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obtained.

Let us also point out that results on the differentiability of the solutions
to (Pp) and of the associated Lagrange multipliers are useful for numerical
computations. This point is illustrated in [5], for example, where techniques
on the optimal choice of the regularization parameter for nonlinear ill-posed
inverse problems (e.g. parameter estimation problems) are proposed.

In Section 2 of this paper we develop the general theory and Section 3
is devoted to the applications.

2 General Theory

In this section we develop sensitivity results for the following parameter
dependent optimization problem:

min f(z,p) over z
subject to e(z,p)=0 (Pp)
9(z,p) <0

2 < b(z,p) < 23,

where f: X x P—oR,e: XxP—-Y,g: XxP-oR™ b:XxP—Z.
Here X, Y, Z are (real) Hilbert spaces, P is a normed linear space, R™
is considered with the natural negative cone R™ and K is a closed convex
cone in Z with vertex at zero satisfying KN(—K) = 0. The cone K induces
a natural ordering on Z given by z; < 27 iff 2y — 29 € K, similarly R™
induces a natural ordering on R™. For the parameter value po € P, (Pp,)
is considered as the unperturbed problem. Our general assumptions are
that 21 # 23, zg € X is a local solution of (Pp,), the maps f, ¢, g and b
are twice continuously Fréchet—differentiable with respect to x at (zo, po)
and the first and second derivatives are continuous in a neighbourhood of
(0, po)-

We refer to the constraints specified by e, b and g above as the equality
constraint, the bilateral constraint and the (additional) finite dimensional
constraint, respectively.

In a first step we transform the bilateral constraint into a unilateral
one, which is of a special nature. We introduce

Z = {(fz)+p(f;2):zez,pem}

= diag (Z x —Z) @ span {( _22 )}
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Then Z is a closed linear subspace of Z x Z, and hence it is a Hilbert space
with respect to the induced scalar product. Define further

b:XxP—2Z by

> —b(z,p) + =
b(Z,P) = ( b(fc,pg)— 221 )
and
K :=Zn(K x K).

Note that K is a closed and convex cone with vertex at zero in Z. Clearly
(Pp) may be rewritten in the form

min f(z, p) over
subject to e(z,p) =0 (P;)
9(z,p) <0
b(z,p) <0,

where b(z, p) < 0 means b(z,p) € K.
Next we introduce some notation. We define the Lagrange functional
L for (P,) by

L: XxPxYxR™®"xZ R
L(z,p, ), 1,7) = f(z,p) + (M, e(z, P))y + (1, 9(z, P))F + (71, b(z, ) 5-

In the following, derivative with respect to z will be denoted by a prime.
A triple (Ao, po,70) €Y X R™ x Z is called a Lagrange multiplier for (Pp,)
at zo if

£1(301p07 A0) ”0);’0) =0

(2o, po) =0 2.1)
(o, 9(zo, Po))¥ =0, g(zo,p0) <0, po € RY :
(ﬁO:b(zO:pﬁ))Z- =0, b(.’l.'o,po) <0, fp € K+1

where K is the dual cone of K, i.e.
Ky :={z€2:(z,k) <0 forall kef{}.

We will identify £'(z0, po, Ao, Ho, 7o) with an element of X. In abbreviated
notation, (2.1) can be rewritten as

L'(zo, po, Ao, Ho, M0)
e(zo, 2
Oe -9(20,1’0) + 0¥r=~(po) (2:2)

—b(zo, po) + 3‘1'x+ (7o),
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(H1) (regular point condition at (zo,po)):

E 0 0
oeint S | G | x+| BRE | +R| g(zo,p0)
B -K b(zo, Po)

(H2) There exists a neighborhood V of (zg, po) and a constant » > 0 such
that

|f(z,p) — f(z,9)|+ le(z,p) — e(z, Dy + |9(z,p) — 9(=, ) IK
+ [b(z,p) - b(z,9)lz < vip— 4

for all (z,p),(z,9) € V.

(H3) There exists & > 0 such that
(Az,z)x > xlzlk

for all z € ker E,.

(H4) £ is surjective.
The following relationship holds between (H1) and (H4).

