol set Da ’p with x a  £ intDa 'p \ for (a,p) 
close to (a°,0) with a > a0 another control 
set Da,p occurs containing the periodic orbit 
H a in its interior. This result is based on 
the theory of control flows associated with a 
control system. Hence in Section 2 we recall 
some relevant material on control flows from 
[CK“]. Section 3 contains the main result, and 
Section 4 presents a numerical study of a con
tinuous flow stirred tank reactor, where this
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scenario occurs.
Notation: cl and int denote topological closure 
and interior, respectively.

2. C ontro l Flows a n d  C on tro l Sets

In this section we will recall the definition 
of the control flow associated with a control 
system and some properties of control sets. 
Then a result on the existence of control sets 
around chain recurrent sets will be cited from 
[CK“J.

We consider a control system of the type 
(1.3)a ,p  and suppress the respective index, whe 
a  or p are kept fixed. Denote by < (̂t, x,u) the 
solution of (1.3) (assumed to exist uniquely 
for all t E R) using the control u E U with 
9?(0,x,u) =  x E R^. For time- varying con
trol functions u € U, the solutions of (1.3) do 
not define a flow on Rd . However, we can add 
as an infinite dimensional component the time 
shift in U to obtain the control flow

$  : R x U x Rd -► U  x  Rd , $ (t,u ,x )  

=  (u(i +  -),9?(i,r,u )),

where u(t 4- -)(s) :=  u(t 4- s ) ,s  E R. Using 
the weak*-topology on U C ¿ ^ (R , Rm ) — 
(Z ] (R ,R m ))*, the map $  is continuous with

= id, o G R, where
:= $ (i, •, •). In other words, $  is a con

tinuous flow on U x R d . It describes the time 
evolution of the control system  (1.3).

The employed topology on the set U of con
trol functions is appropriate, because conver
gence in U implies uniform convergence on 
bounded time intervals for the trajectories. 
Furthermore U is a compact complete metriz- 
able space. The control flow $  contains all 
possible trajectories of the control system (1.3) 
including those of the uncontrolled system (1.1)

In the rest of this paper the following stan
dard integrability condition on the Lie algebra 
generated by the systems vector fields will be 
imposed:
(2-2)

m

rank £ A { f 0 4- » ifh  M  6 U}(x} = d 
i=l

for all x  6 Rd .

This implies (cp. e.g. [Is]) the following local 
accessibility property:
(2-3)
in tO ^T (x) /  0 for all x E Rd and all T  > 0, 

where 0<T (x) is the reachable set from x up 
to time ~T, O ^ T (x) := {y  G Rd ; there are 
u G U and 0 <  t  < T  w ith <p(t,x,u) = p); 
analogously, O ^ T ^x) := {y  G Rd ; there are 
u G U and 0 <  t  < T  w ith  <p(t,y, u) =  x}. We 
also write O+ (x) :=  (J CJ<T (x).

T>o ~
Next we define the maximal regions of com

plete controllability.

D efinition. A set D  C R d is a control set, if

(i) D C clO+(x) for all x G D;
(ii) for all x  G D  there exists u G U with 

ip{t,x,u) E D  for all t E R; .
(iii D is maximal (w ith respect to set in

clusion) with the properties (i) and (ii).
In this paper we consider only control sets 

with nonvoid interior. Then (ii) follows from 
(i), and all control sets are connected, pairwise 
disjoint and, by (2.3), in tD  C O+ (x) for all 
x  G D, i.e. we have exact controllability in 
the interior of D.

The order between control sets is given by 
the reachability properties of (1.3):

Di -C Do if there exists x E Di 
(2.4) with O+(x) n  D? 0.

osed control sets are maximal elements 
w.r.t. -<, open control sets are minimal. Closed

S e tS  2 X 6  ^ SO  isxanasii i.e. C = 
c l °  (x) for all x  e  C . U  N  Q R d is compact 
a. n  invariant for (1.3), then there exists at 
east one (invariant) control set C  in N, and 

m t C ¿ 9 ,
Recall the following concept from the the

ory of dynamical systems:Consider the differential equation (1.1) and 

abbreviate ^ x )  : = ^ , x , 0 ) .Then for e, T  > 0 an  (e .T M iam  for (1.1) 
rom y g Rd to z  g  R d  is given by n  E N, y -  

i/o, V x,...y n  = z  G R d , ¿0 , . . . t n --x >  T  such 
t h a t  Vi) ~  Vi+i |  <  ^ fo r : =  0 ,1 ,.. • n -  L
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The chain recurrent set C7? of (1.1) consists 
of all y G which satisfy: For all e, T  > Q 
there is an (s, T)-chain from  y to y. In partic
ular, all limit points of bounded trajectories 
are in the chain recurrent set; trivially, this is 
true for all equilibria and all periodic points.

Next we consider the  fam ily of control sys
tems (1 .3 / (where a  is kept fixed) with 0 <  
p < oo. The following resu lt is an immediate 
consequence of [CKa , Corollary 5.3].

