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Abstract. We investigate systematically the effect of the electronic Coulomb interaction on the
stochastic fluctuations (from sample to sample) in the persistent currents I{¢) of mesoscopic rings
threaded by a magnetic flux ¢. In contrast to our recent publication (Europhys. Lett. 18 (1992) 457},
we avoid separation of impurity and interaction scattering events and we present here a comprehensive
view. By this alternative procedure, we are able to confirm our earlier result, namely that (%72 ~
evy/L, which is a much larger quantity than the average current (I3 ~ evFi/Lz.
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1 General theory

Following the seminal paper of Biittiker, Imry and Landauer [1], the phenomenon of
persistent currents in mesoscopic samples has been discussed theoretically in various
papers [2—11]. Accordingly, a normal-metal ring threaded by a magnetic flux ¢ should
carry an equilibrium current; in other words, a magnetic moment should appear as a
consequence of the applied flux. Most important in the development of this field have
been the experimental investigations of the two groups at Bell Labs [12] and at IBM
[13], where flux dependent persistent currents have been shown to exist in mesoscopic
metal rings.

For sake of simplicity, we consider in the following an idealized situation where the
width of the metal ring is so small (compared to the circumference L) that magnetic
field penetration into the metal can be neglected. In the experiments [12, 13}, the situa-
tion is not so ideal; therefore, we will discuss the necessary corrections to the idealized
theory at the end.

Without magnetic field penetration, the energy and the thermodynamic potential
K (¢) of a given sample depend only on the magnetic flux. As the persistent current I(¢)
is an equilibrium phenomenon, it can be calculated [6] by taking the derivative accord-
ing to

1(p) = —c K@) (1.1)
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Depending on the variables to be kept constant in the experiment

F(N,¢) CE
K(p)— .
(9) {Q(y,@) GCE (1.2)

for the canonical and the grand canonical ensemble, respectively.
In the case of time reversal symmetry, K(¢) is an even function of ¢; and in the
idealized situation, it is also periodic in ¢ with primitive period
o =2nhc/e . (1.3)
Then, it follows that
I(-¢)=—1(¢)

I(¢p+ 9o = 1(9)

(1.4)

for any realization of the impurity positions, and that the following Fourier decomposi-
tion is valid: '

I(¢) = § I,sin2nme/¢q

me1

(1.5)
K(p)= Y. Kpcos2am@p/¢g .

m=1

In the following, we put A= c=kgz= 1. Then ¢, = 27n/e, and the following relation
holds:

I,=emk,, . (1.6)

For sake of completeness, we remark that the persistent current generates a magnetic
moment

M(@)=n(L/2nY1(p) (1.7

with L being the circumference of the ring.

2 Correlation functions and experimental results

It is known that the properties? of mesoscopic samples depend sensitively on the ac-
tual impurity configuration. Therefore, it is appropriate to introduce an ensemble of

! See also Ref. [10].
2 A theoretical and an experimental account of mesoscopic fluctuations can be found in Refs. {14] and
[15], respectively.
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mesoscopic samples which have been fabricated to the same specifications? but differ
in the positions of their defects. Accordingly, the persistent currents /(¢), that is the
set {I,,} of its Fourier amplitudes, should be considered as stochastic quantities which
are completely characterized if all correlation functions are known. Thus, we have to
consider the set of all k-point correlation functions

Mmy, e my) =y Iy L e 2.1)
‘/é}((ﬁl: . a¢k) = (I((bl)f(q)Z) e I(¢’k)>c (2.2)

where the angular brackets {- - -) mean the average with respect to the impurity ensemble
introduced above. Specifically, {- - -). means the cumulant correlation functions. For
instance

(1@ = (D)@~ T (P () . (23)

Note that in a graph theory, the cumulants are defined as the set of connected diagrams.

In the idealized situation where no magnetic field penetrates the metal ring,
Egs. (2.1), (2.2) contain the same information; in general, however, only Eq. (2.2) carries
the full information.

As a rule, it is more convenient to calculate the correlation function of ther-
modynamic potentials and to calculate the currents by taking the derivative with respect
to the fluxes as shown in Eq. (1.1). There are arguments, which show that the stochastic
properties of the persistent currents are adequately obtained within the grand canonical
ensemble. Thus, we introduce the following set of k-point correlation functions

M(Dy, 7 Ok) =L2(0)Q2(02) - 2(De ) - (2.4)

It is obvious — see Eq. (1.6) for instance — that the magnitude of the persistent cur-
rents may equally be characterized by energies. In this respect, one should recognize that
a mesoscopic metal ring displays a variety of quite different energies as follows.

(i) Fermi energy: &g
(ii) Elastic scattering rate: 1/7
(iii) Energy to localize an electron in one half of the ring: v/L
(iv) Thouless energy: £, = D/L?
(v) Mean level spacing: A = QA YY)t ~ g/N

where &z and vp (= pp/m) are energy and velocity of electrons at the Fermi level, and
A =m Pr/2 7% is the density of states. The diffusion constant is D = vgl/3, where
I = vgt is the mean free path. Furthermore, L is the circumference and ¥ the volume
of the mesoscopic ring.

