
Universität Augsburg

The Confidence-Probability
Semiring implemented within

OpenFst

Markus Huber and Christian Kölbl

Report 2011-16 March 2012

Institut für Informatik
D-86135 Augsburg

Copyright c© Markus Huber and Christian Kölbl
Institut für Informatik
Universität Augsburg
D–86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg.DE
— all rights reserved —

Introduction
In [6] the authors were involved in the construction of the so-called confidence-
probability semiring (K◦,⊕, (−∞,∞) ,⊗, (0, 0)). Every element (c, p) ∈ K◦
is a tupel consisting of a confidence c, originating from the arctic semiring,
and a probability p, originating from the tropical semiring. As described in
[2], [3] and [4] these values can be used in modelling uncertain information
within dialogue systems.

In this report the implementation of the semiring is described. It builds
on top of the OpenFst-library [1] and as a direct implication the language
used is C++. The library implements data structures and algorithms for
finite state transducers [5].

Within the OpenFst-library the tropical semiring is already implemented,
whereas the arctic semiring is missing. Therefore the arctic semiring is im-
plemented first.

The basic set of the confidence-probability semiring does not include tu-
pels with negative numbers. Because of this issue special classes representing
confidence weight and probability weight are constructed.

After this groundwork the final confidence-probability weight can be im-
plemented.

Arctic Semiring
On the basis of the implementation of the tropical semiring taken from the
file float-weight.h of the OpenFst distribution the arctic semiring is imple-
mented as a template class inheriting from FloatWeightTpl<T>. First the
layout of the class is given.

1 〈Layout of class ArcticWeightTpl<T> 1〉≡ (7b)
template<class T>
class ArcticWeightTpl : public FloatWeightTpl<T>
{
public:

typedef ArcticWeightTpl<T> WeightType;
typedef FloatWeightTpl<T> BaseType;

〈Constructors of class ArcticWeightTpl<T> 3b〉
〈Member function defining the type of the semiring (arctic weight) 2a〉
〈Stuff specific to OpenFst (arctic weight) 6c〉
〈Properties of the arctic semiring 6a〉
〈Member functions defining the basic set (arctic weight) 2b〉

1

〈Member functions giving the identities (arctic weight) 3a〉
};

To save some typing two typedefs are introduced which are used throughout
the remaining implementation.

All tools from OpenFst use a string to identify which semiring to use. The
arctic semiring should be no exception. The string is composed in analogy
to the tropical semiring and the method is implemented the same way using
a static variable and returning a reference to this variable.

2a 〈Member function defining the type of the semiring (arctic weight) 2a〉≡ (1)
static const std::string &Type()
{

static const std::string type =
"arctic" + BaseType::GetPrecisionString();

return type;
}

The basic set for the arctic semiring is R ∪ {−∞}; following the basic
set R ∪ {∞} of the already implemented tropical semiring. Now a method
Member() has to be constructed returning true iff the return value of Value()
– from the base class – lies within the basic set.

2b 〈Member functions defining the basic set (arctic weight) 2b〉≡ (1) 2c .
bool Member() const
{

return Value() == Value() &&
Value() != FloatLimits<T>::kPosInfinity;

}

The expression evaluates to true if the contained number is a real number
or the value −∞. If the number is the result of a division by zero it has the
value NaN and the first comparison evaluates to false.

An additional function defines an entity which is not a member of the
basic set. The implementation is taken from the one of the tropical semiring.

2c 〈Member functions defining the basic set (arctic weight) 2b〉+≡ (1) / 2b
static const WeightType NoWeight()
{

static const WeightType no(FloatLimits<T>::kNumberBad);

return no;
}

2

After the basic set we implement the identity elements. For every identity
a separate static method has to be defined. Each method returns the
respective element.

The multiplicative identity of the semiring is the element 0 whereas the
additive identity is the element −∞. In order to avoid constructing the ob-
jects every time the methods are called, they are defined as static variables
within the methods and in each case a reference to the variable is returned to
prevent calling the copy constructors. The implementation closely resembles
the one taken from the file float-weight.h of the OpenFst distribution.

3a 〈Member functions giving the identities (arctic weight) 3a〉≡ (1)
static const WeightType &One()
{

static const WeightType one(0.0F);

return one;
}

static const WeightType &Zero()
{

static const WeightType zero(FloatLimits<T>::kNegInfinity);

return zero;
}

Now the constructors for the class are defined. A constructor taking a
single floating number was already used and is therefore needed. Additional
a default constructor and a copy constructor are defined. All constructors
call the appropriate constructors from the base class FloatWeightTpl<T>.
Besides the calling they do nothing else.

3b 〈Constructors of class ArcticWeightTpl<T> 3b〉≡ (1)
ArcticWeightTpl() :

BaseType()
{
}

ArcticWeightTpl(T f) :
BaseType(f)

{
}

3

ArcticWeightTpl(const WeightType &w) :
BaseType(w)

{
}

As a next step the operations of the semiring are defined. OpenFst re-
quires the implementation of addition, multiplication, and division if possible.
They all are implemented outside the class.