2.1 T heorem . Let M  be a  bounded connected 
component o f the chain recurrent set CH o f 
(1.1) which is isolated, i.e. there exists a neigh
borhood N  o f M  such th a t CHClN = M . As
sume that for all p > 0 and  all T  £ M  there 
are T, s > 0 such that

^ (T ,r ,0 )  e

where O gJ+ i (x ) denotes th e  reachable set from 
2 up to time T  + x for th e  system (1.3)p .

Then there is an increasing sequence o f con
trol sets D p o f (1.3)p  w ith  M  C in tD p such 
that M  =  Q D p .

P>0
Vice versa, i f  for a sequence p t —> 0 and 

control sets D p ” o f (1.3)p * the set o f limit 
points L ~= {y R 4 ; there  are x k  6 D k  with 
1 Is nonvoid, then L  is a component of 
the chain recurrent set o f  (1.1).

3. Bifurcation of Control Sets 
at a Hopf Bifurcation

The results in this section do not use Hn- 
^ization of the considered control system. 
• ccordingly, we do not actually use that a 

°pf bifurcation occurs in  the uncontrolled 
ystem.. Instead, only th e  following weaker 

Properties (which are a consequence of a Hopf 
1 urcation) of the uncontrolled system are used.

( T) There exist an open  interval I  3  a°  

and a continuous m ap a  >-> x a  : I  —* 
such that for all a  E I  the point x a  

is an equilibrium of the uncontrolled 
system (1.1)« i.e . 0 = f ( x a ,a ). For 

a  > o° there exists a nontrivial peri
odic orbit H a  of ( 1 .1 /  such that

{(ot,x): a  > a ° ,z  € # “ }

is connected, w ith H a  —> {x“°} for 
a  —* a 0 . For all p > 0 and all x 6 
{ r a } U # Q there are T ,s  > 0 such that 
^ “ (¿,1,0) 6 intO < r+ a (x') (the reach
able set up to tim e T + s  from x for the 
system (1.3)Q,/>). Furthermore there 
exists a neighborhood IV of r°  such 
that for all a  G I  the intersection of N  
with the chain recurrent set of (1.1)° 
coincides with {xa } U H a  and { r“ }, 
respectively.

(3.2) In addition to (3.1), for all a  < at0 the 
equilibrium x a  is asymptotically sta
ble for ( 1 .1 /  and  unstable for a > a°; 
the periodic orbits H a  are asymptoti
cally stable for all a  > a 0 .

The next theorem is the  main result of this 
paper. It shows that in  the situation above 
also the control sets are subject to a ‘bifurca
tion’.

3.1 T heorem . Assume that condition (3.1) 
is satisfied. Then there exists an open subin
terval J  o f I  containing a° such that for all 
a  6 J  there is p(a) >  0 with the following 
properties:

(i) For all a  £  J, 0 <  p < p(a) there 
is a control set D a ,p  o f (1.3)a ,p  with 
x a  € in tD a ’p .

(ii) For all a € J, ct >  a°, 0 < p < p(oi) 
there is a control set D a ,p  o f (1.3)a ,p  
having void intersection with D a ,p , and 
H a  C in tD a 'p holds.

(iii) There is po > Q such that for all 0 <  
p < p0 there is a  maximal a° <  a(p) < 
oo with the following property: For all 
a 0 <  a  <  a (p ) one has {xa } ,H a  C 
in tD a ’p .

Remark. The number a(p) may be viewed as 
the bifurcation value for the control system 
( 1 .3 /<  In the next section , we will numeri
cally determine a(p) in an example.
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Proof. As a direct consequence of assumption 
(3.1) and Theorem 2.1 we obtain J  C I  such 
that: For all a  € J  and all p > 0 there are 
control sets D “ ,p of (1.3)“ ,p  with xa  E in tD Q'p 
and

{!“ } =  Q  D-'"-, 
p>0

furthermore, for all a  >  a 0 , a  E J  and all 
p > 0 there are control sets D a 'p of (1.3)“ ,p 
with H ° C in tD a ,p  and

H a  = Q  D a ’p .
p>0

Thus there is for every a  E J, a  > a 0 , a 
number p — p(a) >  0 w ith D a ,p  Pl D a ,p  =  0. 
Since, obviously, D a ,P l C D a,p2 and Da ,p l C 
D a,p2 for 0 < pi < p2 , the assertions (i) and 
(ii) follow.

Assertion (iii) follows immediately from (3.1) 
and the next lemma (cp.[Wi]) showing contin
uous dependence of the control sets D a ,p  on 
the parameter a.