Theoretical models on persistent currents differ in whether the Coulomb interaction
is taken into account or not. With non-interacting fermions, the problem is simplest for
a perfect ring geometry [1, 2]. Inclusion of impurity scattering does already lead to non-

3 Micrographs of the samples reveal irregularities in their shapes. We will assume that these ir-
regularities can effectively be simulated by random positions of the defects. Such an assumption is
partially supported by concepts known from the theory of chaotic systems {16].



183

trivial complications. One may either resort to computer calculations {5]; to random
matrix theory; to the diffuson/cooperon expansion [17] within the impurity technique
for Green functions; or to the supersymmetry technique [18]. If one wishes to include
the Coulomb interaction between the electrons, it seems to be unavoidable to make use
of methods developed in quantum field theory {17, 19].

Of the hierarchy of correlation functions (2.1, 2), the average current {({(¢)) (resp
) and the two-point correlator {{(¢)I(¢’)). (resp {I,,1,.) have been calculated
repeatedly in the past. There seems to be a general agreement on the following proper-
ties:

dyp =0 2.5a)
Tl =0 m¥m' . (2.5b)

For a general orientation, we list below some results, by order of magnitude and for
T=0.

(a) non-interacting fermions
(i) ballistic limit (/>L); one channel® only 11, 121
I,~ tevg/L .

The sign above depends on the number of electrons.
(ii) diffusive limit (/<L)

4.y ~ 0  grand canonical ensemble [3]
27" " leA canonical ensemble 81, [9]
<I%n>c - (eEc)2 {4], [10}

(b) interacting electrons; diffusive limit only
<IZ p) —~ eEc {6]
U2y, ~ (eve/LY . [11]

In our recent letter [t1], we have also presented arguments which show that the
Fourier components [, are independent Gaussian variables provided that the number
N of electrons in a ring is sufficiently large.

The two experimental observations reported so far contain different information. In
the experiment of the Bell group [12], the persistent current of an ensemble of ~ 10’
copper rings has been measured; this supplies information on the average current {/,,,).
The odd harmonics seems to be absent; otherwise the following value for (/) and
other parameters have been reported:

4 Usually, the number of transverse channels is taken to be equal to p},-.sz{/ n?, where &= ¥/L is the
cross section of the ring.
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Iy~ 0.6¢E,
L~2:10"%*cm /L ~1/70 (BELL)
A~02mK E.~25mK vg/L~S5K.

This agrees roughly with the theory for interacting electrons in the diffusive limit.

In the experiments of the IBM group [13], the persistent currents of three different
single gold rings have been measured. In such a single ring experiment, one expects the
observed current to be of the order® (I f;, 3.‘/ 2 (usually this is very much larger than the
average current {[,)). The following values have been reported:

I, ~ (0.3-2.0)evp/L

L~810"%*cm /L ~1/110
(IBM)
A~002mK E.~4mK ve/L~1K

er~10°K 1/t ~10°K N-~10'.

The experimental result agrees roughly with a theory of interacting electrons which we
have put forward [11]. Note, however, that the relation (%> (I,)* requires the sign of
the observed currents to vary randomly from sample to sample (and also from Fourier
component to Fourier component). Experimentally, the sign of the current has been
positive for the two samples that have been checked; but obviously no conclusion can
be drawn from such a limited sampling.

However, the argumentation in our letter [11] has been commented critically by
various of our colleagues. Therefore, it is necessary to give an account how our theory
can be put on a solid basis. This will be done in the following.

3 Nonu-interacting electrons

As already mentioned, the differences between the canonical and the grand canonical
ensemble appear to be negligeable in the problem of stochastic fluctuations. Therefore
we will take the grand canonical ensemble as it has been suggested in Eq. (2.4); and we
will calculate the following two-point correlator:

M (@, =(2() 28", - (3.1)

In the quantum field theory, the grand canonical potential and its correlation func-
tions are represented graphically by vacuum diagrams.® Specifically, in the impurity

3 In the literature, this rms current is sometimes also called the typical current.

6 See, for instance, § 15 of Ref. [19]. Note, however, that the rules for the combinatorial factors of com-
pact vacuum diagrams need reformulation. Accordingly, there is a factor of M ~!, where M is the
number of equivalent sites a2 Green function may have in a given diagram. — In order to check the
combinatorics, one may calculate a physical response by taking the derivative with respect to an ap-
propriate source: field.



185

technique for Green functions [17, 19], the flux dependence is obtained from the domi-
nant diffuson and cooperon contributions (particle-hole and particle-particle ladders).
Note that diffuson and cooperon contribute to the two-point correlation in a symmetric
way, the flux dependence being (¢ — ¢") and (¢ + ¢ ), respectively; hence in all diagrams
for 4o(p,¢"), we omit the arrows on the electronic loops implying that both senses of
circulation have to be considered.

For non-interacting electrons, the relevant expression is shown in Fig. 1 where, by
symmetry of the graph, the term with M connecting impurity lines has the non-trivial
combinatorial factor M ~!. Hence a typical term is given by (x= (r,7) comprises space
and time)

-;} Qr AN M{dx, ... dxy (e, —x1) xy, %) Hx7,xy)

o TO(xp—x4) Gan x1) Gxhs,%7) (3-2)

where we have associated I” G(xg-x;-)/ 27 A° with each impurity line connecting Q(¢)
with 2(¢’), represented in Fig. 1 by the two electronic loops. Anticipating arguments
to be presented in the next chapter, we distinguish in the impurity scattering the rates
% (G = gain; scattering in) and I'* (L = loss; scattering out), the latter entering the
Green functions in (3.2) through self-energy insertions. We note that the series starts
with M = 2; the term with M = 1 has to be omitted for reasons of charge neutrality.

