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Existence and Uniqueness of Maps
Into Affine Homogeneous Spaces.

J. H. ESCHENBURG - R. TRIBUZY (*)

SUMMARY - We extend the usual existence and uniqueness theorem for immer-
sions into spaces of constant curvature to smooth mappings into affine homo-
geneous spaces. We also obtain a result on reduction of codimension.

1. Statement of the results.

Let S be a smooth manifold with a connection D on its tangent bun-
dle T,S with parallel curvature and torsion tensors R and T. If S is sim-
ply connected and D is complete, such a space is precisely a reduc-
tive homogeneous space ,S = G/H with its canonical connection

(cf. [N], [K]). In this case, G can be chosen to be the group of affine dif-
feomorphisms ; these are diffeomorphisms g: S - S with g*D = D.

Let M be another smooth manifold and f: M - ,S a smooth mapping.
Then its differential gives a vectorbundle homomorphism F =
= df: TM - E where E is the pull back bundle of TS:

The curvature and torsion tensors of S give bumdle homomorphisms
T: and R: A2E --*End (E) (the endomorphisms of E) satisfy-
ing the following structure equations (cf. [GKM]):

(*) Indirizzo degli AA.: J.-H. ESCHENBURG: Institut fur Mathematik, Uni-
versitat Augsburg, Universitatsstr. 8, D-8900 Augsburg, Germany; R. TRIBUZY:
Universidade do Amazonas, Departamento de Matematica, ICE, 6900 Manaus,
AM., Brasil.
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for any sections V, W of TM and ~ of E, where D denotes the pull-back
connection on E. Abbreviating the left hand side of (1) by dF(V, W)
where d is the Cartan derivative of the E-valued 1-form F, and the left
hand side of (2) by R E (V, W) ~ where R E : End (E) is the cur-
vature tensor of the connection D on E, we can write these equations
shortly as

Since S has parallel torsion and curvature, the tensors R and T are
parallel with respect to the connection D on E. More generally, let E be
any vector bundle over M, equipped with a connection D. We say that
E has the algebraic structure of ,S if there exist parallel bundle hom07
morphisms T: A 2E--+E and R: ~12 E -~ E nd (E) and a linear isomor-
phism Ep ~ To8 for some fixed p E M, o E S, which preserve R and
T. Apparently, E = f* TS has the algebraic structure of S. We want to
prove the following.

THEOREM 1. Let S be a manifold with complete connection D w2cth
parallel torsion and curvature tensors. Let M be a simply connected
manifold and E a vector bundle with connection D over M having the
algebraic structure (R, T) of ,S. Let F: TM ~ E be a vector bundle ho-
momor~phism satisfying equations (1) and (2) above. Then there exists
a smooth map f : M -+ S and a parallel bundle isomorphism O: E -3-
- f * TS preserving T and R such that

If S is simply connected, then f is unique up to diffeomorphisms
of S.

THEOREM 2 (Reduction of codimension). Let S be as above and

f: M - S a smooth map such that the image of df lies in a parallel sub-
bundle E’ cf* TS which is invariant under T and R. Then there is a to-
tally geodesic subspace S’ c S with , f (M) c S’.

REMARKS. If S = R, then the conditions (1), (2) are reduced to
dF = 0. So Theorem 1 holds since = 0. If S is a Riemannian

space form of constant curvature with its Levi-Civita connection and if
F is injective and E is equipped with a parallel metric, then E can be
identified with TM (B i M where 1 M = and F is the embed-

ding of the first factor. Now (1) is equivalent to = 0 which means
that the second fundamental form is symmetric, and (2) contains pre-
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cisely the Gaul3, Codazzi and Ricci equations. So we receive the usual
existence and uniqueness theorems for maps into space forms.
In [EGT], a similar theorem for Kiihler space forms was proved which
is also covered by our result.

After finishing this work we learned that Theorem 1 was already
proved in 1978 by a different method ([W], p. 36); unfortunately, this
proof was never published in a Journal.