Lemma 2.1 Hypothesis (H{) implies (H1).

The proof of this and all the following lemmas will be given at the end
to this section.
For r > 0 we define the local extremal value function g, by

T(p)={z€X :e(z,p) = 0,9(2,0) < O,Z(z,p) <0,]Jx—=z0| <7}

and
- (p) = inf{f(z,p) : z € Z.(p)}.

With (H4) holding, p,(p) is well defined provided that p is sufficiently close
to po and that r > 0 is sufficiently small.

As a special case of [1, theorems 3 and 6], one obtains the following
results on Lipschitz continuity of the local extremal value function and on
Hélder continuity of the local extrema.

Theorem 2.1 Let (H1) and (H2) hold. Then there ezist a constant r > 0
and a neighbourhood V of pa such that u, is finite on V and Lipschitz
continuous at po, i.e.

|- (p) — B (Po)l < Lrlp — pol
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The proof will be finished if we can solve the second equation of (2.8) for
r; € R by choosing £ > 0 sufficiently small.
Observe first that

(5)4= (o rmeum )
and hence

E * E L] * * *
(B) (B )h:E y+ (1 - a)B*Bw — B*z — B*b(z, po).

. EN - . - E\*/E . . . *
Since (j) is surjective, (5) ( B)IIm( £y is an isomorphism on Im(g) .
By the choice of h € [ker (E)]l =Im (g)', we find, abbreviating D =

E\* (E -1
((B) (B)l Im(g)‘) that
h = D[E’y+ (1 — a)B*Bw — B*z — B*b(zy, po))-

Note that E*y— B*z, B*Bw and B*b(z,, po) are elements of Im (g)‘. This
implies that

h=(1- a)DB*Bw — DB*b(x¢,p0) + D[E*y — B*z].
This expression for h used in the second equation of (2.8) yields

r = Gh+ry+g(zo,po)
= (1-a)GDB*Bw - GDB"b(z0,po)
+GD[E*y — B*2] + ry + (o, po). (2.13)
By (A2) we have
GDB*Bw — GDB”b(z0,p0) < 0.

Hence one finds € > 0 and (7;) € R™ withn; > 0 for j = 1,...,m such

that
(1 — a)GDB* Bw — GDB*b(zo,po) < -1

for any |a| < 555

In view of (2.11) and g{z¢, po) < 0 one can now decrease ¢ > 0 further
such that (2.13) has a solution r, in R whenever (y, r, z, a) satisfy (2.9).
This shows that (A1) and (A2) imply (H1).

Next let us assume that g is not present in (Pp). We shall show that
(A1) implies (H4). By Lemma 2.1 this will conclude the proof. For any
(y,2,) €Y x Z x R one has to find a solution of

Eh 0 y
—Bh | +r| —b(zo,po)+21 | =| z+an
Bh b(zo,p0) — 22 —z—az
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Proposition 2.2 Let (H2) - (H5) hold at a local solution zo of (Py,),

and let (2, ), i, ii) denote a weak cluster point of t='[£(po +tq) — &(po)] for
t — 0%, with g € P. Then (&, A, 1, 7) satisfies

Ly(0, Po, M, o, fl0)g + A + E3X + G3j® + Brij
_e;.(zO)po)q - -E'f':r

0e
"gp(zD;PO) Gox + ov ;o(“o)

(7, 5(z0, po)) + (i, Bz + bp(zo, Po)q)-

This is proved in {4, Theorem 3. 2] The proof there considers the case of
b(_ £) affine in z; however, it remains almost literally the same for general
a

The following theorem shows directional differentiability of the local
minimum with respect to the perturbation parameter. It presents the main
result of this paper.

Theorem 2.4 Assume that (A1), (H2) and (H4) - (H7) hold and let
(2, M B, ii) denote a weak cluster point of t— 1[£(pg+t¢,1) —&(po)] fort — 0t
with g € P, where £(p) = (zp, Ap, tp, 7lp)- Then (2,1, 41, n) is the directional
derivative of £(p) at p = po in direction q and

(zo,po, Ao, o, i0)a + A + E5X + Gy + B
~%p (zO:PO)‘I - E+I
€1 ¥, . (2.15)
_yg(zo,po)q — Goz + 3‘I’x;° (4i0)
—b(zo,po)g — Bz + 0¥ (7))

where Ky is the dual cone in Z* of K := Uiso A(K — b(z0, po)) N [fio]*.