The arctic addition is simply the maximization. Because −∞ < w holds
for all floating point numbers w in C++ no case-by-case analysis is needed.

4a 〈Addition (arctic weight) 4a〉≡ (7b)
template<class T>
inline ArcticWeightTpl<T> Plus(const ArcticWeightTpl<T> &w1,

const ArcticWeightTpl<T> &w2)
{

return w1.Value() < w2.Value() ? w2 : w1;
}

The arctic multiplication is even simpler: it is the well known addition.
But this time cases are needed. First references to the floating point numbers
are defined to save some typing.

4b 〈Multiplication (arctic weight) 4b〉≡ (7b) 4c .
template<class T>
inline ArcticWeightTpl<T> Times(const ArcticWeightTpl<T> &w1,

const ArcticWeightTpl<T> &w2)
{

const T &f1 = w1.Value(), &f2 = w2.Value();

Now we have to check if one of the factors is the identity and if so return
the other factor immediately. We do not test on the abstraction layer of
the arctic semiring but on the layer of floating point numbers. This way no
additional function calls and no objects are involved.

4c 〈Multiplication (arctic weight) 4b〉+≡ (7b) / 4b 5a .
if (f1 == FloatLimits<T>::kNegInfinity) return w2;
if (f2 == FloatLimits<T>::kNegInfinity) return w1;

If neither the first nor the second factor was the identity the simple sum can
be returned. The return value is an object that has to be constructed. If
we constructed the object inside the method this object would have been
copied during the return resulting in constructing a second object. So we

4

simply return the sum of the two floating point numbers and only one object
is constructed.

5a 〈Multiplication (arctic weight) 4b〉+≡ (7b) / 4c

return f1 + f2;
}

Now let us take a look at the division operation. The file weight.h states
that for all a and c for which the method Member() evaluates to true

Divide(c, a) = b ∧ Times(a, b) = c ∧ Times(b, a) = c

where Member(b) also evaluates to true should hold, if the semiring is com-
mutative. Additionally there should be no difference, if Divide() is called
with a third parameter or not.

As the arctic semiring is commutative the function Divide() has to be
implemented to fullfill the requests. The function Times() already shows a
commutative behaviour as the addition of floating point numbers is commu-
tative. So division is basically subtraction but we take special care of two
cases. First division by zero returns a value that is not a number and second
if zero should be divided zero is returned. As with the function Times() we
test on a lower level than the semiring abstraction.

5b 〈Division (arctic weight) 5b〉≡ (7b)
template<class T>
inline ArcticWeightTpl<T> Divide(const ArcticWeightTpl<T> &w1,

const ArcticWeightTpl<T> &w2,
DivideType typ = DIVIDE_ANY)

{
const T &f1 = w1.Value(), &f2 = w2.Value();

if (f2 == FloatLimits<T>::kNegInfinity)
return FloatLimits<T>::kNumberBad;

if (f1 == FloatLimits<T>::kNegInfinity)
return FloatLimits<T>::kNegInfinity;

return f1 - f2;
}

After defining all of the operations we can eventually set up the method
giving the properties of the arctic semiring. Again the file weight.h states

5

the meaning of the different properties.

6a 〈Properties of the arctic semiring 6a〉≡ (1)
static uint64 Properties()
{

return kLeftSemiring | kRightSemiring | kCommutative |
kIdempotent | kPath;

}

Again in analogy to the tropical semiring we give a typedef to specify
the standard weight type and add hardcoded versions of the operations for
the types float and double which actually just call the templated versions.

6b 〈Standard type and operations (arctic weight) 6b〉≡ (7b) 23a .
// Single precision ArcticWeight
typedef ArcticWeightTpl<float> ArcticWeight;

inline ArcticWeightTpl<float> Plus(const ArcticWeightTpl<float> &w1,
const ArcticWeightTpl<float> &w2)

{
return Plus<float>(w1, w2);

}

inline ArcticWeightTpl<float> Times(const ArcticWeightTpl<float> &w1,
const ArcticWeightTpl<float> &w2)

{
return Times<float>(w1, w2);

}

inline ArcticWeightTpl<float> Divide(const ArcticWeightTpl<float> &w1,
const ArcticWeightTpl<float> &w2,
DivideType type = DIVIDE_ANY)

{
return Divide<float>(w1, w2);

}

For type double the same three functions are needed but they are given in
the appendix.

As for the tropical semiring we need some more stuff specific to OpenFst
to provide full functionality. These things are copied directly from the file
float-weight.h.

6c 〈Stuff specific to OpenFst (arctic weight) 6c〉≡ (1) 7a .