Fig.1 Two-point correlator 4,(¢, @) of the grand canoni-
cal potentials Q(¢) and 2(¢*}. For non-interacting electrons,
each potential is represented by an electronic loop (full lines ¢ 4;
represent impurity averaged Green functions) carrying a flux

as a labelled. The broken lines represent (correlated) impurity
scattering events. Note the combinatorial factor M ~1 since i
the M connecting impurity lines are undistinguishable. (In e
the diagram, M = 5.) The impurity ladder (diffuson as well M
as cooperon) carries the momentum 4.

We consider now the above expression in momentum space. There, we encounter the
expression

¢ dk
Io(q,wwzi Al 5 ke S-g. o) 3.3)

In standard approximation valid for |w|, vpg<eér, and in the frequency regime
e(e—w)<0, it is given by

r° Vrq
I(q,w) = —— —2 1. 34
0(q, @) o arctg (la)HI‘L) (3.4)
Hence
Mg =4T Y, lo| f : o (g, )™ (3.5)

w,q 2&) M=2M



186

where a spin factor of four has been included. From this expression, the dominant flux
dependence is extracted by considering the contribution from small w, q, ie. jw| <1,
gl<1, by noting that in this regime,

1-Iy=t{|w|+*-I°+Dg% . (3.6)

Above, we have assumed that I'* = 'Y = 1/z, but for illustration we have kept the ex-
plicit notation for the difference 6I"=I'" = I'C. Performing the M-summation in
Eq. (3.5), we arrive at

1/
=25y 10 | n LA ' 3.7)
27 wq [w|+dI'+Dgq
where, for the ring geometry, g has to be taken one-dimensional such that
q_,?-__{{ (H—¢i¢> (3.8)
L )

with the upper and lower sign for the cooperon and diffuson, respectively.
For a technical detail, note that for any periodic function of the type

O 2 2 E )
Xp)= 3 G({D (%—E) (n«-f) D = Y emmity (3.9)
N = 0o Q m= —on

the Fourier coefficients X, can be calculated according to

+co . .
X,,,:-l- § dxe ™ G(E.x*) . _ (3.10)
f{ Q——

Since X_,, = X,,,, only terms o< cos 2nm @/, survive the summation in Eq. (3.9).
Note that in this Fourier representation, the combined contribution of cooperon and

diffuson,

9+¢ +cos2nm¢~¢ ----*20c)s?.ﬂ:mgceszmrzgi 3.11)
®o ®o bo ®o

cos2nm

leads to a result where the thermodynamic potentials are even functions of the fluxes,
as it should be.

In the further calculation, we put 6 = I'“— I’ =0, which is true for noninter-
acting electrons. Also, we recognize that a substantial contribution to the Fourier coeffi-
cients of the type (3.10) is connected with the cooperon/diffuson singularity at w =
q = 0 (which is not affected by the omission of a finite number of terms in the series
of Eq. (3.5)).

Eventually, we obtain the result (see also Ref. [10])

Tl = ‘5mm’<jf;:>c

1

o6 (3.12)
Unde = —5— (CEY’
z

which has already been outlined in Sect. 2.
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4 Interacting electrons

As shown by Ambegaokar and Eckern [6], the Coulomb interaction enhances the aver-
age persistent current considerably above’ the value for non-interacting fermions.

A characteristic feature of a Coulomb system is the rearrangement of charges which
leads to a screened Coulomb interaction i@ (k) (see the diagram of Fig. 2) which is given
in reasonable approximation by

4ne’

k) = ————— .
) k2+8ne* A

(4.1)

Fig.2 The screened Coulomb interaction is

represented by a double wavy line. The sim-

ple wavy line is the bare Coulomb interac- LS 4 AN = Coco
tion.

The theory of Ref. [6] is based on the Hartree-Fock approximation. Since the Fock
contribution introduces only a correction factor of order 1 (e.g. 1), we will neglect
Fock contributions and consider Hartree diagrams only in the following.

Quite generally, Hartree diagrams consist of electronic loops which are connected by
bare Coulomb interactions u(k) = 4me?/k? in a branching (simply connected) type of
topology. As a rule, strings of fermionic loops can be put together to yield a screened
Coulomb interaction i1 (k). For illustration, the Hartree contribution to the impurity av-
eraged thermodynamic potential® (Q2(¢)y is shown in the diagram of Fig.3. From
there, one obtains

18
Uy =-——eE, . (42)
m-n

In our letter [11] on the stochastic fluctuations of persistent currents, we have con-
sidered a simple Hartree-type contribution to the correlator (2(¢)£2(¢")) as shown in

-
-~
-
-~ - —

Fig.3 Hartree diagram for the average grand canonical potential. Since )
both electronic loops carry the same flux, only the cooperon produces a
flux sensitive contribution.