Since in view of Theorem 2.2, ¢~ [£(po +tq) — £(po)] has a weak cluster
point as t — Ot for every ¢ € P, Theorem 2.4 implies in particular the
directional differentiability of £ at pq, in every direction ¢ € P.

Remark 2.1: The proof of Theorem 2.4 will be constructed in a similar
manner as that of Theorem 3.2 in (4]. Our hypotheses (H2) - (H4) for (P,)’
coincide with (H2) - (H4) in {4] and hence all results from the proof in [4]
relying only on these properties remain valid for the bilateral problem in
rewritten from (P,)’. In [4] additional hypotheses denoted by (H5) — (H9)
are used in order to derive differential stability properties. It turns out
that (H5) coincides with our hypothesis (H5). We cannot guarantee the
polyhedricity requirement (H6) of [4] for our cone K. This motivates us to

276






F. COLONIUS AND K. KUNISCH

By definition of £ one has

L'(Z0, Pn, Ao, Ho, Tlo) + F'(zo, po) — Azo + Az(tn) + E* A(tn)

+G* u(tn) + B*ij(ts)

0€] —e(zo,pn) — E[z(ta) — zo]

—g(lfo,Pn) - ?[x(tn) - 30] + awl_’:(l‘(tﬂ))

—~b(zo,pn) — Blz(tn) — zo] + B\Il,g+ (7i(tn))-

(2.18)
For every n € N we introduce the closed convex set

_ . Bec— Bzo + S(zo,p,.) €K
’C"_{CGX' Ec— Fzo+e(zo,pn) =0 )
Observe that

—Bc + Bzo — b(zo,pn) +21 <0
Kn=<c€X: Bec.—Bxo+b(zo,pn)—22<0 },
Ec— Ezg +e(zo,pn) =0

and define

#(ta) = L'(Z0, P, Ao, o, flo) + F' (%0, Po) — Azo.
By (A1) there exists a unique element w(t,) € [ker (£)]* with

(5)wew=(SEmisn)  ew
We put y(tn) := z(t,) — w(t,). By (Al) the operator (E) is invertible on
Im (g)‘ = ker (g)l. Hence by (H5) and (A1) there exists @ € X such that
limt; [w(t,) — w(0)] = w.
Therefore in order to prove (2.16) is suffices to show the existence of
Jim £ (tn) ~ Y(O)L. (2:20)

We will accomplish this by identifying y(t,) with the metric projection on a
certain closed convex set, which is polyhedric at an appropriately specified
point.

Observe that By(0) = B(z(0) — w(0)), and that for each ¢ € K,, we
have

(E*Xta) + B*fi(ta), ¢ — (ta))
= {(A(tn), Ec— Ez(tﬂ)) + (i7(tn), Bc— Bz(tn))
= (A(tn), Elzo — 2(tn)] - e(z0, )
+(ii(tn), B[zo — 2(t)] — b(z0, pn)) < 0,
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and, again by (2.18),

Ey(t,.)+( “ )ef(

—z5
We have therefore shown that

{ (Ay(t,.) + @(ta) + Aw(ts) + G*p(tn), c — y(ta))
>0 forallz €C, (2.23)
y(ta) €C.

Now define

¥(tn) := Prer g(¢(ta) + Aw(ta) + G"pu(tn)),

where P, p denotes the orthogonal projection of X onto ker E.
Observe that

Emt; [¢(t,) — ¥(0)] exists,

since im#;![p(tn) — ¢(0)] exists by (H5), lim#,;[w(t,) — w(0)] exists by
construction, and limt;;}[G* u(t,) — G*1(0)] exists due to finite dimension-
ality of u(t,), and since Py, is a bounded linear operator.
Due to (H7),
((z,9)) == (Ap=,y)

with Ap := Py A, defines a positive definite inner product on ker E, and
(2.23) is equivalent to

{ ({y(tn),c— ¥(tn))) + ({A; 19(tn), c — ¥(ta))) >0 forallc€eC,
y(t,) €C.

