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Abstract. Advanced personalized e-applications require comprehensive knowl-
edge about their user’s likes and dislikes in order to provide individual product 
recommendations, personal customer advice and custom-tailored product of-
fers. In our approach we model such preferences as strict partial orders with “A 
is better than B” semantics, which has been proven to be very suitable in vari-
ous e-applications. In this paper we present novel Preference Mining techniques 
for detecting strict partial order preferences in user log data. The main advan-
tage of our approach is the semantic expressiveness of the Preference Mining 
results. Experimental evaluations prove the effectiveness and efficiency of our 
algorithms. Since the Preference Mining implementation uses sophisticated 
SQL statements to execute all data-intensive operations on database layer, our 
algorithms scale well even for large log data sets. With our approach personal-
ized e-applications can gain valuable knowledge about their customers’ prefer-
ences, which is essential for a qualified customer service.  

1 Introduction 

The enormous growth of web content and web-based applications leads to an unsatis-
factory behavior for users: search engines retrieve a huge number of results and they 
are left on their own to find interesting web sites or preferred products. Such a behav-
ior leads not only to frustrated users but also to a reduction of turnover in commercial 
businesses because customers who are willing to buy cannot do it since they do not 
find the right product even if it is available. In recent years, several techniques have 
been developed to build user adaptive web sites and personalized web applications. 
For instance, E-commerce applications use link personalization to recommend items 
based on the customer’s buying history or some categorization of customers based on 
ratings and opinions [13]. Another technique is content personalization: web pages 
present different information to different users based on their individual needs. There-
by, the user can indicate his preferences explicitly using the predefined tools of the 
underlying portal or the preferences may be inferred automatically from his profile. 

State-of-the-art personalization techniques suffer from some drawbacks. Manually 
customizing web sites is not very feasible to the customer since it is a very time-
consuming task to select relevant content from the huge repertoire provided by the 



web portal. Personalizing products or web content automatically is a more promising 
approach. However, the current approaches of automatic personalization lack of pref-
erence models with limited expressiveness. State-of-the-art techniques either use 
scores to describe preferences [10] or just distinguish between liked and disliked val-
ues [2]. Thus, complex “I like A more than B”-relationships as well as preferences for 
numeric attributes cannot be expressed in a natural way. Furthermore, these ap-
proaches are not able to handle dependencies among preferences. For example, two 
preferences can be of equally importance to a customer or one preference can be pre-
ferred to another one. 

A very expressive and mathematically well-founded framework for preferences has 
recently been introduced [7]. Customer preferences are modeled as strict partial orders 
with “A is better than B” semantics, where negative, numeric and complex preferences 
form special cases. This approach has been proven to be very suitable for modeling 
user preferences of almost any complexity. Standard query languages like SQL and 
XPATH were extended by such preferences [9] in order to deal carefully with user 
wishes. In this paper, we present algorithms for automatically mining such strict par-
tial order preferences from user log data. Basic categorical and numerical preferences 
are discovered based on the frequencies of the different attribute values in the user 
log. These basic preferences are then combined to detect complex preferences.   

The rest of the paper is organized as follows: After a survey of related work in sec-
tion 2 we describe the underlying preference model and Preference Mining require-
ments in section 3. In section 4, we present algorithms for mining categorical, numeri-
cal and complex preferences. Section 5 summarizes the results of an extensive 
experimental evaluation of the accuracy and efficiency of the proposed algorithms. 
We conclude our paper with a summary and outlook in section 6. 

2 Related Work 

Several research groups have studied the usage of log data analysis for personalized 
applications. In particular, web log mining is a commonly used approach of analyzing 
web log data with data mining techniques for the discovery of sequential patterns, as-
sociation rules or user clusters. Such mining techniques have been applied to provide 
personalized link recommendations to web users [12]. Thereby the user profile of the 
current user is matched against one or more previously discovered usage profiles. 

Beeferman and Berger analyzed query log data of search engines [1]. They devel-
oped clustering algorithms in order to find groups of URLs that match various key-
words given by the user. This approach is not only helpful for delivering better search 
results but also for the construction of web categories and the generation of ontolo-
gies. In [5], Joachims analyzed clickthrough data to improve the results of search en-
gines. He uses the search results that are chosen by the user as additional information. 
He argues that selected items are better in the opinion of the user and applies this 
knowledge to find better rankings for future search results. 

Our Preference Mining techniques can work either on web logs or query logs, 
whereby the latter not only occurs in search engines but also in state-of-the-art e-



commerce applications. The main advantage of our approach is the semantic expres-
siveness of the Preference Mining results. Our algorithms compute no scores to distin-
guish between liked and disliked values but detect intuitive preferences like positive 
or negative preferences, numerical preferences or even combinations of such prefer-
ences. Personalized web applications such as described in [13] can gain significant 
improvements by using such detailed knowledge about user preferences. 

3 User Preferences in Log Data 

In this section we revisit those aspects of the preference model of [7] that are relevant 
for the scope of this paper. We also define requirements on the user log data for min-
ing such preferences. 

3.1 Preferences as Strict Partial Orders 

A preference P is defind as a strict partial order P = (A, <P), where A = {A1, …, Ak} 
denotes a set of attributes with corresponding domains dom(Ai). The domain of A is 
defined as Cartesian product of the dom(Ai), <P ⊆ dom(A) × dom(A) and x <P y is in-
terpreted as “y is better than x”. A set of intuitive preference constructors for base and 
complex preferences is defined.  

The constructors for base preferences on categorical domains are POS(A, POS-set), 
NEG(A, NEG-set),  POS/NEG(A, POS-set; NEG-set), POS/POS(A, POS1-set; POS2-
set) and EXP(A, E-graph). The POS-set ⊆ dom(A) of a POS preference defines a set 
of values that are better than all other values of dom(A). Analogously, the NEG-set of 
a NEG preference describes disliked values. The POS/NEG preference is a combina-
tion of the previous preferences and in a POS/POS preference optimal values (POS1-
set) and alternative values (POS2-set) can be specified. In E-graph of an EXPLICIT 
preference a user can specify any better-than relationships.  