7 A renormalization of the interaction constant [6b] reduces this enhancement to a less spectacular
value,

& Note that with Coulomb interaction, there is no difference between the canonical and the grand
canonical ensemble.
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Fig. 4a. In a different representation, one may introduce a pseudo-interaction W(k) as
defined in the diagram of Fig. 4b. Thus, the diagram of Fig. 4a can be represented as
shown in Fig. 4c. As mentioned earlier, the formulation of our theory has been com-
mented critically by various of our colleagues [20—22]. For instance, it has been ob-
served that the pseudo-interaction should be considered rather a dressed impurity scat-
tering {201, since it carries zero frequency only. Moreover, it has been observed [22] that
the diagram of Fig. 4d cancels exactly the one of Fig. 4c.

Fig.4 (2) Hartree-type contribution to the
two-point correlator 4y(¢@, 9. Each of the two
Hartree diagrams consists of two electronic
loops connected by a screened Coulomb in-
teraction. Impurity lines between them are
b 4.; drawn to give a phase sensitive contribution to
the correlator as large as possible. (b) The
. pseudo-interaction is shown as a jagged line.
d - (c) Representation of diagram 4a in terms of
- the pseudo-interaction. (d) Self-energy inser-
tion.

These few comments may serve as an illustration of the difficulties one encounters
when trying to separate impurity scattering from Coulomb interaction. Note that these
difficulties are most severe in the problem of stochastic fluctuations where interaction
and impurity lines are complementary in their role of connecting various pieces of a
diagram. Nevertheless, this problem provides also a good testing ground for developing
a systematic theory since there, the various contributions can be discriminated and iden-
tified by their different dependence on the magnetic fluxes.

5 Systematic theory of impurity scattering and Coulomb interaction

In order to develop a consistent theory, we find it advantageous to consider an im-
purity as a defect of charge ze which interacts with the electron by a bare Coulomb in-
teraction, which is then screened in the standard way. For ease in drawing diagrams, we
will henceforth represent a screened Coulomb interaction (previously a double wavy
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Fig.5 (a) Screened Coulomb interaction. The broken line replaces b .
the double wavy line of Fig.2. (b) A heavy dot represents the factor
n,;z%. (c) This impurity line stands for the analytical expression
k) -nz2ak). c ———tree

hne) by a dashed line (Fig. 5a). Furthermore, a heavy dot (Fig. 5b) means a factor
n; z where n; is the density of the defects. Thus, an impurity line is represented con-
sistently by two screened Coulomb hnes attached to a heavy dot as shown in Fig. 5¢;
its analytical expression is #2(k)n;z>%.

For convemence, we consider the limit of many defects of small charge, ie. n,— o,
z—0, such that n; z? is finite. Then, a heavy dot has only two interaction lines attached
to it.

We recognize the following elements of any impurity averaged Hartree diagram:

(i) screened Coulomb interaction;
(ii) electronic loops with at least three screened interactions attached to it;
(iii) impurity dots with exactly two screened interactions attached to it.

The additional specification (ii) can be understood as follows. A loop with only one
interaction line can be interpreted as a Hartree self-energy contribution which can be
absorbed by a proper renormalisation of the electronic chemical potential. Further-
more, a loop with only two interaction lines would imply a kind of screening of a
screened interaction (formally: multiple counting of diagrams); obviously, it has to be
omitted.’

In a conventional theory, the diagrammatic rules for the construction of the k-point
correlation function #o{(¢,, - * -, @) for the grand canonical potential 2 as introduced
in Eq. (2.4) are as follows:

(i) choose an appropriate class of vacuum diagrams for Q in accordance with the re-
quirements of the problem;
(ii) draw k replicas of this class and label the replicas by their magnetic fluxes;
(iii) connect the replicas by impurity lines in all possible ways. It is also understood that
each replica has impurity insertions where necessary.

The above rules imply that the various parts of one replica have to be connected by
interaction lines (and not by impurity lines only), and that no interaction line is allowed
to connect different replicas.

Within the present approach, these rules amount to about the following. Any
diagram contributing to .4, is fully connected and consists of k subsections which are
labelled by the fluxes ¢,. Each subsection is completely separated from the remainder
by heavy dots. Any subsection has to be connected within itself by interaction lines
without a dot.

Having these general rules in our minds, we continue with a detailed discussion. Ob-
viously, an elastic scattering rate 1/7 can be defined in the usual way,

128 At =nz* < |a(p-p)|*> ks (5.1

° Evidently, this rule eliminates all the diagrams of Fig. 4.
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where < --- > pg means the average with respect to the Fermi surface. Though not
directly justifiable at metallic densities, in the following we will neglect the momentum
dependence of ii(k) which is formally done by letting'® e?— o in Eq. (4.1).

In the following theory of stochastic fluctuations of phase sensitive quantities, the
concept of a phase sensitive impurity line (PSI) is most important. The PSI is represent-
ed — see Fig. 6 — by a full diamond with two interaction lines attached to it. Its defini-
tion is given in the diagram of Fig. 6a, and one should observe that the impurity ladder
is built from PSI lines of which there are at least two. Note that the electronic self-
energy (elastic scattering rate) has to be calculated consistently with the PSI line as
shown in Fig. 6b. If necessary, angular averages of the type shown in Eq. (5.1) are im-
plied; and the analytical expression of a PSI will be denoted I'/ 2n A0,

- el o g o - + —— -

+ - +

- - - - see
a -

b -

L. 5
Fig. 6 (a) Definition of the phase sensitive impurity (PSI) line, which is represented by a full diamond

with two screened interactions attached to it. Note that the pair of electronic loops include both senses
of circulation (diffuson and cooperon). (b) Electronic self-energy.