6

using BaseType::Value;

typedef WeightType ReverseWeight;

ReverseWeight Reverse() const
{

return *this;
}

7a 〈Stuff specific to OpenFst (arctic weight) 6c〉+≡ (1) / 6c
WeightType Quantize(float delta = kDelta) const
{

if (Value() == FloatLimits<T>::kNegInfinity ||
Value() == FloatLimits<T>::kPosInfinity ||
Value() != Value())

return *this;
else

return floor(Value()/delta + 0.5F) * delta;
}

Now we are able to put it all together and give the whole file arctic-weight.h.

7b 〈Programme/arctic-semiring/arctic-weight.h 7b〉≡
#ifndef _ARCTIC_WEIGHT_H_INCLUDED
#define _ARCTIC_WEIGHT_H_INCLUDED

#include <fst/float-weight.h>

namespace fst
{
〈Layout of class ArcticWeightTpl<T> 1〉

〈Addition (arctic weight) 4a〉
〈Multiplication (arctic weight) 4b〉
〈Division (arctic weight) 5b〉

〈Standard type and operations (arctic weight) 6b〉
}

#endif

7

The semiring should be compiled into a dynamic library which can then
be loaded by the tools from OpenFst to work with weights from the arctic
semiring.

Programmes written by oneself should not need to load the library but
include a special header file instead. This header mainly contains another
typedef which combines a templated class for arcs with the new weights.
This is needed because the FST-types from OpenFst are used with types of
arcs and not types of weights.

This header file is given now.

8a 〈Programme/arctic-semiring/arctic-arc.h 8a〉≡
#ifndef _ARCTIC_ARC_H_INCLUDED
#define _ARCTIC_ARC_H_INCLUDED

#include <fst/arc.h>
#include "arctic-weight.h"

namespace fst
{

typedef ArcTpl<ArcticWeight> ArcticArc;
}

#endif

For the dynamic library another file is needed which basically registers the
new type of arcs for use with the different types of FSTs. The exact syntax
is taken from the forum found on the homepage of the OpenFst project.

8b 〈Programme/arctic-semiring/arctic.c++ 8b〉≡
#include <fst/fst.h>
#include <fst/const-fst.h>
#include <fst/script/register.h>
#include <fst/script/fstscript.h>

#include "arctic-arc.h"

namespace fst
{

namespace script
{

REGISTER_FST(VectorFst, ArcticArc);
REGISTER_FST(ConstFst, ArcticArc);

8

REGISTER_FST_CLASSES(ArcticArc);
REGISTER_FST_OPERATIONS(ArcticArc);

}
}

The library’s name should be arctic-arc.so on Unix systems and arctic-arc.dll
on Win32 systems.

Confidence-Probability Semiring
Before we start giving the implementation of the confidence-probability semi-
ring we first construct two special classes for the confidence respectively prob-
ability part of the tupels in question.

Confidence Weight

As stated in the introduction the confidence part comes from the arctic semi-
ring. There is only one little difference. A confidence cannot be equal
to or less than zero. Consequently the method Member() for the class
ConfidenceWeightTpl<T> looks like the following.

9a 〈Member functions defining the basic set (confidence weight) 9a〉≡ (11c) 9b .

bool Member() const
{

return BaseType::Member() &&
Value() > 0;

}

However there is one exception: A confidence can have the value −∞ iff it is
part of the additive identity of the confidence-probability semiring. This ex-
ception will be covered in the class ConfidenceProbabilityWeightTpl<T>.

Again we need to define a method which returns en entity that is not an
element of the basic set. We use the method from the base class.

9b 〈Member functions defining the basic set (confidence weight) 9a〉+≡ (11c) / 9a
static const WeightType &NoWeight()
{

static const WeightType no(BaseType::NoWeight());

return no;
}

9

The identity elements remain the same. However to get methods that
return the right type we have to redefine them using the methods from the
base class. Again we use the typedef WeightType to save space and typing
within the class.

10a 〈Member functions giving the identities (confidence weight) 10a〉≡ (11c)
static const WeightType &One()
{

static const WeightType one(BaseType::One());

return one;
}

static const WeightType &Zero()
{

static const WeightType zero(BaseType::Zero());

return zero;
}

To be able to construct an object of type ConfidenceWeightTpl<T> from an
object of type ArcticWeightTpl<T> as used by those three methods we have
to define an additional constructor. We declare it explicit so it does not
interfere with the type system.

The other three constructors follow the pattern already used by class
ArcticWeightTpl<T>.

10b 〈Constructors of class ConfidenceWeightTpl<T> 10b〉≡ (11c)
ConfidenceWeightTpl() :

BaseType()
{
}

ConfidenceWeightTpl(T f) :
BaseType(f)

{
}

ConfidenceWeightTpl(const WeightType &w) :
BaseType(w)

{
}

10

explicit ConfidenceWeightTpl(const BaseType &w) :
BaseType(w)

{
}

For defining the operations of the confidence-probability semiring we need
two more methods within the class ConfidenceWeightTpl<T>. These two
operations are a comparison and an addition.