This variational inequality shows that
y(ta) = Pe[-Ap"(tn)], (2.24)

where P is the metric projection in ker E onto C with respect to {{-,-)).
In order to verify the existence of lim¢;!(y(t,) — y(0)), we require the
following lemma.

Lemma 2.2 The closed convex set C considered as subset of ker E with
respect to ((-,-)) as inner product is polyhedric at the point § = —Ap"9(0).

We are now prepared to finish the proof of step (i). Due to Lemma
2.1, (2.24) and the existence of limy, .o t;(z(¢n) — Zo), a variant of Ha-
raux’s theorem on the differentiability of the metric projection [4, Propo-
sition 3.3] is applicable and implies the existence of the limit in (2.20) and
consequently the existence of limy,_,, £ }[2(ts) — z0)-
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(ii) We verify the inclusions in (2.15). The first four of them were already
established in Proposition 2.2, so that it remains to prove the last one
which is equivalent to

(7,u) <Oforall u e K (2.25)
{7, bp(x0, po)g + Bz) = 0, (2.26)
Zp(zo,po)q + Bi €kK. (227)
We first verify that ~ .
(ﬁO) bp(z(h po)q + Bﬂ.‘) =0. (228)
We define
7(tn) := 71 [2(tn) ~ 20,
and

D(tn) = 15 [fi(tn) ~ iio]-
Since j(t,) solves the linearized optimality system (2.16), it is known that
(i(tn), @ — b(z0, pn) — Blz(ta) — 2]) <0 for all & € K.
Thus choosing @ = b(zo, po) € K one obtains

(7i(ta), B(zo, o) — b(z0, pn) — Blz(tn) — zo])

= (G0 + tap(ts), DZ0P °)t_ b(zo,pn)] _ ta By(tn))

<0.

This implies that

—t,zi(l/(tn), E(zO)I’n); 5(30,?0) + 37(tn))

< (ﬁ0,§(30,Pn) - §(30,P0) + tnE'Y(tn))
< {fio, (0, Pn) — b(20, Po) + Blz(tn) — o))
<0.

Therefore the following inequalities hold:

b(zo,pn) — bz, P0) , 5y )

—t, (V(tﬂ)! tn
< {#o, t;;}[B(zo0, pn) — b(z0, Po) + Blz(ta) — o))
<0.
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This proves (2.32).
Next we recall that

¥(0) = Pe[-Ap'¥(0)] = Pey,

and hence (2.32) is equivalent to the following equality in ker E

U M€ = 9(0) N [Beer g B*inl* = |J MC - 9(0)) N [Fey g B* ol
A>0 A>0
(2.34)
Since € C kerE and y(0) € ker E it is simple to argue that (2.34) is
equivalent to

U M - w0) n[Bel+ = | MC - y(0)) N [B*7io]*, (2-35)
AD>0 A>0

where the orthogonal complement is interpreted in X. We claim that (2.35)
is equivalent to polyhedricity of C in X at the point B*#(0) + y(0). Once
this is shown the assertion of the lemma follows from (H6). Clearly, it
suffices to prove that

Pc[B*ii(0) + ¥(0)] = »(0),
since then also [I — Pc][B*ij(0) + y(0)] = B*#j(0), where P is the metric
projection in X onto C.

Let us put z = B*fjo + y(0) and observe that Pcz is characterized by
Pcz € C and the variational inequality

(z — Pex,c— Pcz) <0 forallceC.
We have seen in (2.23) that y(0) € C. Furthermore, for all ¢ € C,

(z = 9(0), ¢ = ¥(0)) = (B*ii(0),¢ — y(0))
= (7(0), Be - By(0))
= (i)(0), Be) — (i1(0), By(0))

- ~ e ® z
= (7(0), B0 - (0) zo,p0) — ()
= oy, Be+ (1)) <o,
where we have used the definition of Z(zo, Po), the fact that
~ 21 _ [ =B.e. 4z ~
Bc+( —22)—( Be. —2 ) €K
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and 7j(0) € I?+, by (2.18). We have thus shown that Pez = ¥(0), which
concludes the proof of the lemma.