In order to solve this non-linear equation in an appropriate way, we separate the g-
integration of the impurity ladder in a regular (g/= 1;7) and in a singular (g/=< 1;s) con-
tribution. Similarly, we separate also the elastic scattering rate in a regular and a
singular contribution, I"= I, + I, where the singular contribution is flux sensitive.
Also, it will turn out that I is very small; this fact as well as the condition I',/gx<1
allows us to calculate the leading part of the phase sensitive contribution from the im-
purity ladder in the range g/ 1 with impurity lines corresponding to the analytical ex-
pression T,/ZﬂJVO .

As for the regular contribution, it is apparent that these diagrams merely lead to a
renolrlmalization of the scattering rate. For example, the diagram of Fig. 6a suggests
that

!0 In terms of the electronic density parameter r,, this limit means 7,2 10 which is not realized in ac-
tual metals. It is expected that anisotropic impurity scattering will lead only to correction factors
of order unity.

! For g/= 1, one has roughly a factor I'/¢x for each element of the ladder. Particle-hole and parti-
cle-particle ladder contributions lead to an extra factor 2.
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I/ep

— 5.2
1**F,/8p ( )

I~ i< 2 MY > eI
T

Of course, we do not claim that (5.2) is a reasonable approximation to calculate the
Coulomb correction to the elastic scattering rate, which has to be taken anvhow from
the experiment; instead we wish to emphasize that all regular contributions cancel in
the difference I’ —I'C, whereas the singular contributions to I'*—I'C remain finite
due to the differences in the applied fluxes. Specifically, we have

r‘—re=1ry(¢,¢)+ (" ¢N-T(.¢) . (.3)

As mentioned above, I, can be obtained by evaluating the impurity ladder in the
diagram of Fig.6 for ¢/<1 with a renormalized scattering rate I,—1/z Thus one
obtains '

2t arctgkIT |w]

(k) = [2A4% (k) —
s(k) = u()lﬂy il Z Vo) +Dg?

(5.4

Note that in the limit of isotropic impurity scattering (e>— o) that we are considering
here, one may replace 2M4° i (k) by 1. Anticipating further developments, we have re-
tained an essential momentum dependence in the singular part of the scattering rate.

The flux dependence of I, can be worked out following the rules laid down in
Egs. (3.8) and (3.10). The result will be expressed as follows:

167 arctgkl/ .
r,= E. P9, . 5.5
7 TR (@,99 (5.5)

In the relation above,

Y(p,0") = E S"mcos27zmgcos?.zzm9~’- (5.6)
m=1 (b(} @0

where

1 /2T 2 nw vz mi@ i
v (IVE,.,y/E,) =~ n exp| — L

wy,=2nTn; Wy,=w,+y.

(5.7a)

For sake of completeness, we have introduced ad hoc a phase-breaking rate y (the same
for cooperon and diffuson). In the simple case y=T=0,

Wm=m-3 . (5.7b)
12 1t is also possible to estimate the contribution to I, from the region g/ 1. One finds that for the

“true” I, the rhs of Eq.(5.4) should be multiplied by the factor [1—[4 422 (k)1*T,/&s). Usually
I'/ep<1, which means that this factor is very close to one.
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Hence, for k ~ kr, the flux dependent part of I, is in order of magnitude
Iy~EJ/N (5.8)

which is a very small quantity (/;<4).

For interacting electrons, the relevant contributions to the correlator #;(¢,¢" con-
sist of the two parts which are shown cliagmmrnaticadly13 in Fig. 7. Arguments which
support this statement are given in the discussion of Sect. 7. We assert now, that the
most important contribution to the current correlator .4; is obtained by differentiating
the full diamonds with respect to ¢ and ¢'. We mark the operation of taking this
derivative by a dashed circle encompassing the object (see Fig. 8a). Making use of the

el
- e

1
M -

f \ Fig.7 Contributions to the correlator 4,(®,¢").
\ / (2) Ladder diagram with PSI lines (M=3). (b) A PSI
-~ line closed to a ring by a heavy dot.

\ Fig.8 (a) Diagrammatic representation of the current
<b d) correlator .4;(¢,¢"). The dashed contour indicates the
parts of the diagram which should be differentiated
with respect to the fluxes ¢ and ¢'. (b) The same as
N Fig. 8 with the definition of the PSI of Fig. 6a inserted.
\ Again, the dashed contour indicates the parts with flux
] derivatives. (c) Representation of the correlator
e My (¢, 9" as explained in the text.

13 Note that the ladder in the diagram of Fig.7a must have M2>3.
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diagrammatic definitions of Fig. 6a, we recognize that .4;(¢, ¢") can be represented by
the ladder-type diagram as shown in Fig. 8b. Again, the dashed contour encloses those
parts of the diagram the flux derivative should be operated on. Most important is the
fact that one of the PSI lines is left out of this operation. Thus the equivalence of the
M PSI lines is broken, and there is no nontrivial combinatorial factor M ~! in the
diagram of Fig. 8b.