3.2 Lem m a. Let K  C  in tD a ° be compact. 
Then for all a in a neighborhood of a 0 it fol
lows that K  C in tD a .

Proof (pi Lemma 3.2). Let x ,y  E K . By (2.2) 
there are T  > 0 and e >  0 such that a point 
z E Q O ^ .(y )r \K  exists, where O ^ ( y )  

|a-a°|<e ~
is the set of points which can in system (1.3)“ 
be steered to y in time less or equal to T. Since 
z E K  can be reached in finite time from x  in 
system (1.3)“ , it follows, by continuous de
pendence of trajectories on a , that for all a  
with | a - a ° |  < e0 , >  0, the point y can be
reached from x in system (1.3)“ . Now s° can 
be chosen uniformly for all y' in a neighbor
hood of y. An analogous argument for 0 “ J .(I ) 
combined with compactness of K  shows that 
c0 can be chosen uniformly for all x ,y  E K . 
This proves the lemma and hence Theorem 3.1 
follows. □

The next result shows that also the stabil
ity properties carry over from the uncontrolled 
system to the control system.

3.3 T heorem . Assume that condition (3 9) 
is satisfied. Then there exists an open subin. 
terval JQ Q J  C I  containing a 0 such that for 
all a G Jo there is po(ot') >  0 with the follow- 
ing properties:

(i) For all a  E Jo with a  < a0 , and all 
0 < p < po^ot) the control sets Da'p 
are invariant.

(ii) For all a  E Jo with a  > a° and all 0 < 
p < po(a) the control sets Da ’p are not 
invariant, and the control sets Da,p are 
invariant; furthermore Da,p Da,p.

Proof. Assumption (3.2) implies that for a< 
a 0 the equilibrium x a  is an attractor for (1.1)° 
and for a  > a 0 the periodic solution Ha is 
an attractor for (1.1)° (cp. [Ru]). Hence by 
Theorem 9(iii) in [CK*] it follows that for p > 
0, small enough, D a 'p  and D a 'p are invariant 
control sets of system (1.3)“ ,p for a  < a0 and 
a  > a 0 , respectively. By construction Da,p X 
D a ’p and hence D a ,p  is not invariant for a > 
a 0 and p > 0, small. □

Remark. One cannot (at least in the nonana- 
lytic case) exclude th a t in every neighborhood 
of r “° further control sets of (1.3)“’p occur, 
compare Example 5.5 in [CKa ].

4. A  N u m e ric a l Case Study

In this section we present numerical results 
on bifurcating control sets for a continuous 
flow stirred tank reactor (CSTR).

Consider the following simple model of a 
controlled CSTR (cp. [OM|, [URP|, [GS]}: 

(4.1)“’'
¿1 =  — Xi — [tt0  +  u ( t ) ] [ z i  -  x c\ 

f 1 w  
+  B a [ l  -  x 2]exp I J

r i
x 2  =  - x 2 +  a [ l  -  X2]exP \~  +  x J

Here Xi and x 2 are the (normalized) te^  
perature and product concentration, r P 
tively, while 7 ,B , and x c (corresponding 
the coolant tem perature) are constants.
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parameter a  (representing the Damkoehler 
number) is taken as a  bifurcation parameter, 
and UQ +  u(t) (the coolant flow rate which is 
proportional to the heat transfer coefficient) is 
taken as the control variable. In the numeri
cal study the following param eter values were 
used (without regard to  physical significance):

B =  12, x c =  0, 7 =  40, uo =  3, p =  0.02.

For a  G [0.25,0.286] a  H opf bifurcation occurs 
in the uncontrolled system  (where u(t) =  0). 
For different values of a ,  the control sets of 
this system were com puted, using the program 
‘cs‘ from [Ha]. Figures 1-4 present the ob
tained control sets (the  shaded regions) and 
the phase portrait of the  uncontrolled system.

In Figure 1, w ith a  =  0.2500, there is a 
unique (invariant) control set D a ,p  around the 
asymptotically stable equilibrium of the un
controlled system. In Figure 2, with a  =  
0.2824, a stable periodic solution H a  has bi
furcated from the equilibrium  x a , which now 
is unstable, both are contained in a single (in
variant) control set D a , p . In Figure 3, with 
a = 0.2828 there Eire two control sets D a ,p  and 
Da,p containing the (unstable) equilibrium x a  
and the (stable) periodic solution H a , respec
tively.

The control set D a ,p  is invariant, while D a ip  
is not. In Figure 4, w ith  a  =  0.2860 the con
trol sets have moved fu rther apart. Hence the 
numerical result is th a t the bifurcation value 
a(p), p =  0.2, from Theorem  3.1(iii) lies in 
the interval [0.2824, 0.2828].

The computations used  a grid of 1200 x  
1200 meshes on the s ta te  space; the calcula
tion time (on an IBM 6000) varied between 
17 minutes 13 seconds (for Figure 4) and 37 
minutes 45 seconds (for Figure 3).

C ontinuous S l i r r c d  Tank R eactor 
( a lph a -  0 25 )

Figure 1. Control set and phase portrait for 
a  =  0.25.
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C o n tinuous S t i r r e d  Tank R eactor 
( alpha -  0 2824 )

Figure 2. Control set and phase portrait for 
a =  0.2824.
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Figure 3. Control sets and phase portraits for 
a  =  0.2828.
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Figure 4. Control sets and phase portraits for 
a  =  0.286.
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