The preference constructors for numerical domains include AROUND(A, z), BET-
WEEN(A, [low, up]), LOWEST(A) and HIGHEST(A). In an AROUND preference 
the desired value is z, but if this it not available values with nearest distance apart 
from z are best alternatives. For a BETWEEN preference the values within [low, up] 
are optimal. For LOWEST (HIGHEST) preferences lower (higher) values are better.  

Preferences can inductively be combined with complex preference constructors. A 
Pareto preference P = P1 ⊗ P2 treats the underlying preferences as equally important 
and a Prioritized preference P = P1 & P2 treats P1 as more important than P2. For in-
stance, P = POS(author, {Douglas Adams, Edgar Wallace}) & NEG(binder, {paper-
back}) denotes a POS preference for the authors Douglas Adams and Edgar Wallace, 
and a NEG preference for paperbacks, whereby the latter preference is less important. 

This definition of preference constructors has been proven to be appropriate to de-
scribe complex user wishes. Preference engineering examples are shown in [7]. Our 
Preference Mining developments should be consistent to this preference model. 
Therefore, not only all base and complex preferences should be detectable by the 



Preference Miner but also preference properties like preference hierarchies or prefer-
ence algebra laws (see [7] for details) should be valid for the detected preferences. 

3.2 Requirements on User Log Data in Web Applications 

Data mining benefits from the availability of a huge amount of data since having many 
records ensures the statistical significance of patterns [11]. Log data of user transac-
tions can have several sources like web server log-files or transaction logging on an 
application server. 

Web server logs are generated by the web server when a user is visiting a web site. 
Such files can comply with standardized formats like the Common Logfile Format.1 
The log data includes the IP of the client host, the current timestamp and the URL 
(uniform resource locator) he is visiting. Valuable information about a user’s wishes is 
stored in the URL, since it contains not only the address but also requested keywords 
or preferred product properties the user inserted into a web form. For example, if the 
user requests the book “The Raven” in the e-shop Barnes & Noble2 the logged URL 
is http://search.barnesandnoble.com/booksearch/re-sults.asp?WRD=The+Raven. But 
web server logs also have some disadvantages, especially for e-commerce applications 
[11]. Events like “add to cart” or “change item” are not available in web logs. Fur-
thermore, a user can deactivate cookies in his browser, so no session information or 
user identification is available. Preference Mining on web server logs requires some 
data preprocessing. User input like “The Raven” in the above example has to be ex-
tracted from the logged URL and has to be stored in a relational database since our 
Preference Mining algorithms work on database relations. Furthermore, user identifi-
cation is required to detect preferences for each customer separately.  

Application server logs can handle user transactions much better [11]. User and 
session identification can be accomplished with a login and logout mechanism. An-
other advantage is the capability to detect business events like “add to cart” or “buy 
items”. For example, an e-commerce application server can record queries, search re-
sults, selected items and bought products for each customer separately. Furthermore, 
application server log data can be stored in databases and therefore huge amount of 
log data can be managed by using database technology. The Preference Mining algo-
rithms can work directly on these log relations without any data preprocessing. For in-
stance, analyzing the properties of bought products can lead to preferences about liked 
and disliked features, price preferences and dependencies between such preferences. 

While browsing or shopping in an online environment, a customer has typically 
several different types of input fields for interacting with the underlying system. Text 
fields allow the input of keywords and choices allow the selection of static or dynamic 
predefined values of an attribute. To describe these different situations we define the 
closed world assumption and the difference between static and dynamic domains. 

 

                                                           
1 http://www.w3.org/Daemon/User/Config/Logging.html 
2 http://www.barnesandnoble.com 



Definition 1 (Closed world assumption (CWA))  
The assumption that a customer knows all possible values of an attribute is called 
Closed World Assumption or CWA. If this assumption doesn’t hold we abbreviate it 
with ¬CWA. 

Definition 2 (Static and dynamic domains)  
If a domain of attribute values is constant over time, we call it a static domain other-
wise we call it a dynamic domain. 

The CWA is required for the detection of negative preferences since only if the user 
knows all possible values we can assume dislike for values he never selected. Other-
wise (¬CWA), we can’t decide whether he doesn’t know or doesn’t like such values. 
For instance, in a book shop the customer knows all possible values for binder (paper-
back or hardcover) but doesn’t know all available authors. After submitting a search 
query, a customer gets a set of results and chooses one or more of them as his pre-
ferred products. Such search results define dynamic domains and can lead to valuable 
clickthrough data, which can be used to get information about explicit user prefer-
ences since the clicked items of the query result are preferred by the user [5]. 

4 Preference Mining Algorithms 

In this section we present algorithms for mining the strict partial order preferences in-
troduced in section 3.1. Our methods work on log relations as described in section 3.2 
and use appropriate data mining and statistical methodologies in order to detect the 
right preference and correct additional information like POS-sets. To detect basic 
preferences, we use the frequencies of the different values in the log relation. 

Definition 3 (Frequency of a value)  
Let A be an attribute of a log relation R and x∈dom(A). The number of entries of x in 
R(A) is called frequency of x or freqA(x). If dom(A) is numerical, freqA([x1, x2]) de-
notes the number of entries of all values between x1 and x2 (x1 ≤ x2). 

We have introduced the concept of user-defined preferences P = (A, <P). The actual 
user preferences shall be predicted from the implicit preferences hidden in the user log 
data. To that purpose, we introduce the concept of data-driven preferences denoted by 
PD = (A, <PD). 