It is interesting to note that one might have equivalently well started with the diagram
of Fig.8¢ as representing the correlator .4,{(¢,0"); in fact, if one takes the flux
derivative there, one obtains immediately the diagram of Fig. 8a.

In the next section, it will be shown how to obtain an adequate expression for
Mo(9, 9" from the diagram of Fig. 8c and from the relation (5.5) for I',. Presently, we
proceed following the presentation of Fig. 8b. Here, we will argue that most of the phase
sensitive contribution is obtained when evaluating the ladder with I" replaced by I, in
the range of g/ 1, as we have done when writing down Eq. (5.4). Letting I',—1/7 for
simplicity, we conclude that .4 (¢,¢") can be obtained by proper differentiation of a
correlator #,(¢, ¢") shown in the diagram of Fig. 8b with the dashed contour removed
and with PSI lines replaced by simple impurity lines. Compare this diagram with the
one of Fig. 1. Disregarding the rather trivial differences in the representation of the im-
purity lines (with/without heavy dot), one recognizes the essential difference between
the diagrams of Fig. 1 and Fig. 8b, which is in the combinatorial factors M ~! and M°,
respectively.

Recall that the nontrivial combinatorial factor M ™! in the diagram of Fig. 1 takes
care of the fact that the M impurity lines there are all equivalent, whereas in the diagram
of Fig. 8b, there is one impurity line which carries a distinct label (“color”) but does
not differ by a significant quantitative measure. This means that'* (cf. Eq. (3.5))

4T lw|
2T wq |0| +Dg? '

Ay(p,9) = 4T T '—%Mzs o (q, @)™ = (5.9)

w,q

Referring to Egs. (5.4) and (5.5), we recognize that the above expression can be written
as

2
Ao (p, 0" = -;f-; (%‘“—’) (g, 0" - (5.10)

Consider now the current correlator. According to the relations derived above,

Tl e = 6mm‘a§z>c , 5.11)
16 fev :
(I?,,)c = mz gjm —7;3 (-“—f> .

If one wishes to compare this result with the one we have obtained in Ref. [11], one
should consider the limit of isotropic impurity scattering e’*—~ o (a = 8ne® A%/2k%
— oo there). This means that the pseudointeraction of Ref. [11], :

4 We are interested in the singular contribution. Thus, we may sum }, 57 _,.
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MW > = < RAGI /T > gy = — 1L 5.12)

a+2t r'

Hence the present approach confirms the result of Ref. [11].

6 Higher order correlation functions and probability distribution

In the following, we will show that for a sufficiently large number N of electrons on
the ring, the higher order (cumulant) correlation functions Vé’g‘) , k=3, are negligeably
small compared to the two-point correlator .42, If this is true, then it follows that the
probability distribution is Gaussian. We will argue that for this higher order correlators,
the Coulomb interaction does not enter in an essential way; therefore, the result will
essentially also apply to the case of non-interacting electrons. Except for a correction
factor, '* we will reproduce the results of our letter {11]. However, the concept of a
phase sensitive impurity (PSI) line allows a more compact formulation.

As an introduction, consider first the diagram of Fig. 8c for the two-point correlator
AP (¢,, ¢, in the form before the flux derivatives have been taken. Since I'= I',+ I},
and since (¢, 92) </, (which is independent of the fluxes), we recognize that we
should select such contributions where the number of substitutions ™77 is as small
as possible. Of course the requirement will be that the final expression depends on all
the fluxes; otherwise, its contribution to the current correlator would be zero.

Note that in the limit of isotropic scattering, 2 #%#(k)—1, we have

nzt=2 Mnt . , (6.1)

Within the substitution 7,—1/1, the above expression can also be taken as the
analytical expression for the regular part of a full diamond in the diagrams. Thus, the
diagram of Fig. 8c corresponds to'®

APk
Qn) nlt

43 (91,02 = ¥§ Ik 91,02 (6.2)

where the k-integration is restricted to the range k <2 k. Inserting the expression (5.5)
for I';, one obtains

2
43 (p1,02) = R? (—”f) (9, 92 (6.3)

where

3 P
RCP = 0P |’ g_% I:% 3%%"3 arctg kl} (6.4)
Fi4 Fi4

'S We thank the authors of Ref. [21] for pointing out a mistake in our previous estimate [11] of .4’
for k odd (see below).
16 We mark the correlation functions obtained from the prescription above by a bar.
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with r® =1, and r®’ =(2p-2)!1/2 for p>1. Since kpl/<1, one obtains R® =
16/3 7% in agreement with Eq. (5.10) (as already mentioned in Ref. [11] in connection
what we called method (II) there).

