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ABSTRACT

In this paper we investigate exact solutions for a parametric quantum os-
cillator. Without dissipation we focus on the propagator and the variances of
momentum and position. In the presence of dissipation (Ohmic heat bath) we ap-
ply the influence-functional method due to Feynman and Vernon to obtain exact
expressions for the time evolution of the reduced density matrix. Knowing this
density matrix we calculate and discuss the variances in presence of friction.

1 INTRODUCTION
The potential of the system has the form
V(z,t) = %m(a — bcos )z (1)

This potential has several possible applications. One major application is the
study of the Paul trap in the quantum regime!. Another suggested application
is the generation of squeezed states of light*. and particulary interesting is the
application to the topic of tunneling through a barrier with a time dependent
barrier-width.

Although the system under consideration can be used as an amplifier it should be
distinguished from the so-called ‘parametric amplifiers’ studied by Louisell, Yariv,
and Siegman® and Mollow and Glauber*. Their model consists of two harmonic
oscillators coupled bilinearly via a time dependent parameter which oscillates at
the combination frequency of the two individual oscillators. The Hamiltonian
for this system is time dependent, but elimination of one harmonic oscillator in

the Heisenberg equations of motion leads to a differential equation with constant
coeficients.

2 THE QUANTUM PARAMETRIC OSCILLATOR WITHOUT DISSIPATION

Introducing the scaled variables Z = \/m{/2hz and t = (t/2 the dimension-
less Schrddinger equation for eq. (1) reads

10(z, 1) = {—%6;’ + -i-w?({)i’} 0. (2)

with w?(#) = @ — 2bcos2t. @ = 4a/mQ?, b = 2b/mQ?. In this section we will use
only scaled variables and henceforth omit the overbars.

© 1993 American Institute of Physics 481



482 Dissipative Quantum Noise

The periodicity of the Hamiltonian leads to Floquet form =olutions of the
Schrédinger equation. A solution W, (z,t} of eq.(2) can be factorized as

U, (z.t) = exp(—i€qt)on(z. 1), on(z.t) = on{r.t = 7). N

®n 1s called Floguet function. ¢, a Floquet- or quasienergy. Because of the lin-
earity of the system o, and ¢, are fully determined through the solutions of the
corresponding classical problem. i.e.

i +wi(t)r =0. ()

[t is not possible to obtain the solution in explicit form, but with w?(#) defined like
in (2) this is the well-studied Mathieu-equation. Depending on the value of the
parameters a and b the solution of (4) can be bounded or increasing with time.
Whenever we need explicit solutions of (4) we calculate them numerically.

There are different approaches to the quantum mechanical problem. The
Floquet functions and Floquet energies for the three regions were given first by
Perelomov and Popov®. In the stable region a discrete spectrum of qusienergies
exist. In the unstable regions and at the boundaries between these regions the
spectrum becomes continous.

The propagator for this system, obtained first by Husimi® . can be derived in
a variety of ways’. One possibility is based on Feynman's path integral method.
Given the solutions of eq. (2) it is also possible to construct the propagator
directly in terms of a spectral representation. i.e.

I{(’L‘f, tf|.’1,‘,‘,ti) =

18

, . i y
On(IEf,tf)On(;E{,ti)e.‘{p[—ﬁﬁn’\t’f - ti)]. (3)

]
=

n

For a continous spectrum the sum becomes an integral and we have to take into

consideration possible degeneracies of the quasienergy spectrum. Doing so we
obtain for the propagator

- 1 l 2 xr G . 2%
K(zgtp530t) =, X [zx(tf)(fcf-\(ff) =2zpr = oY (tf))] =
. 1 1 ; .
= e~ Fm(tn)=mita)] 2X(ts) — 222 + Y ()] .
i e | ma e ) 2 ] (6

X and Y are special solutions of (4) with the initial conditions

X(t) =0, X{@)=1. Y(@)=1.  Yit)=0. (7)

m(t) is the number of zeros of .X in the interval [0,¢], m(0) = 0 and we used the
definition of the root