Definition 4 (Data-driven preference)  
• For categorical domains dom(A) a data-driven preference PD = (A, <PD) is defined 

as: x <PD y iff freqA(x) < freqA(y).  
• For numerical domains dom(A) a data-driven preference PD = (A, <PD) is defined  

as: x <PD y iff ∃ε > 0: freqA([x-ε, x+ε]) < freqA([y-ε, y+ε]). 

Depending on the design of the log data, values can be products (e.g. search results) or 
just product properties like color or price. If the frequency of a value x is zero, a cus-
tomer has never selected the according value. If CWA holds, freqA(x) = 0 means that a 
customer doesn’t like the property x because he never selected it although he knows it. 



Otherwise, if CWA doesn’t hold, the customer may either not like the property x or 
may never have heard of it. The relation freqA(x) < freqA(y) shows that the corre-
sponding customer has selected y more often than x. In this sense the relation x <PD y 
denotes a preference.  

Numeric domains need a slightly different approach to data-driven preferences. For 
instance, an attribute A may have the real numbers as domain (dom(A) = ℝ) and we 
want to test, if a user has a data-driven LOWEST(A) preference, i.e. lower values are 
better and should occur with higher frequencies. Since ℝ consists of an infinity num-
ber of different values, the log relation only contains some of them and typically each 
value occurs only a few times in the log relation. Therefore, we use frequencies of in-
tervals. E.g. for a data-driven LOWEST preference the relation freqA([x-ε, x+ε]) < 
freqA([y-ε, y+ε]) for y < x must hold for some ε. 

Proposition 1: 
A data-driven preference defines a strict partial order. 

Proof: see appendix. 

4.1 Mining Categorical Preferences 

Based on PD = (A, <PD) we can define data-driven preferences for categorical domains. 

Definition 5 (Data-driven preferences for categorical data)  
Let A be a categorical attribute of a log relation R and POS-set, NEG-set, POS1-set, 
POS2-set, E ⊆ dom(A). 

• There is a data-driven POS preference, iff ∀ x∈POS-set, ∀ y∉POS-set: y <PD x. 
• There is a data-driven NEG preference, iff ∀ x∈NEG-set, ∀ y∉NEG-set: x <PD y. 
• There is a data-driven POS/POS preference, iff ∀ x∈POS1-set, ∀ y∈POS2-set, 

∀ z∉ (POS1-set ∪ POS2-set): y <PD x and z <PD y. 
• There is a data-driven POS/NEG preference, iff ∀ x∈POS-set, ∀ y∈NEG-set, 

∀ z∉ (POS-set ∪ NEG-set): z <PD x and y <PD z. 
• Let <E be a strict partial order on E. A data-driven EXPLICIT preference holds, iff  

- ∀ x, y∈E with x <E y: x <PD y,  
- ∀ u∈E, ∀ v∉E: v <PD u. 

For a data-driven POS preference the values in the POS-set must occur more often 
than the other values and in a data-driven NEG preference the other values must occur 
more often than the values in the NEG-set. POS/POS and POS/NEG run analogously. 
A data-driven EXPLICIT preference with underlying E-graph exists, if a value y oc-
curs more often than any successor x in E-graph. Values outside the E-graph occur 
with lowest frequencies. 

The main task for an algorithm for mining categorical preferences is the detection 
of proper POS-sets, NEG-sets, etc. Consider the following example of frequencies for 
an attribute author (CWA doesn’t hold, the domain is static): 



Table 1. Example of frequencies for an attribute “author” 

Douglas Adams Edgar Wallace Natalie Angier Agatha Christie John Grisham 

50 49 2 3 2 

The set {Douglas Adams} is a correct POS-set for a data-driven POS preference. But 
intuitively, the set {Douglas Adams, Edgar Wallace} denotes are more reasonable 
POS-set since these two values occurred much more frequently than Natalie Angier, 
Agatha Christie and John Grisham. The following algorithm for mining categorical 
preferences uses cluster techniques in order to detect such proper sets. 

Algorithm 1: Miner for categorical preferences in static domains 
INPUT: log relation R, attribute A, dom(A) 
(1) Compute for each value xi the frequency in the log relation freqA(xi). 
(2) Compute a clustering of the xi with freqA(xi) ≥ 1 by using a clustering technique. 
(3) Depending on the clustering results we have the following possibilities: 

(a) There is only one cluster C1 and CWA holds. Here we have a NEG(A, 
{x∈dom(A)| freqA(x) = 0}) preference. 
(b) There are two clusters C1 and C2, where ∀ c1∈C1, ∀ c2∈C2: freqA(c2) < 
freqA(c1).  
(b1) If ¬CWA, we have a POS(A, C1) preference. 
(b2) If CWA, there is a POS/NEG(A, C1; {x∈dom(A)| freqA(x) = 0}) preference. 
(c) There are three clusters C1, C2 and C3, where ∀ c1∈C1, ∀ c2∈C2, ∀ c3∈C3: 
freqA(c3) < freqA(c2) < freqA(c1). Here we have a POS/POS(A, C1; C2) preference. 
(d) There are more than three clusters C1, …, Cn, where ∀ c1∈C1, ∀ c2∈C2, 
…, ∀ cn∈Cn: freqA(cn) < … < freqA(c2) < freqA(c1). Here we have an EXPLICIT 
preference EXP(A, <E) with cn <E ... <E c2 <E c1, ∀ c1∈C1, ∀ c2∈C2, …, ∀ cn∈Cn. 
(e) In all other situations there is no data-driven preference. 

OUTPUT: the detected preference or that no preference was found 

By using a state-of-the-art clustering technique like k-means [4] – and silhouettes for 
getting the optimal number of clusters, see [14] – this algorithm detects two clusters 
C1 = {Douglas Adams, Edgar Wallace} and C2 = {Natalie Angier, Agatha Christie, 
John Grisham} leading to a POS(author, {Douglas Adams, Edgar Wallace}) prefer-
ence in the above example. Data-driven NEG preferences can only be detected, if the 
user knows all possible values (CWA). 

