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Abstract. In a spacetime fibred by spacelike hypersurfaces (called ‘space’) such that light
travels on geodesics in space, i.e. light geodesim have geodesic space projections, the space
geometry must be fixed for all times up to rescaling, and the time scale is spatially
independent.

                 

Let (M, g) be a Lorentzian (n  + 1)-manifold (n 2 2) which is diffeomorphic to I x .Z
where I is a real interval and an n-dimensional manifold, such that the tangent vector
field a/& of the factor I is timelike with respect to the Lorentzian metric g and
perpendicular to E,:= { t}  x C. The projection onto I will be called the time function t ,
and we consider the spacelike hypersurfaces Cc as the spatial universe at time t.

Theorem. Suppose that the projection to of any null geodesic in M is a geodesic
(up to parametrization) with respect to the metric h, on C induced by the embedding
C --t Ct, for any t E I .  Then g is a warped product metric

g = -f(t)’.dt2 + k ( t ) 2 . h
where h is some Riemannian metric on E.
Comment. The converse statement is easy and well known; e.g. cf [l]. Our result
improves a theorem of Tzanakis [2] who assumes that all causal geodesics of M project
onto h,-geodesics of C. The motivation for this improvement was the question whether
light travels on geodesics in space. So our theorem says: this is true only if the space
geometry is fixed for all time up to scaling and the timescale is spatially independent.

Proof: In the following, geodesics are always understood to have arbitrary parametriz-
ations.

Step 1 .  Let y: J + C be an !+geodesic in Z for some t E I .  We want to show that the
surface f: J x I -+ M ,  f ( s ,  t) = (t ,  y(s))  is totally geodesic. Let S be the spacelike unit
vector field in the s direction and T the timelike unit vector field in the t direction along
5 Then Z = T + S is a null vector, and the null geodesic p in M starting at f(s, t )  with
initial vector Z(s, t) by assumption projects onto some h,-geodesics on C which (by
unicity) must agree with y up to parametrization. This has two consequences: (1) y is
higeodesic for any t E I ,  (2) fi stays forever in the surface f and Z ( p ( u ) )  is tangent to
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p for any U. The same is true for the other null vector field LV = T - S: its integral curves
are null geodesics which lie on f and project onto p with reversed orientation. Since 2
and W are tangent vector fields of geodesics in M ,

VzZ = a . Z  V w W = b . W
for some real functions a and b, where V denotes the covariant derivative on M.
Moreover, since s + (t. ~(s)) is a geodesic in Ct, we have

0,s = c . S  + d . T

since T(s, t) is the unit normal vector of C, at f(s, t). Therefore the second fundamental
form a of the surface f (recall the definition a(U,  V )  = normal component of Vu V for
any tangent vector fields U, V of f) satisfies

cC(Z,Z) = a( n: W )  = a(S, S )  = 0
which shows that a = 0; hence f is totally geodesic

Step 2.  Let T be the unit tangent field of the factor I .

Claim. The integral curves of Tare geodesics. Fix some x E X and consider two different
h,-geodesics 8, y in C starting at x. The corresponding surfaces f(s, I )  = (f, /3(s)) and
g(s, t )  = (r, y(s))  are totally geodesic and intersect precisely in the curve t -+ (t, x). This
must be a geodesic since the intersection of totally geodesic submanifolds is totally
geodesic.

Step 3, Let T' be the gradient of the function f, i.e. g(T ' ,  X )  = d,t for any vector field
X. Then T' is perpendicular to the level hypersurfaces Zt and therefore T' = u . T  for
some real function U .

Claim. U = const along each &. The integral curves of T' and T agree up to
parametrization, hence they are geodesics by step 2 and therefore.

V,T' = e . T .

dxg(T ' ,  T') = 2g(Vx T', T') = &(V, T ,  X )  = 0

So for any tangent vector field X of Cr we have

(note that VT'  is self adjoint with respect to g since T' is a gradient). Hence
U = Ig(T' ,  T')I1'* is constant along Cz. Rescaling the time function r we may assume
from now on that ir. is a unit vector, so T' = T.

Step 4. Now we have to compute how h, depends on t. Let X be a vector field on Z.
We consider X also as a vector field (0, X )  on M = I x C which is everywhere tangent
to C,. Then

Recall that Tis  a unit normal vector on Z,, so V T  is the second fundamental tensor of
E,. By step 1, the vectors X and Tat  any point (t ,  x) span the tangent plane of a totally
geodesic surface. Therefore VXTc Span{X, T}, but V x T l  T, so VxT is a multiple of X
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for any X .  Hence V T  = H ' l d  for some real function H ,  i.e. C, is an umbilic hypersurface.
so

d- h, = H , h ,
dt

Step 5 .  It remains to show that H does not depend on the space variable. We proceed
as in the case of umbilic hypersurfaces in Euclidean space. Let A = VT. For tangent
vectors X, Y of Z, we have the Codazzi equation

R ( X ,  Y ) T =  (V,yA)Y - @yA)X (a,H)' Y - ( a y H ) . X .
where R is the curvature tensor of g. Consequently,

(a ,H) .g (X ,  X )  = ( a x H ) ' d Y ,  X )  + g(R(X ,  Y)T, X) = 0
for X 1 Y since R(T, X ) X  E Span{T, X }  (recall that T, X span the tangent plane of a
totally geodesic surface) and therefore

g ( R ( X ,  Y ) T , X )  = g(R(T,  X)X, Y )  = 0.

So we have shown that 8,H = 0 for any tangent vector Y of E,, and therefore H is
constant along Zz, i.e. H = H ( t ) .  Integrating (*) we get g = -dtz + k(t) .h  where h = h,
and k is the solution of k' = H . k ,  k(0)  = 1.
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