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Abstract

The effects of spin—flip scattering, spin—orbit interaction, and Zeeman split-
ting on the persistent currents in mesoscopic metallic rings and related
correlation functions are investigated, with emphasis on the non-interacting
electron case. Interaction effects are briefly reviewed.

1. Introduction

Following the seminal paper of Biittiker, Imry and Land-
auer [1], the phenomenon of persistent currents in meso-
scopic samples has been discussed theoretically in various
papers [2-21]. Accordingly, a normal-metal ring threaded
by a magnetic flux ¢ should carry an equilibrium current;
ie. a magnetic moment should appear as a consequence of
the applied flux. Most important in the development of this
field have been the experimental investigations of the two
groups at Bell Labs [22] and at IBM [23], where flux
dependent persistent currents have been shown to exist in
mesoscopic metal rings.

The above references may serve as a guide to the more
recent literature. In this article, I focus on how various spin
effects modify the relevant correlation functions, aiming at a
concise presentation. The following is based on standard
perturbative methods, well known from the theory of “weak
localization” [24-30], and thus subject to certain limitations
[14, 19]. Furthermore, I restrict myself to results related to
the average current and its fluctuations (i.e. the two-point
correlation function); arguments have been given [17, 18,
21] which indicate that higher connected correlation func-
tions are small, provided the total number of electrons in a
ring is large.

The persistent current is an equilibrium phenomenon;
hence the impurity average and the correlations of the ther-
modynamic potentials are central objects to be investigated,

e.g
Mo = {Qu, P)AW, ¢)). 1
Given ., one obtains easily by differentiation with respect

to u, y' or ¢, ¢’ the correlators of the particle number and
the persistent current, respectively:

My = {ON(, YONW, ¢)). @
and
M= A, D)UY, ). 3
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Being interested in the flux sensitive parts of these quan-
tities, it is also possible, as becomes apparent from the struc-
ture of the results to be discussed below, to compute directly
My, integrate to obtain .#, and differentiate with respect
to the fluxes to obtain .#;. On the other hand, a direct
calculation of the current correlator is considerably more
involved [4, 15].

An important step has been the understanding that the
average persistent current has to be computed using the
canonical potential, F [5, 6, 9, 11-13]. The result is directly
related to .#y, namely

(OF) = $AM N1, &5 1, &) @

where A = (24! denotes the average level spacing
(A% and ¥ are the density of states at the Fermi surface for
one spin and the volume).

On the other hand, interaction contributions [7, 8, 11, 17,
217 are closely related to local fluctuations of the density,

M, = on(r, p, $Yon(r', i, ). )
Interaction induced persistent currents are briefly discussed
in Section 5.

2. Non-interacting electrons — ideal case

The diagrammatic representation of the relevant contribu-
tions to #q and . are shown in Figs 1 and 2. In addition
to the usual rules, note the combinatorial factor M~1 in
M g, reflecting the symmetry of the diagram (M = 5 in Fig.
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Fig. 1. Typical cooperon contribution to 4. For the corresponding diffu-

son, the arrows on one of the circles are reversed. The combinatorial factor
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Fig. 2. Dominant cooperon contribution to ..

1). Flux sensitive contributions arise from the frequency
regime &(e — w) < 0; the result hence contains a factor ||,
andeg is(h=kg=1)
|| 3, s
Mg=—4T Y Ty [In (|w| + Dg? + idp sgn w)]c+p (6)
w,q

Here éu = p — u/, and the notation [...]¢.p implies a sum
over cooperon and diffuson contributions, i.e. for the ring
geometry,

q—+qi=2fn(n—¢—i—qy) )

respectively (¢, = h/e is the flux quantum, L the perimeter).
Clearly, (6) is of the form

Mo=F b+ ¢)+ Fpl¢—¢) @

where % . and & ;, are identical — and even — functions. This
result, which follows from time reversal invariance, implies
that the persistent current has the representation [15, 21]

I(¢) = ill m Sin (2nme/¢o) ©

In order of magnitude (zero temperature), .#, ~ EZ, where
E,= D/I? is the Thouless energy, .y~ 1, and #;~
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Fig. 3. Dominant cooperon contribution to the local correlator, .#,.
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(E./¢,)*. More precisely,
12> = 96(eE,)* [(n*m?) (10)
Using (6) and (4), the average current is obtained [11, 13] as
psy) =0; I,) = deh/n? (11

i.e. its basic period is ¢o/2. Note that A < E, for typical situ-
ations.
On the other hand, the local correlations,