2. Proof of the theorems.

Let M be a manifold, E a vector bundle over M with connection D
and F: TM -~ E a bundle homomorphism. We need to generalize the
Cartan structure equations of the tangent bundle to this situation. Let
b = (b1, ... , bn ) be a local frame on some open subset U c M. Then there
are 1-forms 0 = (0j), on U (where i, j = 1, ..., n) such
that

where the last expression means wijbi. Then

where dDb = (dDb1, ..., dDbn) = (RE b1, ..., REbn).
Now let there be parallel homomorphisms and

R: A2 E -?- End (E). Using a fixed frame at some point p E M, we identi-
fy Ep with R" and get linear maps To : and Ro : 
- End c Gl (n, R) be group of linear automorphisms of Rpre-
serving To and Ro . The vector bundle E is associated to a principal
H-bundle as follows. For any m E M, a frame (b1, ... , bn) of Em can be
considered as a linear isomorphism b: with b(ei ) = bi . Let PE
be the bundle of (T, R) frames, i.e. those frames which map To onto T
and Ro onto R. Clearly, PE is a principal H-bundle, where the group H
acts from the right on PE. The advantage is that the coefficients of T
and R are the same for any b e PE:

where and rijkl are the coefficients of To and Ro .
Now let us assume equations (1) and (2). Choose a local (T, R)-
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frame, i.e. a local section b: Then

hence

Likewise,

Together with (3) and (4) we get the structure equations of Cartan
type

where and is the matrix i.e. 
= 2: ri,,) k1el.
Now recall that the forms 9 and oi on U are just the pull backs by

b: t/ 2013~ PE of global forms on PE which we also call 0 and w. Namely,
the forms 0 0 R’ and w E 0’(PE) @ l1. (where h c End (R’) is
the Lie algebra of H) are defined as follows. If b e PE and X E Tb PE,
then

where 7r: PE ~ M is the projection, and

where 7rv: TPE - VE is the vertical projection determined by the con-
nection ; here, VE c TPE is the vertical distribution (VE)b = Tb (bH).
Clearly, these forms on PE also satisfy (5).

Now let S be as above. Replacing (M, E, F) with (S, TS, Id), we get
also forms 0’, co’ on PTS satisfying equations (5) which are now the
usual Cartan structure equations of T,S. We will consider 0, w, 0’, co’ as
forms on the product PE x PTS by pulling back via the projections
prl, pr2 onto the two factors. Since both (0, w) and (0’, c~’) satisfy (5),
we get that e’i) and d(c~~ - lie in the ideal generated by
0’ - 0’’’’ i and m§ - co".; note that in any ring we have the identity
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Therefore the distribution

on PE x PTS is integrable.
Let L c PE x PTS be a maximal integral leaf of this distribution.

We have dim L = dim PE sin ce the number of equations determining L
is n +dim h = dim PTS. Moreover, L intersects the second factor

lbl x PTS everywhere transversally. Namely, if some vector (0,X’)
lies in TL, then 6’ (X’ ) = 0 and = 0, hence X’ = 0 since the forms
6’i, m’§ span T * PTS. Moreover, L is invariant under H acting diagonal-
ly on PE x PTS. Namely, if (b, b’) E L and « = e h, then (ba, 6 ’oc) E
e T(b, b,~ L because ba and b’a are vertical vectors (so 0 and 0’ vanish) and
m(ba) = a = Thus the map pL : _ L: L - PE is an H-equiv-
ariant local diffeomorphism.

Let us assume from now on that S is simply connected (which is no
restriction since we may always pass to the universal cover). Then
there is a group G which acts transitively on S by affine diffeomor-
phisms and also transitively on PTS (from the left) via differentials
(cf. [K], Thm. 1.17). Then also gL is an integral leaf for any g e G, where
we let G act only on the second factor of PE x PTS. This is because 0’
and c~’ are invariant under affine diffeomorphisms of S since their dif-
ferential preserves the horizontal and vertical distribution on PTS. (In
fact, if we identify PTS by the action with G/kernel, then 0’ and m’ are
the components of the Maurer-Cartan form with respect to the Ad(H)-
invariant decomposition of the Lie algebra g = p (B h.)

Now we claim that the mapping PL = pr1 L: L - PE is onto. Since
it is a local homeomorphism, its image is open. Since M is connected
and PL maps H-orbits diffeomorphically onto H-orbits, it is sufficient to
show that the image is closed. So let bk )k , o be a sequence in L such
that bk - b in PE. We will show that also b e pri (L). Since G acts tran-
sitively on PTS, there exists gk e G such that gk bk = bo . Then the maxi-
mal integral leaves contain the points bo ). So they converge to
the maximal integral leaf L’ through (b, bo ). Hence contains a

neighborhood of b in PE, and for big enough k, there exists b’ e PTS
with b’ ) E L ’ . Therefore L’ = gL where g E G is such that b ’ = gb’
and in particular, b E prl (L) since pri (L) = pri (gL).