X3(t) = |X[7er¥m0),
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But this propagator (6) is valid only for times t; # t,. With ¢, we denote the
time when the m-th zero of X occur. To calculate the propagator at these so
called caustics we use the semigroup property of the propagator

K(zp. ta;20,0) = /dm‘C R(zpitn 2o, )N (20, 7 70. 0V, (8)

This relation holds for any time order of 0, 7,%,. It is not necessary that = < t,.
We have chosen a special time t. = 7= because then we can emplov the following
relations for the solutions of the Mathieu equation

Yir —t)=Y(2)Y(t) = V(=) X(t). X(r—t) = X(=Y(t) = Y(=)X(¢). (9)
For the propagator at a caustic we find explicitly the result

1 V() o] o e,
T {zwf" e = FltnJzol (10

[t was shown before with various methods that a time dependent harmonic
oscillator generates squeezed states®. To study its squeezing properties explicitly
we compute the variances of the operators r and p with the Heisenberg equation
of motion. The mean values for this linear system follow the solutions of the
classical equation (4).

The variances U(t) = (2%)—(z)*, V() = 3 (zp+pz)—(z)(p) and W (t) = (p*)—(p)*
satisfy the coupled set of equations

I\—(.'En, tn; Zo, 0) = e_i';_m(tn

U=2V, V=W-=HU, W= (11)

By eliminating V(¢) and W(¢) from egs. (11) we find an equivalent third-order
equation for U(%)
dt

This equation is solved with ~ [7(¢) = W(0)X? - U(0)Y? + 217(0) XY
where X and Y are defined as before in (6). Because of (11)

ﬁ+%ﬂﬂU+2{iM%M}U=O (12)

V(t) = WOXX + U(0)YY + V(0 XY + XY) and

< W(t) = W(0)X? + U(0)Y? + 217 (0) XY

We see that the variances are bounded or increasing with time like the solutions
of the Mathieu-equation in the corresponding region. Depending on the chosen
parameters the form of the results varies strongly. In figs. 1 we plot the time
variation of [ for a fixed value of a. We start at t = 0 with a wavepacket with
minimum uncertainty U(0) = 1/2rv/a —2b. 1V(0) = 0. W(0) = rva —2b/2. r
is.a parameter which characterizes the amount of squeezing of the state: r = 1
refers to the unsqueezed state. Fig. la shows U for a squeezed state and different
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Figure 1: Variance U for various amplitudes of the parametric modulation and
squeezing parameters for a = 0.1, (a): b=101(1),0.025 (2), 0.04 (3) and r = 4
(b): r=11(1), 1.2 (2), 1.6 (3) and b = 0.025

amplitudes of the parametric modulasion b. It can be seen how the variation of b
changes the form and also the amplitude of the oscillations. In fig. 1b variances
are plotted for different squeezing parameters r.

3 THE DAMPED QUANTUM PARAMETRIC OSCILLATOR

To describe damping we couple our system linearly to an environment®. This
environment is modeled as a linear system consisting of a set of noninteracting
harmonic oscillators . The Hamiltonian of the coupled system assumes then the
following form

H=H4s+H+Hsp

2 N 2
L _ p 1 2 _~— P 1, 2
with H, = o + §(a — bcos Qt)mz*, Hp = ; S T 5%nMnZn;
N 2
H, = ch,,.z:n «;‘——"——12, (13)
= 7 2Mpw?

H, and Hp are the Hamiltonians of the parametric quantum oscillator and the
bath oscillators, respectively. The first term in H; couples the system to the
bath. This coupling leads to a frequency shift of our system, that is removed
with the second term in H;. To gain explicit results we consider from now on an
Ohmic heat bath. As we are not interested in the dynamics of the environment we

elimimate the bath and calculate the ezact reduced density operator of the svstem
at time ¢, i.e.