Proposition 2: 
Preferences detected with Algorithm 1 have the following properties: 
• POS preference: values within the POS-set occur more often in the log-relation 

than values outside the POS-set. 
• NEG preference: Values within the NEG-set occur with lower frequencies than 

other values. 
• POS/POS preference: Values within POS1-set occur more often than values 

within POS2-set and the latter values occur more frequent in the log relation than 
other values. 



• POS/NEG preference: Values within POS-set occur more often than other values. 
The values within NEG-set occur with lowest frequencies. 

• EXPLICIT preference: For each value within E-graph any successor occurs with 
lower frequency. 

Proof: see appendix. 

Corollary 1: 
Algorithm 1 detects data-driven preferences. 

Corollary 2: 
Algorithm 1 detects strict partial order preferences. 

Proposition 3: 
Let n be the number of tuples in the log relation R and k = | π A(R)| the number of dif-
ferent values of an attribute A in R. By using hierarchical clustering algorithm 1 has 
the complexity O(n + k2). 

Proof: see appendix. 

In dynamic domains the CWA holds, because the user must know the varying values 
for his decisions. By selecting or clicking on one or more of the available values, the 
user provides preference knowledge since he prefers the selected items to the other 
available values. The following algorithm for mining such EXPLICIT preferences re-
quires an advanced structure of the log relation. We assume we have the information 
(query_id, value, selected) within the log relation, whereby “value” contains a value 
available for the user, “selected” (∈{0,1}) denotes whether the according value was 
selected or not and “query_id” specifies which values belong to one search query. The 
ability of a low-cost construction of such log data has been shown in [5]. 

Algorithm 2 (Miner for EXPLICIT preferences in dynamic domains) 
INPUT: log data in the format (query_id, value, selected) 
(1) Compute the k occurring values (x1, …, xk) in the log relation. Initialize the better-
than graph with E-graph = Ø. 
(2) FOR(i = 1, …, k) and FOR(j = i + 1, …, k) DO: 

(a) Consider the query ids, whose according values contain xi and xj. 
(b) Compute the number s of query ids, where xi was selected and xj wasn’t. 
(c) Compute the number t of query ids, where xj was selected and xi wasn’t. 
(d1) If s > t and there is no path from xj to xi in E-graph, set E-graph = E-graph ∪  
(xj, xi). Otherwise, if a path from xj to xi exists, remove it. 
(d2) If s < t and there is no path from xi to xj in E-graph, set E-graph = E-graph ∪  
(xi, xj). Otherwise, if a path from xi to xj exists, remove it. 
(d3) If s = t remove within E-graph all direct and transitive connections from xi to 
xj and vice versa. 

OUTPUT: the detected EXPLICIT preference based on E-graph as better-than graph. 

For two values xi and xj the algorithm computes the query ids that have both values in 
the result set. Now xi is better than xj, if the user selected it more often. In step 4 cy-
cles are removed. Therefore we check if there is a path from xj to xi in E-graph before 
inserting (xj, xi) and vice versa. Cycles can occur, if the browsing or shopping behav-



ior of the user has inconsistencies like blue <P red <P green <P blue. In such situations 
the preferences of the customer are not clear and therefore we leave out such relations. 
If s = t, the user is indifferent between xi and xj and therefore existing preference rela-
tions between xi and xj have to be removed. 

Proposition 4: 
EXPLICIT-preferences detected with algorithm 2 are strict partial orders. 

Proof: see appendix. 

Proposition 5: 
Let n be the number of tuples in the log relation R and k = | π A(R)| the number of dif-
ferent values of an attribute A of R. Then the complexity of algorithm 2 is               
O(n + k2(n + k2)). 

Proof: see appendix. 

4.2 Mining Numerical Preferences 

The distribution of numerical log data defines a statistical density function φ(x). Prop-
erties of this density function provide information about data-driven preferences. For 
instance, if φ(x) has an unique maximum at z and the gradient is positive for x < z and 
negative for x > z, there is an AROUND preference with around value z. 

 

Fig. 1. Density function for a data-driven AROUND preference 

Definition 6 (Data-driven preferences for numerical data)  
Let A be a numerical Attribute of a log-relation R with density function φ(x). 
• There is a data-driven LOWEST preference, iff φ(x) is monotonic decreasing. 
• There is a data-driven HIGHEST preference, iff φ(x) is monotonic increasing. 
• There is a data-driven AROUND preference with around value z, iff φ(x) is mono-

tonic increasing for x < z and monotonic decreasing for x > z. 
• There is a data-driven BETWEEN preference with [low, up]-interval, iff 

- φ(x) is monotonic increasing for x < low,  
- φ(x) is monotonic decreasing for x > up, 
- ∀ x∈ [low, up], ∀ y∉ [low, up]: φ(x) > φ(y). 



• There is a data-driven SCORE preference with score function f, iff φ(f(x)) is mono-
tonic increasing. 

We show that these definitions are consistent to the data-driven preferences of def. 4.  

Proposition 6: 
The preferences of definition 6 are data-driven preferences, i.e. better values occur 
with higher frequencies. 

Proof: see appendix. 

