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ABSTRACT

‘We investigate cooperative effects of noise and periodic forcing in an optical
bistable system. It has been demonstrated in a recent experiment ! that noise
induced switching between low and high output intensity can be synchronized
via the stochastic resonance effect by a smail periodic modulation of the input
intensity. Here we present theoretical results for stochastic resonance in optical
bistable systems.

MODEL AND BASIC EQUATIONS

A model for optical bistability was introduced by Bonifacio and Lugiato 2.
For the amplitude y of the input light and the transmitted amplitude z, they
have derived the equation of motion

a':=y-:r—261+ - +\/_1+ -
where I' represents é-correlated, Gaussian distributed noise with zero mean. A
weak periodic modulation of the input intensity is taken into account by adding
a periodic term to y, i.e. y — y + Asin(Qt + ¢). For the probability density of
the transmitted amplitude, P(z,t), we find the Fokker-Planck equation

I'(t), (1)
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The spectral density of the transmitted amplitude has §-spikes at multiples
n of the driving frequency  with the corresponding weights w,, being a measure
for the output power at the frequency nfl. They can be expressed in terms of
the Fourier coefficients of the time periodic, asymptotic mean value *

(z(t))q Z |M|exp[m(ﬂt+v+,.,.)—i9] @)

n=-oo0

by
Wn = 27‘-|Mn|2' ) (4)
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AMPLIFICATION OF THE OPTICAL SIGNAL

The amplification of the periodic signal is given by the ratio of the trans-
mitted power at the driving frequency and the input power *

2
m@) =2k g

The numerically calculated results for 1, are shown in Figs.1 for various frequen-
cies by the solid lines. Fig.la corresponds to choosing the dc input intensity y
such that P(z,t) shows two peaks of nearly equal height in the limit D — 0 what
we call the "symmetric case”. Fig.lb corresponds to a "asymmetric case”, where
the peaks of the stationary probability have different probabilistic weights.
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Fig. 1: Spectral amplification n, at ¢ = 6, A = 10~ for y = 6.72584 (a) and
y = 6.8 (b). Curve 1 corresponds to 2 = 107!, curve 2 to 1072, curve 3 to
1072 and curve 4 to 10*. The dotted lines correspond to results within linear
response approximation (Egs. (6) - (8)).

In the symmetric case we observe stochastic resonance ® very much like in the
quartic double well potential, i.e. a peak in the amplification of the signal (mod-
ulation) as a function of the noise intensity when the sum of the mean sojourn
times in both stable states equals the period of the driving (these values of D
are indicated as vertical dashed lines in Figs.1).
In the asymmetric case, the peak of the amplification is suppressed, because
- in contrast to the symmetric case - the corresponding contribution (i.e. the
weight gr in Eq. (8)) of hopping motion to the response of the system disap-
pears exponentially for small noise. The remaining maximum is only the tail of
the amplification by synchronisation at large noise.

The numerical results are compared in Figs.l with those obtained within

linear response approximation ** (dotted lines). In this approximation we find
in terms of the response function R(t)

(z(t),, - (z),, = /_ Z R(t — ') Asin(Q¢t' + ¥)d# ~ /0 ¥ 2Py(z)dz,  (6)
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with the stationary solution Py (z) of the undriven system. The response function
R(t) is expressed via a fluctuation theorem by a correlation function K(t) of the
undriven system

d d
t) = —(z(t)h = —K(t
R(t) = 4 (z(0h(a(0))) = TK(2) (7
with A(z) = (—% + 2z + §x3). K (t) is approximated by a sum of exponentials
with the typical time scales of the system Ar and A, - stemming from hopping
and local motion in the potential wells respectively, i.e.

Kit)~ > gt (8)

1=1,2.T

The weights g; are determined by the correlation function K(#) and its deriva-
tives at t = 0.

GENERATION OF HIGHER HARMONICS

The generation of the n-th harmonic in the output due to the nonlinearities
is characterized by the ratio

| M2
Mn (Q) = 4—72— (9)
The second harmonic depends on the noise strength as shown for the symmetric
and asymmetric case in Figs.2. In the symmetric case (Fig.2a) a "dip” appears
which becomes sharper with decreasing frequencies. In the asymmetric case
(Fig.2b) we do not observe such a behaviour.

@ . ®

Fig. 2: Higher harmonic 7, parameters as in Figs.1.

For the third harmonic, n;. we find a smooth curve in the svmmetric case and a
dip in the asymmetric case.

We have confirmed the results for the higher harmonics within an adiabatic
approximation, valid for small driving frequencies.
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Fig. 3: Phase shifts, parameters as in Figs.1.

PHASE SHIFT OF THE OUTPUT SIGNAL

In Figs.3, the phase shifts of the first and second harmonic of the asymptotic
mean value (z(t)),, are shown for the symmetric (Figs.3a and 3c) and asymmetric
case (Figs.3b and 3d). The results within linear response theory are shown by
dotted lines. The phase shift in the symmetric case looks like in the quartic
model: The maximum results from the competition between internal motion
and hopping processes. In the asymmetric case the maximum is suppressed for
small frequencies because the hopping disappears at small noise strength.

At values of D, for which a dip in a higher harmonic appears, the correspon-
ing phase shift approaches a step function for small frequencies.
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