11a 〈Additional operations (confidence weight) 11a〉≡ (11c) 11b .

inline bool operator<(const WeightType &w) const
{

return Value() < w.Value();
}

This method will be used in implementing (9) from [6]. The equality also used
in (9) is already defined in float-weight.h. However (9) is implemented
after the class ConfidenceProbabilityWeightTpl<T> is defined.

The addition takes care of the special cases where one of the summands
has the value −∞. The method will be used in implementing (13) from [6].

11b 〈Additional operations (confidence weight) 11a〉+≡ (11c) / 11a
inline WeightType operator+(const WeightType &w) const
{

if (Value() == FloatLimits<T>::kNegInfinity ||
w.Value() == FloatLimits<T>::kNegInfinity)

return FloatLimits<T>::kNegInfinity;

return Value() + w.Value();
}

Now the layout of the class ConfidenceWeightTpl<T> can be given.

11c 〈Layout of class ConfidenceWeightTpl<T> 11c〉≡ (12c)
template<class T>
class ConfidenceWeightTpl : public ArcticWeightTpl<T>
{
public:

typedef ConfidenceWeightTpl<T> WeightType;
typedef ArcticWeightTpl<T> BaseType;

〈Constructors of class ConfidenceWeightTpl<T> 10b〉
〈Stuff specific to OpenFst (confidence weight) 12a〉

11

〈Member functions defining the basic set (confidence weight) 9a〉
〈Member functions giving the identities (confidence weight) 10a〉
〈Additional operations (confidence weight) 11a〉

};

Again we need some stuff specific to OpenFst to provide full functionality
and to be able to use the class PairWeight<W1, W2> in the implementation
of class ConfidenceProbabilityWeightTpl<T>.

12a 〈Stuff specific to OpenFst (confidence weight) 12a〉≡ (11c) 12b .

using BaseType::Value;

typedef WeightType ReverseWeight;

ReverseWeight Reverse() const
{

return *this;
}

The method Quantize() uses the same method from the base class but
cannot simply return its value because the according constructor was declared
explicit. So a temporary object has to be constructed.

12b 〈Stuff specific to OpenFst (confidence weight) 12a〉+≡ (11c) / 12a
WeightType Quantize(float delta = kDelta) const
{

return WeightType(BaseType::Quantize(delta));
}

The last thing is to give the whole file confidence-weight.h.

12c 〈Programme/confidence-probability-semiring/confidence-weight.h 12c〉≡
#ifndef _CONFIDENCE_WEIGHT_H_INCLUDED
#define _CONFIDENCE_WEIGHT_H_INCLUDED

#include "arctic-semiring/arctic-weight.h"

namespace fst
{
〈Layout of class ConfidenceWeightTpl<T> 11c〉

}

#endif

12

Probability Weight

Now we give another class which implements the probability part. As men-
tioned in the introduction it comes from the tropical semiring. Its layout
follows the one from the class ConfidenceWeightTpl<T>.

13a 〈Layout of class ProbabilityWeightTpl<T> 13a〉≡ (25a)
template<class T>
class ProbabilityWeightTpl : public TropicalWeightTpl<T>
{
public:

typedef ProbabilityWeightTpl<T> WeightType;
typedef TropicalWeightTpl<T> BaseType;

〈Constructors of class ProbabilityWeightTpl<T> 23b〉
〈Stuff specific to OpenFst (probability weight) 24a〉
〈Member functions defining the basic set (probability weight) 14a〉
〈Member functions giving the identities (probability weight) 24c〉
〈Additional operations (probability weight) 13b〉

};

The additional operations are again a comparison and an addition.

13b 〈Additional operations (probability weight) 13b〉≡ (13a) 13c .
inline bool operator>=(const WeightType &w) const
{

return Value() >= w.Value();
}

This method will also be used in implementing (9) from [6].
The addition takes care of the special cases where one of the summands

has the value ∞. The method will be used in implementing (13) from [6].

13c 〈Additional operations (probability weight) 13b〉+≡ (13a) / 13b
inline WeightType operator+(const WeightType &w)
{

if (Value() == FloatLimits<T>::kPosInfinity ||
w.Value() == FloatLimits<T>::kPosInfinity)

return FloatLimits<T>::kPosInfinity;

return Value() + w.Value();
}

13

Again there is a little difference between an element of the tropical semi-
ring and a probability. As stated in (15) in [6], a probability cannot be less
than zero. Consequently the method Member() looks like the following.

14a 〈Member functions defining the basic set (probability weight) 14a〉≡ (13a) 24b .

bool Member() const
{

return BaseType::Member() &&
Value() >= 0;

}

The rest of the implementation is given in the appendix because it only
resembles the one from class ConfidenceWeightTpl<T>.