For a data-driven LOWEST preference lower values must occur more often, i.e. 
∀ x > y: freqA([x-ε, x+ε]) < freqA([y- ε, y+ε]). This can be considered as ∀ x > y: 
PA([x-ε, x+ε]) < PA([y- ε, y+ε]), whereas P denotes the probability. The latter formula 
holds, if the underlying density function is monotonic decreasing. Analogously, a 
monotonic increasing density functions denotes that higher values are better leading to 
a data-driven HIGHEST preference. For a data-driven AROUND preference, the den-
sity function must be increasing to the around-value and increasing for values greater 
than the around-value. The data-driven BETWEEN preference demands an increasing 
density function to the low-value, a decreasing density function beyond the up value 
and higher density values within [low, up] than outside since values in the [low, up]-
interval must be better than the values outside. A data-driven SCORE preference oc-
curs in an attribute A, if the density function of the score values f(x) is monotonic in-
creasing because higher scores must be better. 

Mining numerical preferences requires knowledge about the density function φ(x) 
of the underlying data. Typically, such density functions are unknown and have to be 
estimated using the underlying numerical log data. 

Algorithm 3 (Miner for numerical preferences) 
INPUT: log-relation R, attribute A with numerical domain 
(1) Compute a density estimation φ’(x) of the considered numerical attribute A. 
(2) Depending on φ’(x) there are the following possibilities: 

(a) If φ’(x) is monotonic decreasing there is a LOWEST(A) preference. 
(b) If φ’(x) is monotonic increasing there is a HIGHEST(A) preference. 
(c) If there is a value z whereby φ’(x) is monotonic increasing for x < z and φ’(x) is 
monotonic decreasing for x > z, there is an AROUND(A, z) preference with 
around-value z. 
(d) If there is a value low, whereby φ’(x) is monotonic increasing for x < low and 
there is a value up, whereas φ’(x) is monotonic decreasing for x > up and, addition-
ally, φ’(x) > φ’(y) holds for all x ∈  [low, up] and y ∉  [low, up], then we have a 
BETWEEN(A, [low, up]) preference with lower boundary low and upper boundary 
up. 
(e) In all other possibilities there is no numerical preference. 

OUTPUT: the detected preference or that no preference was found 

SCORE preferences with given score functions f can also be detected. Thereby the 
values f(x) are considered. If the density estimation φ’(f(x)) is monotonic increasing, 
higher values are better leading to a data-driven SCORE preference. 



Proposition 7: 
If the real density function is known, the preferences detected with algorithm 3 have 
the following properties: 
• LOWEST preference: greater values occur with lower frequencies. 
• HIGHEST preference: greater values occur with higher frequencies. 
• AROUND preference: values with greater distance apart from the around-value 

occur with lower frequencies. 
• BETWEEN preference: values within the [low, up] interval occur with highest 

frequencies. Additionally, values with greater distance apart from the interval 
borders occur with lower frequencies. 

Proof: see appendix. 

Proposition 8: 
Algorithm 3 creates strict partial order preferences. 

Proof: see appendix. 

Proposition 9: 
By using histograms as density estimation and Scott’s rule for the bin-width computa-
tion [15], algorithm 3 has the complexity O(kn + k3), whereby n denotes the number 
of tuples in the log relation R and k is the number of bins of the histogram. 

Proof: see appendix. 

4.3 Mining Complex Preferences 

Definition 7 (Data-driven Prioritized preference)  
Let PD = (A,  <PD) and QD = (B, <QD) be two data-driven preferences and x = (x1, x2), 
y = (y1, y2) ∈dom(A) × dom(B). A data-driven Prioritized preference PD & QD =   
({A, B}, <PQ-D) is defined as: x <PQ-D y iff x1 <PD y1 ∨ (x1 = y1 ∧ x2 <QD y2). 

In order to detect such complex data-driven preferences we need the definition of as-
sociate values. 

Definition 8 (Associate Values)  
Consider a log relation R(A, B, …). For a∈  π A(R) the associate values in B are de-
fined as asvA, B(a) = π*B(σA=a(R)). 

Thereby π* denotes the relational projection without removing duplicates.  

Algorithm 4 (Miner for Prioritized preferences) 
INPUT: log relation R(A, B, …) and a data-driven preference PD on A 
(1) Compute the set M of maximal values of PD and for all ai∈M the set of associate 
values asvA, B(ai). 
(2) If there is the same preference QD in all sets asvA, B(ai) and PD does not occur in the 
associate values of the maxima of QD, there is a Prioritized preference P = PD & QD. 
(3) Otherwise there is no Prioritized preference. 
OUTPUT: the detected Prioritized preference or that no preference was found 



A data-driven Prioritized preference P = PD & QD exists, if, firstly, there is a data-
driven preference PD, and, secondly, in those tuples, which have equal values in A, 
there is a data-driven preference QD in B. Thereby, we consider only the maximal val-
ues of P since users often don’t care about a second-level preference, if the Prioritized 
preference isn’t fulfilled optimal. If PD also occurs in the maximal values of QD, a 
Pareto preference has been found. Therefore, we have to eliminate this situation here. 

In our previous example the preference PD = POS(author, {Douglas Adams, Edgar 
Wallace}) was detected. If above algorithm detects QD = NEG(binder, {paperback}) 
(dom(binder) = {hardcover, paperback}) in the associate values of Douglas Adams 
and Edgar Wallace and, furthermore, the PD is not detected within the hardcover 
books, a Prioritized preference P = PD & QD is found. 

Definition 9 (Data-driven Pareto preference) Let PD = (A,  <PD) and QD = (B, <QD) 
be two data-driven preferences and x = (x1, x2), y = (y1, y2) ∈dom(A) × dom(B). A 
data-driven Pareto preference PD ⊗ QD = ({A, B}, <PQ-D) is defined as: x <PQ-D y iff  
(x1 <PD y1 ∧ ( x2 <QD y2 ∨ x2 = y2)) ∨ (x2 <QD y2 ∧  ( x1 <PD y1 ∨ x1 = y1)). 

For a data-driven Pareto preference P = PD ⊗ QD the tuple y is better than x, if y1 is 
better than x1 and y2 is at least equally good to x2 or vice versa. 