Next, we consider even correlation functions 437 (¢, - - -,9,,). For illustration,
consider Fig. 9a, where p = 3. According to what has been said above, we obtain the
largest phase sensitive contribution if we replace the full diamonds alternatively by I,
and I', as we go around the ring. Thus, we obtain

2p
%&%p) (¢)1: Ty ¢2p) = R(zp) <%> H ' ?}(¢1’ ¢2) YI(¢’3’ 694) e IP(¢2P“1’ ¢21’)
P (6.5)

where the product includes those permutations 17 of the 2p fluxes which lead to a dif-
ferent functional dependence. The prefactor R?) has to be calculated according to
Eq. (6.4). Explicitly,

1 p<3
- 2N
RO - CRDR i ety p=3 ©6.6)
(kel)?™ p>3

where the factor (kpl)?~> reflects that the typical momentum going around the
diagram of Fig. 9a (compare Eq. (6.4)) is small, £~/ -1, for p>3. We recognize that
RW/R® _ 1/N. Since N~ 10" in the experiment of Ref,[13], this means that 4%
and all the even higher order correlation functions are negligeable.

Odd correlation functions require an additional discussion. If one were to follow, as
we did in Ref. [11], the prescription explained above in the evaluation of the diagram
shown in Fig. 92, one would realize that the alternating sequence of Iy and [, does not

¢
Qe
¢ A
\
¢ ! ‘ ;
s t‘ ‘3
L} ,
\\ ’f,
a A o )
»
b
- -~
o -4
Fig.9 (a) Diagrammatic representation of higher ;" Q.:Cl:» \\
order correlation functions 4% (k = 6 in the figure). ] i
(b) Interaction of two neighboring impurity ladders in \ 42 ‘2 % /’
the third order correlation function. G -

17 Presently, there are (2 p— Ul different permutations.
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fit onto the ring: At one point, two I'; will be close to each other, leading to a flux
dependence which differs from Eq. (6.5) such that the sequence of variables, {1,2;3,4;
...2p—1,2p}, is replaced by {1,2;2,3;4,5;...2p,2p+1}. In order of magnitude, this
contribution is ~ N ™?(I/L)(kgl)™* =20,

However, as pointed out in Ref. [21], the odd correlations are dominated by an addi-
tional contribution, not obtainable within the above PSI scheme, which loosely speak-
ing has two phase sensitive ladders next to each other, as shown for the example k =3
in Fig. 9b. We consider this three-loop term in more detail, with due consideration of
the facts that (i) the total momentum along the ladders is small, and that (ii) the one
extra impurity line carries a large momentum ~ kz. Thus one obtains

3
M3 (91,02, 93) =R (%) 1" 790,585 (6.7)

P
where
R® ~ [k L/N (6.8)

is considerably larger than our (above mentioned) previous estimate [11]. In Eq. (6.7),
the function ¥® (¢, @,, ¢;) has the representation

'PG} (¢1 ’ ¢’2! ¢3)
= Y Y’fﬁ?m,cosan&COSZRm?—%COSan‘%COQRm’& 6.9)
mm’ =1 Po . %o ) %o

where 'I’f.ﬁf,,,,, which is symmetric, for y = T =0 is given by
P . =Imm' m+m 1" . (6.10)
The dominant phase sensitive contribution to correlation functions of order 2p+1

are found by combining a single three-loop element with the minimal number of simple
ladders, of which there are p—1. Thus, we obtain

MG D, Bapat)
v 2p+t ,
= R@P*D (’f) [T P01, 02, 03) P04, 05) * - P2 $2p41)  (6:11)

P

where 18

RGP+ %R@m . (6.12)

Note that in the experiment of Ref.[13], kpL/N ~ 10°/10'° ~ 107>, Thus, we see
that even in this unfavorable case, 43 — and also the higher order correlations — can

'8 One should notice that N/kL is about the number of transverse channels.
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be neglected in comparison with the two-point correlator Jlﬁ?. If this is the case, we
may conclude that the Fourier coefficients of the persistent currents 7,, are indepen-
dent Gaussian variables with probability distribution

P(I,,}) = const exp [ - E (I,,,—(L,,))?‘/Zaf,,} (6.13)

m=1

where g2, = f,,)c ~ (evg/L)?, and where |{Tn>| <0, is negligeably small.

At this point, we wish to emphasize an important difference between the stochastic
fluctuations of persistent currents and the Aharonov-Bohm effect in mesoscopic nor-
mal-metal rings [14, 15]. In the latter case, one may expand the measured quantity (i.e.
the conductance) in a Fourier series o«ccos[2nm@/@y+7y,], in a way similar to
Eq. (1.5). However, the phases y,, for different values of m appear to be completely un-
correlated with no theoretical prediction available. Therefore, only the power spectrum
(with respect to ¢) of the measured quantity is physically relevant; in fact, this is the
central message of the so-called ergodic hypothesis. In contrast to that, the phase of
the persistent current is uniquely fixed by the condition that the current be an odd func-
tion of ¢. In the present theory, this requirement is satisfied since the diffuson and the
cooperon contribute to the correlators in a symmetric way.

7 Discussion

Considering the expressions (3.5—7) for the correlation function .4,(¢, 9" of non-
interacting fermions, one might characterize our previous approach [11] as a first order
expansion with respect to a (regular) Coulomb correction §1°¢ ~ O(1/7) of the elastic
scattering rate I'C. Correspondingly, one may consider the diagram of Fig. 4¢ to be the
result of an expansion with respect to 6. Since 61 G = 5I'%, both contributions have
to cancel.