Confidence-Probability Weight

Now we are ready to define the class ConfidenceProbabilityWeightTpl<T>.
As mentioned before we utilize the template class PairWeight<W1, W2> from
the OpenFst distribution. This class represents a tuple of weights and already
defines some usefull code. So the layout of the new class looks like the
following.

14b 〈Layout of class ConfidenceProbabilityWeightTpl<T> 14b〉≡ (19a)
template<class T>
class ConfidenceProbabilityWeightTpl :

public PairWeight<ConfidenceWeightTpl<T>, ProbabilityWeightTpl<T> >
{
public:

typedef ConfidenceProbabilityWeightTpl<T> WeightType;
typedef ConfidenceWeightTpl<T> ConfidenceType;
typedef ProbabilityWeightTpl<T> ProbabilityType;
typedef PairWeight<ConfidenceType, ProbabilityType> BaseType;

〈Constructors of class ConfidenceProbabilityWeightTpl<T> 15c〉
〈Member function defining the type of the semiring (confidence-probability weight) 16c〉
〈Stuff specific to OpenFst (confidence-probability weight) 15a〉
〈Properties of the confidence-probability semiring 16d〉
〈Member function defining the basic set (confidence-probability weight) 16b〉
〈Member functions giving the identities (confidence-probability weight) 16a〉
〈Additional operations (confidence-probability weight) 16e〉

};

14

Again we use some typedefs to save space and typing.
Now we take a look at the member functions from the base class that we

want to use. The methods Value1() and Value2() simply provide access to
the values of the tupel. So we directly use them.

15a 〈Stuff specific to OpenFst (confidence-probability weight) 15a〉≡ (14b) 15b .

using BaseType::Value1;
using BaseType::Value2;

The class PairWeight<> already defines the methods Reverse() and
Quantize() the way we would. Again we simply use them.

15b 〈Stuff specific to OpenFst (confidence-probability weight) 15a〉+≡ (14b) / 15a
typedef WeightType ReverseWeight;

using BaseType::Reverse;
using BaseType::Quantize;

By defining the ReverseWeight-type differently from the base class we
need a special constructor which can convert an object from the base class to
an object of the type dealt with herein. We immediately give the complete
list of constructors. The last one is for the mentioned conversion.

15c 〈Constructors of class ConfidenceProbabilityWeightTpl<T> 15c〉≡ (14b)
ConfidenceProbabilityWeightTpl() :

BaseType(Zero())
{
}

ConfidenceProbabilityWeightTpl(const WeightType &w) :
BaseType(w)

{
}

ConfidenceProbabilityWeightTpl(const ConfidenceType &x1,
const ProbabilityType &x2) :

BaseType(x1, x2)
{
}

ConfidenceProbabilityWeightTpl(const BaseType &w) :
BaseType(w)

{
}

15

The default-constructor makes use of the method Zero(). Again we
simply use the methods from the base class.

16a 〈Member functions giving the identities (confidence-probability weight) 16a〉≡ (14b)
using BaseType::Zero;
using BaseType::One;

The method Member() from the base class needs a little adjustment be-
cause the just defined identity elements contain entities which are not ele-
ments of the basic sets of the confidence weight respectively the probability
weight anymore.

16b 〈Member function defining the basic set (confidence-probability weight) 16b〉≡ (14b)
bool Member() const
{

return BaseType::Member() || *this == Zero() || *this == One();
}

The used operator==() is already defined by the base class.
As a last step we need to define the type and the properties of the

confidence-probability semiring.

16c 〈Member function defining the type of the semiring (confidence-probability weight) 16c〉≡ (14b)
static const std::string &Type()
{

static const std::string type = "confidence-probability";
return type;

}

16d 〈Properties of the confidence-probability semiring 16d〉≡ (14b)
static uint64 Properties()
{

return kLeftSemiring | kRightSemiring | kCommutative |
kIdempotent;

}

Now we are ready to give the operations of the semiring. These opera-
tions will only contain addition and multiplication but no division because
multiplication is not invertible in this semiring.

But before the addition can be formulated we need an implementation of
operator<=() for the semiring. This directly implements (9) from [6].

16e 〈Additional operations (confidence-probability weight) 16e〉≡ (14b)
inline bool operator<=(const WeightType &w) const
{

16

if (Value1() < w.Value1()) return true;
if (Value1() == w.Value1() && Value2() >= w.Value2()) return true;

return false;
}

Now we can implement (10) from [6].

17a 〈Addition (confidence-probability weight) 17a〉≡ (19a) 17b .

template<class T>
inline ConfidenceProbabilityWeightTpl<T>

Plus(const ConfidenceProbabilityWeightTpl<T> &w,
const ConfidenceProbabilityWeightTpl<T> &v)

{
if (w == ConfidenceProbabilityWeightTpl<T>::Zero()) return v;
if (v == ConfidenceProbabilityWeightTpl<T>::Zero()) return w;

These two lines just make sure that the identity element is respected by the
method Plus().