Algorithm 5 (Miner for Pareto preferences) 
INPUT: log relation R(A,B, …) and data-driven preferences PD on A and QD on B. 
(1) Compute the set MP of maximal values of PD and for all ai∈MP the set of associate 
values asvA, B(ai). 
(2) Compute the set MD of maximal values of QD and for all aj∈MD the set of associ-
ate values asvB, A(aj). 
(3) If QD can be detected in every set asvA, B(ai) and, vice versa, PD can be detected in 
every set asvB, A(aj), there is a Pareto preference P = PD ⊗ QD. 
(4) Otherwise there is no Pareto preference. 
OUTPUT: the detected Pareto preference or that no preference was found 

A data-driven Pareto preference P = PD ⊗ QD is detected, if QD can be found in the as-
sociate values of PD and vice versa. This complies with the non-discrimination theo-
rem stated in [7]. 

Proposition 10: 
Algorithm 4 and 5 create strict partial order preferences. 

Proof: see appendix. 

Proposition 11: 
If n denotes the number of tuples in the log-relation R, k1 denotes the effort for mining 
PD = (A, <PD) and k2 denotes the effort for mining QD = (B, <QD), the algorithms 4 and 
5 have the complexity O(n2+nk1+nk2). 

Proof: see appendix. 

Our results so far can be summarized into the following theorem. 

Theorem 1: 
All algorithms create strict partial order preferences. 



5 Experimental Evaluation 

In this section we present test results and performance measurements of an efficient 
database-driven implementation of a Preference Miner prototype. 

5.1 Preference Mining Test Results 

For our test environment we defined 35 preference profiles, where each profile con-
tains between two and six preferences. In our simulation each user queries the product 
database between 25 to 50 times, whereby the exact number of requests is random-
ized. In each query a preference of the considered user is chosen and a product data-
base is requested with it using Preference SQL [9]. The results are stored in a log da-
tabase. Afterwards we use the Preference Mining algorithms to detect preferences 
within the log data. A comparison of the detected preference profiles with the prede-
fined user preferences will show the effectiveness of the Preference Mining algo-
rithms. To assess the quality of our results we define preference precision and prefer-
ence recall. 

Definition 10 (Precision and recall for preferences)  
Preference precision and preference recall are defined as 

iuser  of spreferencedetectedallofnumber

i user of spreferencedetectedcorrectlyofnumber
precision =  

iuserofspreferenceallofnumber

iuserofspreferencedetectedcorrectly ofnumber
recall =  
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Fig. 2. Precision and recall for the different preference types 

 

The test results in Fig. 2 show average precision and average recall over all test users. 
Mining categorical preferences leads to a 60 % precision and a 38 % recall, numerical 
preferences result in 58 % precision and over 40 % recall using histograms as density 
estimation, and combined preferences yield to 55 % precision and 15 % recall. An ap-
proximately 60 % precision denotes a very promising behavior of our Preference Min-



ing algorithms. Typical problems are user preferences for values that don’t occur in 
the product database and dependencies between preferences: if a base preference of a 
complex preference is not detected, it is very difficult to detect the complex prefer-
ence itself. Such problems also influence the preference recall. Note, that we filled the 
log relation with the search results. In real-life applications even better Preference 
Mining results can be achieved, if the selected results or query information is used. 

5.2 Performance Measurements 

In this section we analyze the efficiency of the Preference Miner prototype for large 
data sets. The underlying database system is an Oracle 8i database server on an AMD 
CPU with 1,3 ghz and 1,5 gigabyte main memory. For our tests, we created relations 
with 10,000, 20,000, 30,000, 40,000 and 50,000 tuples of synthetic data. Categorical 
attributes contain 20 different categories. Numerical attributes have a data range of 
200 (maximal minus minimal value). For mining complex preferences we assume one 
categorical and one numerical attribute. Fig. 3 reports the average runtimes for detect-
ing a single preference for the different preference types w.r.t. the number of tuples. 
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Mining numerical preferences is the fastest task, since histograms can be computed 
very efficiently in the database layer. The miner for categorical data needs more effort 
since clustering is a more expensive iterative process. Mining Prioritized and Pareto 
preferences needs about 5 seconds in the average. The most expensive algorithm is the 
miner for EXPLICIT preferences (algorithm 2). The cost-intensive part is the cycle 
test and leads to a performance which depends linearly to the number of tuples. The 
efficiency of our Preference Mining algorithms allows their usage for online Prefer-
ence Mining: while interacting with a customer an e-application can check online his 
preferences and react flexible to his wishes during the sales process. 



5.3 Case Study 

We also performed an analysis of the Preference Mining algorithms on the log data of 
the COSIMA application [8]. Over five hundred users queried the COSIMA compari-
son shop almost four thousand times. COSIMA offers shopping in the three categories 
books, cds and computer products. Our application server log records for each query 
the timestamp, the shop category, the preferred price interval and – depending on the 
shop category – title and author in the book shop, title and performer in the cd shop 
and product name and product group in the computer hardware category. Table 2 
shows a short extract of the COSIMA log-data. 

Table 2. COSIMA log data 

user timestamp category title/name author/perf/group price1 price2 
1 05.11.00 12:19 cd 

 
Philadelphia 
 

Mark Knopfler 
 

null 
 

null 
 

2 05.11.00 13:43 hardware 
 

Handy 
 

Communication 
 

null 
 

1000,00 
 

3 05.11.00 14:37 hardware 
 

HP 
 

Printer 
 

299,00 
 

350,00 
 

User 1 searched for the cd “Philadelphia” of “Mark Knopfler” and didn’t specify any 
price preferences, whereas user 2 had a price limit of 1000,00 German Marks for a 
mobile phone. User 3 queried for a HP printer with a preferred price range from 
299,00 to 350,00 German Marks. 