Proof of Lemma 2.3: From the proof of Lemma 2.1 we recall equation
(2.35)

U A€ - w@) (Bt = | J ME - 9(0)) n[B*7io]*.

A>0 A>0

This is a consequence of the polyhedricity of C (at the point B* 7(0)+y(0)).

Obviously the set appearing on the left hand side of the equality in the
statement of Lemma 2.3 is contained in the set appearing on the right hand
side of this equality, and it suffices to prove the converse inclusion. Every

element in the set

LU M& - 8(z0,p0)) N [fio]*
A>0

can be expressed in the form
( —w+pz ) = lim), {( —kn +pnz1 )
w — pz2 kn — pnze
_ [ —b(zo,p0) + =1 }
(o @39

where A, > 0, p, € R, k, € K, and it satisfies

—w+pz -\_n —kntpazn <0
(( w — pz2 ),no)-o, kot przs < 0. (2.37)

Clearly p,z1 < kn < pn2z2, and since K N (—K) = ®, we conclude that
pn > 0. Henceforth we assume that p, > 0 for all n. The cases that
finitely or infinitely many p, equal zero can than be treated in a trivial
manner. For future reference we record that

>0 and 21 < k—" <z, foralln. (2.38)

We also observe that by adding the two components in (2.36), one obtains

p(z1 —2z2) = lLm{An[pa(z1 — 22) + 22 — 21}}
im{A,(pn — 1)(z1 — 22)}.

Since z; # 27, this implies

p=1limAn(pn — 1). (2.39)
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From (2.36) we obtain
—w+ pz;
w— pz;
[ —kn z ~M(zo, po) )
() om () om (8

(A ) -en} -

= um{,\,, ( _1:," ) + (P — DDb(z0, o) — pn ( ;’E(z’:;f;;) )]}
As a consequence of (2.39) and (2.40) one derives that
lim{ . (pn — 1)b(z0, po)} and
(RICE ATt om0

4
By (A1) there exits unique ¢, € (ker (g)) such that
E (0
g )= k. )

Since Ecp, =0, B(p;lcn) = p;lkn and 21 < p; ks < 22 by (2.38) it follows
that

plen €C. (2.42)
Using (2.19) and (2.41) one finds that the following limits exist:

lim< 0 )

An(kn — pnb(z0, po))
—im{n[( 5 ) (5]}
= lim{( g ) An(cn - Pny(o))} .

Since An(cn — pny(0)) € [ker (g)]l, (A1) implies the existence of the strong
limit of Ane, — pay(0). We define

e = limA,(¢en — pay(0)),

and observe that

Ba = ( _’; )a=1im{,\,.[( ‘k':" )—p,.( ‘,’,'z(zt"’;)‘;‘)’) )]} (2.43)
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The element can be expressed as a = lim {z\,. Pn (-’?l - y) } Since p; ¢, €
C by (2.42) and A,pn > 0 by (2.38) we conclude that

a€ |J M- y(0)). (2.44)

a>0
Furthermore, by (2.43), (2.40), (2.37) and since (§(zo, P0), flo) = 0 we find
(a, B*iio) = (Ba, i)

I —kn —b(zo, po) =

__<hm{/\n[( kﬂ )“Pn( b(ZO’po) )'70)

— . —kn _ —b(IO;pO)

= <llm{An [( kn ) Pn ( b(zo,po)

+(pn — 1)5(20,1’0)] },770)
—w+ pz ~

= <( w—p221 ))’70)

=0.
This equality together with (2.44) and (2.35) implies

a€ |JMC-yO)n[B A" = [ MC-y(©@)n[BF]t.  (245)
A>0 A>0

From (2.40), (2.41), (2.43) and (2.39) we obtain

—~w+pn o —kn —b(zo, po)
( w— pz2 ) . hm{'\"[( k, ) ~hn ( b(zo, po) )]}
+lim{/\n(pn - 1)5(301170)}
= Ba+ pI;(zo,po).
By (2.42) there exist g, > 0 and §, € C with
a = lim{pa(éx — ¥(0)} and (€. — y(0), B*7io) = 0, (2.46)

and therefore

( P ) = lim{é[ﬂn(fn = y(O))] + pS(Io,PO)}'

w — p22

In order to establish Lemma 2.3, it remains to prove that for every n the
expression in { } lies in Ux5oA[K — b(zo, po)] N [flo]*. By (2.46) we find