-1 d3k ik(r—r’)
uﬂ" = V (27‘[)3 <5nk 5’1_,‘)56

(12)

are given by the expression corresponding to Fig. 3, which
has been discussed extensively in {17, 21] in connection with
the phase sensitive impurity line. The result is

4 tg kil
(Omy on_y, = ——EZ T §

nkop o

o] ]
13
><[|60|+Dc12+i5usgnw c+p 3)

which in order of magnitude leads to .#, ~ A °E /¥ (I =
vpT is the elastic mean free path), ie. #,/kE ~ E /(Nep).
Note that this result should be compared with the huge
regular, flux insensitive contribution — given by a diagram
similar to Fig. 3, except that only one impurity line connects
the two rings — which is ~k3/l, i.e. the regular part is only
by a factor ~(kp)”* smaller than the square of the average
density.

3. Cooperon and diffuson in the presence of spin effects

Here I collect the results for the spin dependence of the coo-
peron and the diffuson which, in one limit or the other, can
be found at various places in the literature [8, 16, 25-30]. I
assume that the spin—flip and the spin—orbit scattering rate
(z7* and !, respectively), as well as the Zeeman splitting,
w, =2upgH, are small compared to the non-magnetic-
impurity scattering rate, 75 !. At present, the total inverse
mean free time is given by 7' =15 + 17! + 1. The
equations determining C and D, in my notation [31]
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Fig. 4. Graphical representation of the equation determining the cooperon. There should be no problem to distinguish between the chemical potential and

the spin index.
(compare Figs 4 and 5), are
Xaﬂyé = Xgﬂv& + Xgﬁuv va X;wyé (14)

for X = C, D (summation over y, v implied here). The bare
expressions, X°, are given by

1 1) .6
1 Ts Tso d}' p
34/1 1
‘[_ + ;'— GG"I ¢ Géﬂ
s S0,

for the cooperon and diffuson, respectively. Furthermore,
forp,v= +1,

1
2ﬂﬂngﬁ75 = ‘t— éuﬁ 5.’,5 + (15)
0 :

po,

IS, 220N O = 1 — ‘c(lwl +Dg +1i ——;ﬂ sgn w) (16)

To simplify the writing, I omit in (16) and below idu sgn
o + 74, which has to be added to |w|, where the phase
breaking rates y, arise due to the magnetic field penetrating
into the ring, y. ~ e*(H + H')’L2 D.

For a concise summary of the results, define
N, =|o| + Dg% + 2/31, + 4/31,,;
N, =|aw|+ D¢} +2/r, (17
and

M, =|w|+Dg% +4/31,+4/3t,; M,=|w|+Dg% (18)
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Fig. 5. Graphical representation of the equation detérmining the diffuson.

Then one finds
2a 4 02C, oy =[N, +isgn oo, — »})/2]* (19)
2 A %2C,_,_ =[N, + N, —isgn o(w, + ©)]/22. (20)

2WNOPC, ., =(Ny— N)2D, 21)
where 2, = N,N, + (0, + ®})*/4, and
2o 402D, _ _ =[M, + i sgn w(w, + @))/2]"* (22)

202D, 4. =M, + M, — i sgn oo, — 0)]/22_ (23)
WANOD, ,__ =(M, — My)29 _ 4

where 2_ = MM, + (w, — w})*/4. Furthermore, C_, _, =
Ch_ 4+, Coyy_=Ci__,, C____=C%,,,, and
D_,_ .=D%_,_, D__,,=Dyy__, D____=
D% . . ,, where the complex conjugation only operates on
the i explicit in (19)—(24); the other elements of C and D
vanish. Note e.g. that the combination )’ D, for o, = o),
af

and du =0, which after analytic continuation to real fre-
quencies enters the calculation of the classical density
response, is of course unaffected by spin—flip and spin-orbit
scattering, as required by particle number conservation.