In contrast to our previous presentation, we have now avoided any separation of the
various contributions to the impurity scattering rate. As an alternative, we have put for-
ward a self-consistent theory which is based on the concept of a phase sensitive impurity
(PSI) line. For instance, the electronic self-energy is included from the beginning self-
consistently; therefore, diagrams of the type as shown in Fig. 4d are already taken into
account,

Specifically, we have proposed to calculate the correlation function 4,(¢¢") follow-
ing the diagrams of Fig. 7. Note that the contribution of the diagram 7a is about a fac-
tor (I'/er) smaller than our final result, due to the condition M= 3. Thus, most of the
contribution is from the diagram 7b.

The argument why this diagram should be included in this form is as follows. It is
certainly true that the diagram shown in Fig. 10a contributes to the correlator a large
amount but this contribution is not phase sensitive. Therefore, we have introduced its
appropriate extension in the diagram of Fig. 7b. In order to clarify its structure, we have
redrawn this diagram in a detailed form as shown in Fig. 10b.

At that point, one might argue that one should include simple impurity lines in all
possible ways in this diagram. At the end of this process, a new PSI would emerge as
shown by the substitution of Fig. 10c. However, such a new PSI is ruled out by the
definition of Fig. 6: two simple impurity lines would appear in a way as representing
two different processes.
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4 \
/
L
a \
~ __‘M/
b -
o i o
- o
-
- ool
Fig. 10 Contributions to the correlator .4,{(¢,¢".
(a) The largest contribution is phase insensitive.
- (b} Detailed structure of the phase sensitive con-
—=#-= N> ~~®-= + -=%-=  ibution introduced by Fig. 7b. (c) This substitution
c of the PSI is forbidden.

The phase sensitive contribution to the impurity scattering is very small, I'; ~ E./N,
which may be about 10~ '%eV ~ 10™'2K in the experiment of Ref. [13]. This allows ef-
fectively an expansion of the correlator #,(@, ¢ to first order in I It is this expan-
sion which removes the nontrivial combinatorial factor M ~! (where M is the number
of impurity lines), a typical feature of the diagrammatic expansion of the grand
canonical potential. For a physical interpretation, we identify the regular scatteringgate
I, with the rate 1/7, where 7 is the mean time of free flight. Thus, the diagrams for
non-interacting fermions (Fig. 1) and interacting electrons (Fig. 8 b) appear to have the
same structure; however, and most important, there is a difference in the combinatorial
factor, which is M ™! versus M, respectively. With some hindsight, one may argue
about the factor M? in the interacting theory, that one of the M impurity lines carries
a distinct label (“color”), but not a different numerical value. We may add that we ex-
pect also not much of a difference if one goes beyond the Hartree approximation which
has been the basis of the considerations above.

Eventually, one may ask about possible consequences the PSI may have in other
problems of Coulomb interaction in disordered conductors [17]. We expect them to be
rather insignificant. In fact, we have already found it to be of less importance in higher
order correlation functions for persistent currents.

As a further illustration, consider the average persistent current, where the flux ¢ in
all parts of a diagram has the same value. There, the screened Coulomb interaction
i(k, w) does certainly not depend on the flux for £/ 1 provided that the impurity cor-
rections are done properly, whence I'“ = I'S. For ki/=1 a flux dependence appears; but
it seems that such a contribution can be incorporated in the standard diagrams [6] if
one takes interaction corrections to the screened Coulomb line into account.

In summary, we find that the stochastic fluctuations of the persistent currents are
considerably enhanced by the Coulomb interaction between the electrons. In the ideal-
ized situation (no magnetic field in the metal ring), the persistent current can be repre-
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sented as a Fourier sum with components I, sin2nm@/¢,. The amplitude I, is a
stochastic function depending on the random position of the impurities with a mean
value {/,,> almost zero. Using date of Ref. [13], we find

U2 = g, ~ 0.82ev/L .

This value, and the period 2nAc/e, are in good agreement with the experimental results
obtained for three gold rings [13]. We expect the current to vary randomly in sign from
ring to ring; and from one Fourier component to the other. Detailed data [13] are given
for a (1.4%2.6) pm? loop (L = 8 pm); for this loop, we compute the characteristic tem-
perature 3E, ~ 12 mK. Thus for T~ 7.6 mK, the second harmonic is suppressed by a
factor ~ 13, consistent with its almost absence in the power spectrum in Fig.2d of
Ref. [13]. Concerning the parity of the current and its derivatives, we feel that Fig. 2b
and 2¢ are a fair illustration of I{—¢) = —I(¢).

Finally, in order to develop an idea of the width of the dominant 2 7 Ac/e-peak in the
power spectrum, we take into account magnetic field penetration into the metal ring
(non-ideal, that is, the real situation) and consider a flux-dependent phase-breaking rate
»(¢), as for example arises from the finite transverse dimension (~ 900 A) of the loop.
For the quoted parameters, we find [6b] yy=1/ty= ,82(¢/¢>0)2E€ with 8=0.5.
Hence, we estimate the relative width (full width at half maximum) as /7 ~ 0.16 (ex-
perimentally it is about twice this value), indicating that field penetration gives a
substantial contribution to the broadening. Clearly, more detailed studies of the
lineshape will be most interesting.

We wish to thank all our colleagues for their critique, in particular Yuval Gefen for insisting on
clarification. This work has been supported in part by the German Israeli Foundation (GIF) and by
the Deutsche Forschungsgemeinschaft (SFB195).
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