17b 〈Addition (confidence-probability weight) 17a〉+≡ (19a) / 17a
if (v <= w) return w;
if (w <= v) return v;

LOG(FATAL) << "ConfidenceProbabilityWeight::Plus: "
"neither v <= w nor w <= v";

return ConfidenceProbabilityWeightTpl<T>::Zero(); // should not happen!
}

Now we have to define three more functions before we can give the mul-
tiplication function. First we implement the semiring-isomorphism µ from
[6].

17c 〈Multiplication (confidence-probability weight) 17c〉≡ (19a) 18a .
template<class T>
inline T mue(const ConfidenceWeightTpl<T> &c)
{

return 1 - std::exp(-c.Value());
}

Second we need to give an oprator*() for an object of type ConfidenceWeightTpl<T>
and an object of type ProbabilityWeightTpl<T>. This implements (4) from

17

[6] by exploiting the fact that the third and fourth case do not occur.

18a 〈Multiplication (confidence-probability weight) 17c〉+≡ (19a) / 17c 18b .

template<class T>
inline ProbabilityWeightTpl<T> operator*(const ConfidenceWeightTpl<T> &a,

const ProbabilityWeightTpl<T> &x)
{

if (a == ConfidenceWeightTpl<T>::Zero())
return ProbabilityWeightTpl<T>::Zero();

if (a == ConfidenceWeightTpl<T>::One())
return ProbabilityWeightTpl<T>::One();

return mue(a) * x.Value();
}

Third we have to give an operator/ for an object of type ProbabilityWeightTpl<T>
and an object of type T. This simply allows the fraction line in (13) from [6]
to be written as /.

18b 〈Multiplication (confidence-probability weight) 17c〉+≡ (19a) / 18a 18c .
template<class T>
inline ProbabilityWeightTpl<T> operator/(const ProbabilityWeightTpl<T> &p,

const T &c)
{

return p.Value() / c;
}

Eventually we are ready to give the code for the multiplication.

18c 〈Multiplication (confidence-probability weight) 17c〉+≡ (19a) / 18b 18d .

template<class T>
inline ConfidenceProbabilityWeightTpl<T>

Times(const ConfidenceProbabilityWeightTpl<T> &w,
const ConfidenceProbabilityWeightTpl<T> &v)

{
if (w == ConfidenceProbabilityWeightTpl<T>::One()) return v;
if (v == ConfidenceProbabilityWeightTpl<T>::One()) return w;

Again these two lines asure that Times() respects the identity element.

18d 〈Multiplication (confidence-probability weight) 17c〉+≡ (19a) / 18c

ConfidenceWeightTpl<T> confidence(w.Value1() + v.Value1());
ProbabilityWeightTpl<T> probability(w.Value1()*w.Value2() +

v.Value1()*v.Value2());

18

return ConfidenceProbabilityWeightTpl<T>(confidence,
probability / mue(confidence));

}

As already explained during the implementation of the arctic semiring
three files are needed. The first file contains all the definitions of the semiring
class.

19a 〈Programme/confidence-probability-semiring/confidence-probability-weight.h 19a〉≡
#ifndef _CONFIDENCE_PROBABILITY_WEIGHT_H_INCLUDED
#define _CONFIDENCE_PROBABILITY_WEIGHT_H_INCLUDED

#include <fst/pair-weight.h>
#include "confidence-probability-semiring/confidence-weight.h"
#include "confidence-probability-semiring/probability-weight.h"
#include <cmath>

namespace fst
{
〈Layout of class ConfidenceProbabilityWeightTpl<T> 14b〉

〈Addition (confidence-probability weight) 17a〉
〈Multiplication (confidence-probability weight) 17c〉
〈Division (confidence-probability weight) 25b〉

〈Standard type and operations (confidence-probability weight) 19b〉
}

#endif

The standard type is called SemanticWeight.

19b 〈Standard type and operations (confidence-probability weight) 19b〉≡ (19a) 26 .
typedef ConfidenceProbabilityWeightTpl<float> SemanticWeight;

The operations are given in the appendix. Again they are simple instatiations
of the template functions for the types float and double.

The header file for use in new applications is given here.

19c 〈Programme/confidence-probability-semiring/confidence-probability-arc.h 19c〉≡
#ifndef _CONFIDENCE_PROBABILITY_ARC_H_INCLUDED
#define _CONFIDENCE_PROBABILITY_ARC_H_INCLUDED

19

#include <fst/arc.h>
#include "confidence-probability-semiring/confidence-probability-weight.h"

namespace fst
{

typedef ArcTpl<SemanticWeight> SemanticArc;
}

#endif

And in order to be able to compile the second shared library we need to
have another file.