(Bln(€n — ¥(0))] + pb(20, Po), fio) = pn((€n — ¥(0)), B" 7o) =0,
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and hence the expression in { } lies in [fjo}*.
On the other hand, this expression equals

pin{[B(€n ~ 9(O)] + 5-B(z0, po)}
| () () ]
= I‘n[( _szin ) + ( _z;2 ) + (p_,:. - 1)5(1‘0,170)]-

Now we consider two cases. If p < 0, then (1 — p;1p) > 0 and the above
expression equals

_ —1 \— —Bé, + 2 z
pa(l— o) [ — i)™t ¢ ) = b(zo,po)| -
B¢, — 22
—BB;"_-'-Z? ) € K, and the proof is

finished in this case. If p > 0, the expression in { } can be expressed as

[ (Gt ) een (G ) b

Since &, € C we have (1 — p;1p)~!

where Be B )
—Bén + 2 -1 —0(Zo, Po) + 21 >
( Bén — 22 )+”" p( b(zo, po) — 22 ) €K,
since 21 < b(zo, po) < z3. This concludes the proof of the lemma.

Remark 2.2 An inspection of the proof of Proposition 2.2 and Theorem
2.4 shows that (H5) can be weakened to

e(zo, ), 9(zo0, *), L (%0, , Ao, #to, Mo) and {fjo, b(zo, -))
are directionally differentiable at pg in every direction ¢ € P.

Moreover, from the proof of Lemma 2.1 and 2.2 it can be seen (compare
(2.35)) that (H6) can be replaced by the requirement that C is polyhedric
at y(0) + B*#jo only.

3 Applications

In this section we present problems for which the theory developed in Sec-
tion 2 is applicable. Our aim is to illustrate that the hypotheses of Section
2 are satisfied for a variety of different problems. We do not reach for the
greatest generality.
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3.1 A bilateral obstacle problem

We consider the bilateral obstacle problem in the form
min |aVul?; + (k, u) 2 over Qqa(p). (3.1)

where Qua(p) = {v€ H} : z1 < p'v+p* < 2pae}, k€ H',a € L™,
p' € H?, p? € HY, z1 € H}, z2 € H}, with 21 < 23, 21 # 2. All function
spaces are considered over a bounded domain Q in R®, with n = 1,2 or 3,
with sufficiently smooth (Lipschitzian-) boundary I'. Observe that due to
the requirement n < 3, plv € H} for p' € H? and v € H}. To relate the
present problem to the general theory of Section 2 one puts

X=Z=H) P=H?*xH)xL®xH™,

with a generic element p € P of the form p = (p!,p?, a, k), and

1
fwp) = 3laVaul+ (k)
b(u,p) = plu+ p2.

We fix a reference parameter po = (p3,pZ, ao, ko), which is required to
satisfy ag > a and p} > « a.e. on S for some a > 0. It is simple to argue
that there exists a unique solution ugp of (3.1) with p = pp. We proceed
to argue the applicability of the results of Section 2. Clearly, f and b are
twice continuously Fréchet—differentiable w.r.t. u at (ag,po). Hypotheses
(A1) and (A2) hold since B = pj is surjective due to pj > a > 0 and since
g = 0. By Proposition 2.1 therefore (H1) and (H4) hold as well. Local
Lipschitz continuity as required in (H2) is obvious for f(u, p). Concerning
b we observe that for p, ¢ € P and u € H}

Ib(u1 P) - b(u’ Q)IH},

(0! - P*)u+¢" — ¢lm;
K (lp’ — PPlasulm + g - qzln;)

IA

where K depends only on embedding constants of H2 into L™ and into
W14, Hence (H2) follows. Conditions (H3), (H5) and (H7) are obviously

satisfied. Finally, due to [11, Theorem 3.2], Q.4(po) is polyhedric at every
point of H} and hence (H6) holds as well. Thus all results of Section 2 are

applicable.