We applied the Preference Mining algorithms on the COSIMA log data to detect 
customer preferences. Thereby, we analyzed the log-data for each user separately. We 
got several interesting results. The Preference Miner detected lots of POS preferences 
and also one POS/POS preference for the shop category. Quite a few LOWEST pref-
erences for price were detected by analyzing the lower price limit. NEG preferences 
and even combined preferences were also detected with the Preference Miner. Mining 
preferences for COSIMA users works very fast: On a computer with 1,3 ghz and 1,5 
gigabyte main memory the Preference Miner needed less than one second to detect 
customer preferences. 

Such preference knowledge can be very useful for personalized applications like 
COSIMA. Sales advice can be adapted to the customer’s individual preferences, e.g. if 
he likes minimal prices, COSIMA should emphasize cheap products or bargains. This 
approach also allows the selection of one designated product out of a query result set, 
which can be offered as first choice. Furthermore, preferences gained with Preference 
Mining are useful for personalized product recommendations and for the composition 
of individual product bundles. 



6 Summary and Outlook 

In this paper we have presented a novel approach for mining preferences from user log 
data based on the concept of strict partial order preferences. We presented several al-
gorithms for the detection of categorical, numerical and complex preferences. Our 
prototype implementation executes all data-intensive operations on the database server 
and exhibits excellent efficiency. Our experimental results also demonstrate promising 
precision and recall of the detected user preferences. 

Our next steps include the integration of user situations into preferences. Situations 
can be described with a set of parameters like current time and location, the user’s role 
or physical and psychological condition of the user. Some preferences may only be 
relevant under specific situations; for example, in a bookshop a user may have differ-
ent preferred categories whether he is at work or at home. A major task is the adapta-
tion of our Preference Mining algorithms in order to detect situated preferences. 

Another research task is the design of an appropriate storage structure for prefer-
ences. Such a Preference Repository should not only be able to record preferences de-
tected with the Preference Miner but also preferences defined with Preference SQL or 
Preference XPATH. The integration of situations should also be possible as well as 
user identifiers to assign users and user groups. Finally, the Preference Repository 
shall also include a set of appropriate access operations for inserting, deleting and up-
dating preferences. It can also be used to find users with similar preferences and with 
it product recommendations based on preferences can be offered. Therefore the Pref-
erence Repository is also a major step towards advanced personalized applications. 
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Appendix 

Proposition 1: 
A data-driven preference defines a strict partial order. 

Proof: 
We have to show that the relation <PD of a data-driven preference P = (A, <PD) is irre-
flexive and transitive. 

1. Attribute A has a categorical domain. 
<PD is reflexive: 

Let a ∈ dom(A) be a value of A. 

a <PD a 
⇔ freqA(a) < freqA(a) 

leading to a contradiction. 

<PD is transitive: 

Let a, b, c ∈ dom(A) be values of A. 

a <PD b ∧ b <PD c 
!
⇒ a <PD c 

⇔ freqA(a) < freqA(b) ∧  freqA(b) < freqA(c) ⇒  freqA(a) < freqA(c) 

The <-relation is transitive and therefore the last transformation holds. 

2. Attribute A has a numerical domain. 
<PD is reflexive: 

Let a ∈ dom(A) be a value of A. 

a <PD a 
⇔ freqA([a-ε, a+ε]) < freqA([a-ε, a+ε]) 

leading to a contradiction. 

<PD is transitive: 

Let a, b, c ∈ dom(A) be values of A. 

a <PD b ∧ b <PD c 
!
⇒ a <PD c 

⇔ freqA([a-ε, a+ε]) < freqA([b-ε, b+ε]) ∧  freqA([b-ε, b+ε]) < freqA([c-ε, c+ε])       
⇒  freqA([a-ε, a+ε]) < freqA([c-ε, c+ε]) 

As above the <-relation is transitive and therefore the last transformation holds. 
 

⃞ 



Proposition 2: 
Preferences detected with Algorithm 1 have the following properties: 
• POS preference: values within the POS-set occur more often in the log-relation 

than values outside the POS-set. 
• NEG preference: Values within the NEG-set occur with lower frequencies than 

other values. 
• POS/POS preference: Values within POS1-set occur more often than values 

within POS2-set and the latter values occur more frequent in the log relation than 
other values. 

• POS/NEG preference: Values within POS-set occur more often than other values. 
The values within NEG-set occur with lowest frequencies. 

• EXPLICIT preference: For each value within E-graph any successor occurs with 
lower frequency. 

Proof: 
The case differentiation in step 3 of algorithm 1 checks for every preference the con-
formance of the according frequencies. 

⃞ 

Proposition 3: 
Let n be the number of tuples in the log relation R and k = | π A(R)| the number of dif-
ferent values of an attribute A in R. By using hierarchical clustering algorithm 1 has 
the complexity O(n + k2). 

Proof: 
Step (1): the computation of the frequencies needs a linear scan of the data (O(n)).  
Step (2): hierarchical clustering computes a clustering of the k different values in 
O(k2) [3].  
Step (3): the case differentiation can be done in constant time O(1). 

Therefore the overall complexity of algorithm 1 is O(n + k2). 
⃞ 

Proposition 4: 
EXPLICIT-preferences detected with algorithm 2 are strict partial orders. 

Proof: 
The steps (d1), (d2) and (d3) of algorithm 2 create a directed graph (E-graph). Since 
cycles are avoided (steps (d1) and (d2)) this graph is acyclic. Since a directed acyclic 
graph represents a strict partial order [6], the constructed EXPLICIT preference 
EXP(A, E-graph) forms a strict partial order. 

⃞ 

Proposition 5: 
Let n be the number of tuples in the log relation R and k = | π A(R)| the number of dif-
ferent values of an attribute A of R. Then the complexity of algorithm 2 is               
O(n + k2(n + k2)). 