20a 〈Programme/confidence-probability-semiring/confidence-probability.c++ 20a〉≡
#include <fst/fst.h>
#include <fst/const-fst.h>
#include <fst/script/register.h>
#include <fst/script/fstscript.h>

#include "confidence-probability-semiring/confidence-probability-arc.h"

namespace fst
{

namespace script
{

REGISTER_FST(VectorFst, SemanticArc);
REGISTER_FST(ConstFst, SemanticArc);
REGISTER_FST_CLASSES(SemanticArc);
REGISTER_FST_OPERATIONS(SemanticArc);

}
}

Now it is possible to compile the confidence-probability semiring and use
it with OpenFst .

Makefile
To ease the process of compilation we provide this Makefile.

20b 〈Programme/Makefile 20b〉≡
aDIR = arctic-semiring
cbDIR = confidence-probability-semiring

20

aSRC = $(aDIR)/arctic-weight.h
aSRC += $(aDIR)/arctic-arc.h
cbSRC = $(cbDIR)/confidence-probability-weight.h
cbSRC+= $(cbDIR)/confidence-probability-arc.h
cbSRC+= $(cbDIR)/confidence-weight.h
cbSRC+= $(cbDIR)/probability-weight.h

ALL: arctic-arc.so confidence_probability-arc.so

.PHONY: ALL

arctic-arc.so: $(aDIR)/arctic.c++ $(aSRC)
g++ -Os -shared -fPIC $< -o $@ -I./
strip --strip-unneeded $@

confidence_probability-arc.so: $(cbDIR)/confidence-probability.c++ $(cbSRC)
g++ -Os -shared -fPIC $< -o $@ -I./
strip --strip-unneeded $@

References
[1] Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wojciech Skut, and

Mehryar Mohri. Openfst: A general and efficient weighted finite-state
transducer library. In Proceedings of the Twelth International Conference
on Implementation and Application of Automata, (CIAA 2007), volume
4783 of Lecture Notes in Computer Science, pages 11–23. Springer, 2007.

[2] Markus Huber. Semantische Informationsbearbeitung unter Berücksich-
tigung von Konfidenz-Zahlen. Diplomarbeit in Mathematik. Katholische
Universität Eichstätt-Ingolstadt, 2009.

[3] Markus Huber, Christian Kölbl, Robert Lorenz, Ronald Römer, and
Günther Wirsching. Semantische Dialogmodellierung mit gewichteten
Merkmal-Werte-Relationen. In Rüdiger Hoffmann, editor, Elektronische
Sprachsignalverarbeitung 2009. Tagungsband der 20. Konferenz. Dresden,
21. bis 23. September 2009, volume 53 of Studientexte zur Sprachkommu-
nikation, pages 25–32. TUDpress, September 2009.

[4] Markus Huber, Christian Kölbl, and Günther Wirsching. Gewichtete
endliche Transduktoren als semantische Träger. In Bernd Kröger and

21

Peter Birkholz, editors, Elektronische Sprachsignalverarbeitung 2011.
Tagungsband der 22. Konferenz. Aachen, 28. bis 30. September 2011, vol-
ume 61 of Studientexte zur Sprachkommunikation, pages 176–183. TUD-
press, September 2011.

[5] Mehryar Mohri. Weighted Automata Algorithms. In Manfred Droste,
Werner Kuich, and Heiko Vogler, editors, Handbook of Weighted Au-
tomata, Monographs in Theoretical Computer Science, pages 213–254.
2009.

[6] Günther Wirsching, Christian Kölbl, and Markus Huber. The confidence-
probability semiring. Technical report, Angewandte Informatik, Univer-
sität Augsburg, 2010.

22

Missing Pieces of Code
This section gives the pieces of code that were not defined before but are
needed to get the fully compilable source code.

Standard Operations for Type double, Arctic Semiring

First the standard operations of the arctic semiring are instantiated for the
double-type.

23a 〈Standard type and operations (arctic weight) 6b〉+≡ (7b) / 6b
inline ArcticWeightTpl<double> Plus(const ArcticWeightTpl<double> &w1,

const ArcticWeightTpl<double> &w2)
{

return Plus<double>(w1, w2);
}

inline ArcticWeightTpl<double> Times(const ArcticWeightTpl<double> &w1,
const ArcticWeightTpl<double> &w2)

{
return Times<double>(w1, w2);

}

inline ArcticWeightTpl<double> Divide(const ArcticWeightTpl<double> &w1,
const ArcticWeightTpl<double> &w2,
DivideType type = DIVIDE_ANY)

{
return Divide<double>(w1, w2);

}

Completion of Class ProbabilityWeightTpl<T>

Now we give the remaining parts of the class ProbabilityWeightTpl<T>.