3.2 A parameter estimation problem
A regularized least squares formulation of estimating the potential ¢ in
—Au+cu = kinQ (3.2)
yl' = 0
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that were required to obtain a coercivity estimate for the diffusion coeffi-
cient in an elliptic equation [2, 5] and we therefore only outline them here.

Since (H1) holds there exists a Lagrange multiplier (A5, 7£) for the solution
(co, ug) such that the Lagrangian

£(e,u,,X,18) = gl 2l + D1ef? 4 (O, el )y + (08, Ber Pz

satisfies £’(co, %o, po, A5, n%) = 0. Here the prime denotes differentiation
with respect to (c,u). In our notation for the Lagrange multipliers we

indicate the dependence on f. Henceforth we also use (cf, uf) to stress the
dependence of (cop, ug) on 3. Evaluating the first Fréchet derivative of the

Lagrangian for (0, v) one finds that A} is the unique solution in H} of
B(ch)A = (~A)(u] - =), (35)

where B(Cg) : H} — H~!is given by B(cg),\ =—-A)+ ch. For L"(f) =
L"(ch,ul,po, M5, 1) we find

L'(B)h,v) = vl +BlhlEs — 2008, (-8) " (hv)) g,
= o} +BlhlEs — 2005, hv) s, for (h,v) € L* x H}.
Due to (3.5) the following estimate can be obtained
L"(B)(h,v) |ol37s + BlhlZ2 — 21B(c§) " A(uf — z0)lLalhlralvlre
> |vlfys + BlhlZa — 2K2|B(c)~* Auf — 20)lmy Ihzalvlmy,

where K is the embedding constant of H} into LY. Here we used the
assumption that n < 4. Since [B(c)"AgoIH; < lplyy for every ¢ € H}
and every ¢ > 0 we obtain

L'B)(k,v) > |olfs + BlhlEs — 2K?[u(ch) = zolmy hlLalvlm;
1
310l + (B8 — 4K u(ch) — ol ) IlEa.  (36)

v

Henceforth let (c3, u3) denote a solution of (3.4) with 8 = 0. Every solution
(ch, uB) of (3.4) with 8 > 0 satisfies u(cj) = ub and, we have

~lu(cB) = 2ol > 8 (14125 — |e3125 ) — dist (z0, V)7,
where V = {u(c) : c € L%, z1 < plc+ pi < z2}. From (3.6) it follows that
L"(B)(h, v) (3.7)
> 2holdy + [ﬂ (1+ 4K (1B1%2 — 165122)) — dist (2o, V)’] Ih[Z5.
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Here §2 is a bounded domain in R™ with smooth boundary T, T = {(¢, z):
0<t < T,z €T}, with T > 0 and x denotes the unit outer normal to Q on
T'. Moreover we choose B € L(L?(2)) and yo, y1 € L*(Q). It is well known
that the Laplace operator A in L?(2) with dom A = H?(Q2)N H} generates
a strongly continuous cosine family C(¢) on L?(f2) with associated sine

t
family S(t)y = 'of C(s)yds for y € L?(Q). The operator theoretic solution
to (3.12) is given by

y(t) = C)yo + S + AN /S(t — 7)Nuy(r)dr (3.13)
0

where N : L(I') — La() is the Neumann boundary operator defined by
Nu = v with v the solution of

—-Av+v = 0 inQ,

Ov

ax

and the operator Ay in L%(Q) is given by dom(An) = {¢ € H3(Q) :

%Ell" = 0} and Ayp = (A —I)p, [6]. Throughout we use the identification
12(Z) = L*(0, T; L*(T")). From (3.13) it follows that

w(T) = C(T)yo + S(T)y1 + L(T)u,

u,

t
where L(t)u = Ay [ S(t — T)Nu(r)dr. It is known that L(-) € £(L*(Z),
0

C(0,T; L%(R)) [8, 6], and hence Y(T) is a continuous affine mapping from
L?(Z) into L2(Q2). With these preliminaries (3.11) can be expressed as

min |By(T)|a(q) + [uliaz) over Qud
with y(T) = C(T)yo + S(T)n1 + L(T)u. (3.14)
The applicability of the results of Section 2 is obtained with X = Z =
L3(Z), P = L®(Z) x L*(T) with a generic element p € P of the form
p=(p*,p?), and with
f(w)
b(u, p)
For every fixed reference parameter py = (p}, p3) € P there exists a unique
solution ug of (3.14). In view of Proposition 2.1 and the special form of f

and b, conditions (H1) — (H5) and (H7) are clearly satisfied. (H6) again
follows from the results of [11].