It follows that PL is a covering map. If U is a neighborhood of some
(b, b’) E L where pL I U is a diffeomorphism, then is a dis-

joint union of copies g U of U, where g E G leaves L invariant. Since M is
simply connected, any element of the fundamental group 7r1 (PE) can be
represented by a closed curve in some fibre (H-orbit), and since PL
maps any H-orbit in L diffeomorphically onto an H-orbit in PE, it in-
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duces a surjective homomorphism of the fundamental groups. There-
fore, the covering map is actually a global diffeomorphism which
means that L is a graph over PE. So there exists a smooth H-equivari-
ant map Pf : PE -+ PTS with Graph (Pf ) = L, and by uniqueness, any
other integral leaf is the graph of g o Pf for some g E G. The fact that
Graph (Pf) is an integral leaf means

Since Pf maps fibres onto fibres, it is a bundle map, i.e. it deter-
mines a smooth mapping of the base spaces f : M -~ ,S such that the fol-
lowing diagram commutes:

Moreover, Pf defines a vector bundle isomorphism ~: E - f * T,S as fol-
lows. If ~ = I x’bi = bx E Em for some b = (b1, ... , bn) E (PE)m and x =
= (x 1, ... , eRn, we put

The map 0 is well defined, by the H-invariance of Pf, and it is clearly a
bundle isomorphism preserving T and R. Moreover, if ~(t) is a parallel
section of E along some curve in M, then ~(t) = b(t) x for some horizon-

tal curve b(t) in PE, i.e. 0. Since Pf* w’ = w, the curve
dt )

Pf(b(t)) in PTS is horizontal again, so 4l(I(t)) is also parallel. This shows
that 0 is parallel.

Now let v E Tm M and V E Tb PE any lift, i.e. x(b) = m and 
= v. Then df(v) Recall that by (5) for any b’ E PTS,
V’ E Tb, PTS, v’ = we have

Using the basis b’ = Pf(b) of to represent the vector v’ = df(v),
we get (omitting the base points)
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On the other hand, F(v) = F(dn(V)) = hence

Since Pf * (0’) = 0, we get df = 
It remains to show the uniqueness of f. So let f: M 2013&#x3E; S be any

smooth map with for some parallel bundle isomorphism
~:jE’2013&#x3E;/*T~ preserving T and R. Then we define a bundle map
Pf: PE’ -~ PTS covering f: M -~ by

where Ø(b) = (Ø(b1), ... , for b = (b1, ... , bn) E PE. As above, Pf
satisfies (9) and (10), and thus df = O o f implies that Pf* 0’ = e. More-
over, since 0 is parallel, Pf maps horozontal curves in PE onto horizon-
tal curves in PT,S, and therefore Pf*co’ = co. This shows that

Graph (Pf) is an integral leaf of the distribution D. But we have shown
that there is only one integral leaf up to the action of G, so f is uniquely
determined up to composition with 9 e G. This finishes the proof of The-
orem 1.

Now we prove Theorem 2. Fix p E M and let o = f(p). Then V’ : = Ep
is a linear subspace of V = ( f * TS)p = which is invariant under R
and T. We may assume that S is simply connected, hence an affine ho-
mogeneous space G/H. Then there is a totally geodesic homogeneous
subspace S’ = G’ /H’ of S through 0 with ToS’ = Ep (e.g. cf. the Proof
of Thm. I.17 in [K]; we {A e h; A(V’) c V~}, g_’ _ _h’ C V’), and
E’ has the algebraic structure of S’ . By Theorem 1, there exists a
smooth map f ’ : M 2013&#x3E; ,S ’ with f’(p) = 0 and df ’ _ ~’ o df for some paral-
lel (R, T ) preserving isomorphism ~’ : E’ -~ f ’ * TS’. But f ’ *TS’ is a

parallel subbundle of f ’ * T,S as well as E’, and their fibres agree at the
point p, so these subbundles are the same, and 0 = id since 0 is parallel
and 0 = id at the point p. So we see from the unicity part of Theorem 1
that f = f
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