23b 〈Constructors of class ProbabilityWeightTpl<T> 23b〉≡ (13a)
ProbabilityWeightTpl() :

BaseType()
{
}

ProbabilityWeightTpl(T f) :
BaseType(f)

23

{
}

ProbabilityWeightTpl(const WeightType &w) :
BaseType(w)

{
}

explicit ProbabilityWeightTpl(const BaseType &w) :
BaseType(w)

{
}

24a 〈Stuff specific to OpenFst (probability weight) 24a〉≡ (13a)
using BaseType::Value;

typedef WeightType ReverseWeight;

ReverseWeight Reverse() const
{

return *this;
}

WeightType Quantize(float delta = kDelta) const
{

return WeightType(BaseType::Quantize(delta));
}

24b 〈Member functions defining the basic set (probability weight) 14a〉+≡ (13a) / 14a
static const WeightType NoWeight()
{

static const WeightType no(BaseType::NoWeight());

return no;
}

24c 〈Member functions giving the identities (probability weight) 24c〉≡ (13a)
static const WeightType &One()
{

static const WeightType one(BaseType::One());

24

return one;
}

static const WeightType &Zero()
{

static const WeightType zero(BaseType::Zero());

return zero;
}

Eventually all the code is put together into one header-file.

25a 〈Programme/confidence-probability-semiring/probability-weight.h 25a〉≡
#ifndef _PROBABILITY_WEIGHT_H_INCLUDED
#define _PROBABILITY_WEIGHT_H_INCLUDED

#include <fst/float-weight.h>

namespace fst
{
〈Layout of class ProbabilityWeightTpl<T> 13a〉

}

#endif

Division, Confidence-Probability Semiring

Now we show the dummy implementation of the division function.

25b 〈Division (confidence-probability weight) 25b〉≡ (19a)
template<class T>
inline ConfidenceProbabilityWeightTpl<T>

Divide(const ConfidenceProbabilityWeightTpl<T> &w,
const ConfidenceProbabilityWeightTpl<T> &v,
DivideType type = DIVIDE_ANY)

{
LOG(FATAL) << "ConfidenceProbabilityWeight::Divide: "

"Division is not implemented";

return ConfidenceProbabilityWeightTpl<T>::One(); // should not happen!
}

25

Standard Operations, Confidence-Probability Semiring

And eventually we show the standard operations of types float and double
for the confidence-probability semiring whereat also the additional template
functions are instantiated for these types.

26 〈Standard type and operations (confidence-probability weight) 19b〉+≡ (19a) / 19b
inline ConfidenceProbabilityWeightTpl<float>

Plus(const ConfidenceProbabilityWeightTpl<float> &w,
const ConfidenceProbabilityWeightTpl<float> &v)

{
return Plus<float>(w, v);

}

inline float mue(const ConfidenceWeightTpl<float> &c)
{

return mue<float>(c);
}

inline ProbabilityWeightTpl<float>
operator*(const ConfidenceWeightTpl<float> &a,

const ProbabilityWeightTpl<float> &x)
{

return operator*<float>(a, x);
}

inline ProbabilityWeightTpl<float>
operator/(const ProbabilityWeightTpl<float> &p,

const float &c)
{

return operator/<float>(p, c);
}

inline ConfidenceProbabilityWeightTpl<float>
Times(const ConfidenceProbabilityWeightTpl<float> &w,

const ConfidenceProbabilityWeightTpl<float> &v)
{

return Times<float>(w, v);
}

inline ConfidenceProbabilityWeightTpl<float>
Divide(const ConfidenceProbabilityWeightTpl<float> &w,

26

const ConfidenceProbabilityWeightTpl<float> &v,
DivideType type = DIVIDE_ANY)

{
return Divide<float>(w, v);

}

inline ConfidenceProbabilityWeightTpl<double>
Plus(const ConfidenceProbabilityWeightTpl<double> &w,

const ConfidenceProbabilityWeightTpl<double> &v)
{

return Plus<double>(w, v);
}

inline double mue(const ConfidenceWeightTpl<double> &c)
{

return mue<double>(c);
}

inline ProbabilityWeightTpl<double>
operator*(const ConfidenceWeightTpl<double> &a,

const ProbabilityWeightTpl<double> &x)
{

return operator*<double>(a, x);
}

inline ProbabilityWeightTpl<double>
operator/(const ProbabilityWeightTpl<double> &p,

const double &c)
{

return operator/<double>(p, c);
}

inline ConfidenceProbabilityWeightTpl<double>
Times(const ConfidenceProbabilityWeightTpl<double> &w,

const ConfidenceProbabilityWeightTpl<double> &v)
{

return Times<double>(w, v);
}

inline ConfidenceProbabilityWeightTpl<double>
Divide(const ConfidenceProbabilityWeightTpl<double> &w,

27

const ConfidenceProbabilityWeightTpl<double> &v,
DivideType type = DIVIDE_ANY)

{
return Divide<double>(w, v);

}

28