4. Correlation functions

In the next step, it is straightforward to determine how
spin-effects modify the correlation functions discussed in
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Section 2 (and others). For example, the following com-
binations are required (see Figs 2 and 3) for .#y and #,,
respectively:

My Y Y Xups X ysap (25)
X=C,D afiyd

My Y Y Xopp (26)
X=C,D af

On the other hand, the potential correlator is determined by
the eigenvalues, if, of (af|X°TI|p8) = X3;,,T1,5, con-
sidered as 4 x 4-matrices, respectively:

Mo: Y iln (1-2H

X=C, D j=1

27)

Of course, (25) and (27) are consistent, as discussed in
Section 2. Here I only give the following explicit result:

|| (0, — w)?
Jﬂn=—T‘§qE1n{[N§+"—4 :I
(@, + o)?
4

2
X[M“(ws:ws)]

X l:M 1My + —““‘—“"‘(ws —;w;)z]}

In the absence of spin—effects, N, =N, =|o|+ Dg?%,
M, =M, =|w|+ Dg%, such that (6) is recovered; recall
also the remark below (16).

><|:N1N2+

(28)

5. Discussion

Without going into further detail, I discuss some general
aspects of the above results. For example, it follows imme-
diately that in the absence of spin—flip scattering,
MAD, ) = M— P, ¢'), etc., which is consistent with the
expectation that the persistent current is an odd function of
the flux. However, this symmetry is broken by magnetic
impurities, which are assumed to have (random positions
and) fixed spin directions in a given sample (thereby exclud-
ing e.g. the Kondo effect). In fact, making the impurity spins
explicit, time reversal invariance implies Q(¢, {S}}) = Q(— ¢,
(~5)}).

Of course, the above .# has precisely the properties
which follow from this general result; I note in passing that
changing {S;} —» {—S,} in one ring changes the sign of 1/z;
in (15), and hence transforms the cooperon into the diffuson
contribution, and vice versa. I emphasize that in the pres-
ence of spin scattering, the persistent current has odd and
even parts (see related discussions [30, 32]).

Distinguishing further between ¢, the Aharonov-Bohm
flux entering through g, [compare (7)), and the magnetic
field dependence from Zeeman splitting and field penetrat-
ion, I conclude that the persistent current of a given ring has
the representation

1= i [1(H) sin 2ame/do) + I (H) cos Qnump/ds]  (29)

In the absence of spin scattering, I,(H) and I,(H) are even
and odd functions, respectively, while in the presence of spin
scattering, they also acquire odd and even contributions. In
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particular, for strong spin—flip scattering, it follows that the
cooperon is suppressed entirely, while the diffuson part is
reduced by four [28] compared to its ideal value [compare
(8) and (10)]. Thus, in this limit, I conclude that (T2, =
{I%>., and that these are % of the ideal value (10).

I remark that, for the average current, .4 is required for
equal fluxes [see (4)], i.e. only the cooperon contribution,
which is strongly reduced for strong spin—flip scattering. In
any case, the average current is odd.

Finally, interaction induced persistent currents have been
discussed in considerable detail [7, 8, 11, 17, 18, 21]. Here I
remark only that a rough estimate can be obtained by con-
sidering the Hartree contribution to the grand potential,

Qy = % Jdr J. dr'i(r — ¥') on(r) on(r") (30
where @i denotes the screened Coulomb potential, and the
estimate below (13) for the local correlations. This leads
immediately to the result <{Qu> ~ A E,, where 4, ~
N ik ~ kg) is the dimensionless coupling constant. More
detailed investigations show, however, that A, is reduced
logarithmically below its bare value [8, 24, 25, 29], and that
it is essential to include the exchange contribution when
studying the spin dependence: For example, the remarkable
result that the average interaction induced persistent current
is essentially independent of spin—orbit scattering (except for
minor changes in the reduction factor), arises from a subtle
interplay between direct and exchange terms [8].

Applying (30) also naively to the fluctuations [17], one
realizes that since .#, consists additively of a regular and a
flux sensitive (“singular”) contribution, the dominant flux
sensitive part contains the product of these, which led [17]
to M ~ E_/t, which is larger by a factor ~(L/l)* than the
non-interacting electron result (10). Subsequent analysis
showed, however, that the arguments are much more subtle
[18, 21]. In particular, the most recent effort [21] contains
an attempt at a systematic Hartree-type theory, excluding
the exchange terms; in view of what was remarked above
concerning the spin dependence of the average interaction
contribution, the spin dependence of .#Z' is an open
problem.
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