Proof: 
Step (1): the computation of the k occurring values needs a scan of the data (O(n)). 
Step (2): the two nested for-loops have the effort O(k2). 
Within the for-loops the following steps have to be executed: 
Steps (2a), (2b) and (2c): the computation of the query ids and of the numbers s and t 
needs a scan of the data (O(n)). 
Steps (2d1), (2d2) and (2d3) require the computation of a path in a graph with maxi-
mal k vertices. This task needs O(k2) by using Dijkstra’s algorithm [6]. 
Therefore the overall complexity of algorithm 2 is O(n + k2(n + k2)). 

⃞ 

Lemma 1: 
Let A be a numerical attribute and φ(x) be a continuous density function of some val-
ues x1, …, xk ∈  dom(A). For a, b ∈  dom(A) we have 

a <PD b ⇔  φ(a) < φ(b) 

Proof: 
Since φ(x) is continuous and non-negative (as density function) there is an ε > 0 so 
that the following equivalence holds: 

φ(a) < φ(b) ⇔   ∫ ∫
+

−

+

−
<

εa 

εa 

εb 

εb 
(x)dx (x)dx ϕϕ   

  ⇔   P(a-ε ≤  X ≤  a+ε) < P(b-ε ≤  X ≤  b+ε) 
  ⇔   freqA(a-ε, a+ε) < freqA(b-ε, b+ε) 

  ⇔   a <PD b 

⃞  

Proposition 6: 
The preferences of definition 6 are data-driven preferences, i.e. better values occur 
with higher frequencies. 

Proof: 
• There is a data-driven LOWEST preference, iff φ(x) is monotonic decreasing. Ac-

cording to Lemma 1 greater values occur with lower frequencies. 
• There is a data-driven HIGHEST preference, iff φ(x) is monotonic increasing. Ac-

cording to Lemma 1 greater values occur with higher frequencies. 
• There is a data-driven AROUND preference with around value z, iff φ(x) is mono-

tonic increasing for x < z and monotonic decreasing for x > z. According to 
Lemma 1, values with greater distance apart from z occur with lower frequencies. 

• There is a data-driven BETWEEN preference with [low, up]-interval, iff 
- φ(x) is monotonic increasing for x < low,  
- φ(x) is monotonic decreasing for x > up, 
- ∀ x∈ [low, up], ∀ y∉ [low, up]: φ(x) > φ(y). 
According to Lemma 1 values within [low, up] occur with highest frequencies. 
Values with greater distance apart from the interval borders occur with lower fre-
quencies. 



• There is a data-driven SCORE preference with score function f, iff φ(f(x)) is mono-
tonic increasing. According to Lemma 1 values with greater f(x) occur with 
higher frequencies. 

⃞ 

Proposition 7: 
If the real density function is known, the preferences detected with algorithm 3 have 
the following properties: 
• LOWEST preference: greater values occur with lower frequencies. 
• HIGHEST preference: greater values occur with higher frequencies. 
• AROUND preference: values with greater distance apart from the around-value 

occur with lower frequencies. 
• BETWEEN preference: values within the [low, up] interval occur with highest 

frequencies. Additionally, values with greater distance apart from the interval 
borders occur with lower frequencies. 

Proof:  
If the density function is known, algorithm 3 follows exactly the definitions for nu-
merical preferences (def. 6). Therefore the above properties hold. 

⃞  

Proposition 8: 
Algorithm 3 creates strict partial order preferences. 

Proof: 
The algorithm creates LOWEST, HIGHEST, AROUND and BETWEEN preferences. 
As shown in [7] these preferences are strict partial orders. 

⃞  

Proposition 9: 
By using histograms as density estimation and Scott’s rule for the bin-width computa-
tion [15], algorithm 3 has the complexity O(kn + k3), whereby n denotes the number 
of tuples in the log relation R and k is the number of bins of the histogram. 

Proof:  
Step (1): Scott’s rule defines the bin width as h = 3.49 1/3nσ̂  [15], which can be com-
puted in linear time, since the estimated standard deviation needs O(n). For every 
value in the log-relation the according bin has to be detected O(kn). Therefore the 
computation of the whole histogram needs O(n + kn) = O(kn). 
Steps (2a), (2b) and (2c): the histogram consists of k bins. For LOWEST, HIGHEST 
and AROUND preferences maximal k bins have to be checked leading to O(k). 
Step (2d): let k1, …, km be the bins of the histogram. At first, the BETWEEN condi-
tions have to be checked for the first (k1) and the last (km) bin as upper and lower bor-
der, respectively (O(k)). This process has to be iterated for all ki and all kj with ki < kj. 
This leads to maximal k2/2 iterations. Therefore the test for a BETWEEN preference 
has the complexity O(k3) leading to the overall complexity O(kn + k3). 



⃞  

Proposition 10: 
Algorithm 4 and 5 create strict partial order preferences. 

Proof: 
The algorithms create Prioritized and Pareto preferences as output. Both Prioritized 
and Pareto preferences define strict partial orders [7]. 

⃞ 

Proposition 11: 
If n denotes the number of tuples in the log-relation R, k1 denotes the effort for mining 
PD = (A, <PD) and k2 denotes the effort for mining QD = (B, <QD) the algorithms 4 and 
5 have the complexity O(n2+nk1+nk2). 

Proof: 
Algorithm 4: 
Step (1): for each maximal value of PD (at most n) the associate values in B are com-
puted with a linear scan of the log relation leading to O(n2). 
Step (2): there are maximal n sets of associate values thus the miner for QD has to be 
applied maximal n times leading to O(nk2). The miner for PD must also be applied at 
most n times (O(nk1)). 
Therefore the overall complexity is O(n2+nk1+nk2). 
Algorithm 5: 
The argumentation is the same as above. 

⃞  