|BY(T)|} 2y + luliaz),
plu + pz.
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3.4 Optimal control of ordinary differential systems

The purpose of this example is to demonstrate the applicability of the
general results of Section 2 to optimal control problems in the presence of
two sided pointwise constraints as well as 2 norm bound on the control
energy and in particular to illustrate (A2) and (H4). A good reference
for related results on the differential stability in nonlinear optimal control
problems for more general systems is [10].

‘We consider the optimal control problem:

T
min / A(y(t), u(t))dt

such that
y(t) = Ay(t)+ Bou(t) a.e. on (0,71,
¥(0) = o, (3.15)
u € Qad;

where T > 0 and

Qaa = {u€L*0,T;R™) 0 < pi(t)ui(t) < zi(t),
ae. on (0,T)fori=1,...,m},

with m > 2.

The following specifications are made: h : R® x R™ — R, 4 € R™*",
By € R™™ 4, € R, 2 € L%(0,T;R™) with 2;(t) > 0 a.e. on (0,T) for
i=1,...,m, z #0, and the perturbation vector p is in L*(0,T;R™) with
unperturbed reference vector py = col(l,...,1) € L*(0,T;R™). For a
vector v € R™, v; denotes its i—-th coordinate.

We put z=(y,u) and X = H}(0, T;R") x L?(0, T; R™), Y = L*(0, T; R™)
xR™, P = [*(0,T;R™), Z = L*(0,T;R™), K = L%(0,T; R™). Further we
define

T
f(y’ u) = L Z(y: u)dt,
e(w,u) = (§— Ay— Bow,y(0) — ),

b(y,u,p) = col(pius,...,Pm-1Um-1).

Let us assume the existence of a solution zo = (yo, uo) for p = pg. Then,
in the notation of Section 2,

E:HY0,T;R®) x L?*0,T;R™) — L%(0,T;R") x R",
B:HY(0,T;R™) x L?*0,T;R™) — L%(0,T;R™"}),
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are given by

E(h,v) = (h— Ah— Bov, h(0)),
B(h,v) = col(pyvy,...,Pmvm).

Standard assumptionson A can be made that guarantee the required smooth-
ness properties of f = foT hdt which imply (H2) and (H5). It is straight-
forward to verify the validity of (A1) for this example. Since there is no
constraint described by g, Proposition 2.1 implies (H1) and (H4). Con-
cerning the second order sufficient optimality conditions (H3) and (H7) we
refer[g [1, 8]. The polyhedricity assumption (H6) follows from Corollary
2 in [3].

We have shown that all results of Section 2 are applicable to (3.15). It
is interesting to note that in the presence of the additional constraint

[ulLao,rm=) < v, 7> 0, (3.16)

hypothesis (H4) cannot be guaranteed. However, (A.1) and (A.2) still
hold, provided uo # 0 in L?(0,7;R™). In this case, Holder continuity of
the solution at py can be derived from Theorem 2.1.

If the set of admissible parameters in (3.15) is replaced by

Qaa = {u€L*0,T;R™): |ulzaormm) <7,
0 < pi(Dui(t) < zi(t), ae. on (0,T), fori=1,..., m—1},

then the only hypotheses which require additional attention are (A2) and
(H4). One can show that (A2) (and hence by Proposition 2.1 also (H1))
holds, provided that

col ((uo)l, vy (uo),,,_l) #0in LZ(O,T; ]Rm-l)
and (HA4) is satisfied if
(u0)m # 0in L2(0,T;R).
Comparing the results on the optimal control problem of this section with
[9] we obtain strong directional differentiability, whereas weak directional
differentiability is obtained in [9].
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