PR(’L‘fvyfst) = /d:ridyi‘](vayf7t‘xivyivo)pR(xisyi\O)- (14’\
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where J is calculated by the influence-functional method. Introducing the sum
and difference variables ¢ = 2 —y, r = 2(z + y) vields for J

u2(t,0) -1 2
J(as 75 e, 0) = 9(__,.1 exp [—h—{au(t)r? + [a12(t) + g (8)]riry + azz(t)rﬁ}]

X exp [%{[dl(t,O)ri it 0)rflgi — (i (. B)rs + L'L2(t,t)rf]qf}] .

a;; is given through

1 s ]
ai;(s) = 5/(; /c; ds1dsavi(t, s1)vj(t. s2) K (s1 — s2)

with the noise kernel

% d R
K(s) =/(; —_-I_imﬂ/u coth({)ll:BT)cos(us). (16)

The set {uq,u,} determines the solution of the equation of motion
i —vu+(a—bcoss)u =0 (1"

with the conditions u;(¢,0) = 1, uy(t.t) = 0. uy(¢,0) = 0. up(t.t) = 1 and
v12(t,8) = u12(t,s)exp(vs). To arrive at this form we assumed that the system
and environment were initially (¢ = 0) uncoupled and the bath was in equilibrium
at temperature T. Knowing the density matrix we are able to calculate expecta-
tion values of the variables. The mean values of space and coordinate follow the
trajectories of a damped classical parametric oscillator. Next we study the time
development of the variances U(t), V(t) and W (¢). The Ohmic damping leads to
a divergence in W, just as with a damped quantum oscillator’. We introduce an
abrupt high frequency cutoff v, of the bath frequencies v in the frequency integral
in (16) to remove this divergence. This is correct as long as we consider only
times that are large compared to v;!.The results are plotted in figs. 2. Fig.2a
shows m{QU/2k for increasing modulation amplitude |b|. The initial values of the
variances are like in section 2. For curves labeled (1), (2) and (3) b has values
that lead to decaying solutions of the damped Mathieu equation in eq.(17), i.e.
(z(t)) — 0 as t — oo. After a short time, U becomes a constant for curve labeled
(1), whereas for curves (2) and (3) U becomes a periodic function which oscillates
with the frequency 2. This frequency is not affected by the strength of the fric-
tion v. The amplitude of the oscillations is increasing with increasing modulation
strength {b|. For b in the unstable region the variances become unbounded also,
as can be seen in curve labeled (4). In fig.2b we start with a squeezed state and
compare it with the unsqueezed state. As an interesting result we find that the ef-
fect of initial squeezing relaxes on a fast time scale. This relaxation time depends
only weakly on temperature, but depends on the strength of Ohmic friction +.
We also like to point out here that the system dynamics z(¢) of the coupled
system in eq. (13) obeys an exact equation of motion. The Heisenberg operator
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Figure 2: Variance U = mQU/2h for various amplitudes of the parametric mod-
ulation and different squeezing parameters. v, =30. a =1. Q =2, v = 1. wi = a.
(a): 1Bl =101(1),0.1(2),1(3),2(4)and r =1, kgT/hwy = 3.

(b): r=1(3.4), 0.1 (1.2), kgT/hwo =1 (2,4), 20 (1.3) and |b] = 0.1

z(t) obeys - after elimination of the bath degrees of motion - air ezact Quantum
Langevin equation. which in terms of the initial time of preparation reads explicitly

mZ+m tﬂ/(t ~ s)z(s)ds + m({a — beoswt)z + m(t — to)z(to) = £(t) (13)
to
where m~(t) = T, ¢k coswat/maws; HE()E(0) + E(0)E(t)) = AR (t), with K(t)
given in eq. (16). The limit of Ohmic friction - without cutoff - is obtained from
(18) by setting y(t—to) = 2v6(t—ty). We note that (18) presents a suitable starting
point to investigate initial and long-time (aged) correlation function properties of
the damped parametric quantum oscillator®.
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