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Abstract

Signal Transition Graphs (STGs) are a version of Petri nets for the specifi-
cation of asynchronous circuit behaviour. It has been suggested to decompose
such a specification as a first step; this leads to a modular implementation,
which is often more efficient, and it can support circuit synthesis by possibly
avoiding state explosion or allowing the use of library elements.

We present a decomposition algorithm and formally prove it correct, where
an interesting aspect is the use of a bisimulation with angelic nondeterminism.
In contrast to similar approaches in the literature, our algorithm is very gen-
erally applicable. We show that transition contraction — the main operation in
the algorithm — can be applied with fewer restrictions than known so far. We
also prove that deletion of redundant places can be used in the algorithm, which
turns out to be very useful in examples.

keywords: concurrent systems, Petri nets, asynchronous circuits, Signal Tran-
sition Graphs, decomposition, modular implementation, state explosion

1 Introduction

Signal Transition Graphs (STGs), see e.g. [Wen'77, [RY 85l [Chu86], are a version of Petri
nets for the specification of asynchronous circuit behaviour, also supported by the
tools petrify (e.g. [CKK*97]) and CASCADE [BEW00]. The transitions are labelled
with input or output signals; the latter are thought to be controlled by the circuit,
the former by its environment. In such a setting, I,0-automata [Lyn96] require that
in each state each input can occur, and the same holds for the language theoretic
framework of [Dil88]; in STGs though, the occurrence of an input signal in some state
might not be specified, which formulates the assumption on the environment not to
produce this signal.

Being Petri nets, STGs allow a causality-based specification style, and they give
a compact representation of the desired behaviour since they represent concurrency

*This work was partially supported by the DFG-project ‘STG-Dekomposition’ Vo615/7-1 /
Wo814/1-1.

1 Usually, the labels in STGs are not signals, but rising and falling edges of signals, which for each
signal are required to alternate; this is of minor importance in this paper, so we abstract from this
distinction.



explicitly. As a first step in the synthesis of a circuit corresponding to a given STG N,
one usually constructs the reachability graph, where one might encounter the state
explosion problem; i.e. the number r of reachable states (markings) might be too large
to be handled. To avoid this, one could try to decompose the STG into components
C; their reachability graphs can be much smaller since r might be the product of their
sizes. Also, a number of smaller circuits is often much easier to synthesize than one
large one, and often their parallel composition gives a more efficient implementation
than one large undivided circuit. Decomposition is also useful if it allows to split off
a library element; in particular for arbiters, it is valuable to avoid the complicated
synthesis of such a circuit and use a known one stored in a library.

[Chu87al [Chu87bl [KKT93] suggest decomposition methods for STGs, but these
approaches can only deal with very restricted net classes. [Chu87a|] only decomposes
live and safe free choice nets, which cannot model controlled choices or arbitration,
and makes further restrictions; e.g. each transition label is allowed only once (which
makes the STG deterministic in the sense of language theory), and conflicts can only
occur between input signals. The conference version [Chu87b| restricts attention even
further to marked graphs, which have no conflicts at all.

The method in [Chu87al, [Chu87h] constructs for each output signal s a component
C; that generates this signal; C; has as inputs all signals that — according to the net
structure — may directly cause s. The component is obtained from the STG N by
contracting all transitions belonging to the signals that are neither input nor output
signals for this component. This contraction is required to be tr-preserving (as defined
in [Chu87al), and it might be necessary to add further signals to the inputs to ensure
this.

In [Chu87al [Chu87b], it is stated that the parallel composition of the C; — i.e. the
(modular) implementation — has the same language as N; in the restricted setting of
[Chu87al, [Chu87b], this is the same as having isomorphic reachability graphs. Clearly,
this isomorphism is very strict and not a necessary requirement for an implementation
to be correct. On the other hand, language equivalence is too weak in general, since it
ignores which choices are possible during a run, and in particular it ignores deadlocks;
it seems that in general some form of bisimilarity would be more suitable. The formal
proofs for the correctness statement in [Chu87al [Chu87b] are very involved.

A similar decomposition method is described in [KKT93|; only marked graphs with
only output signals are considered and the treatment is quite informal. In contrast to
[Chu87al], a component can generate several output signals and different components
can generate the same signal; this gives more flexibility, but the latter feature neces-
sitates additional components for collecting occurrences of the same signal generated
by different components.

Further, rather informal, considerations of this decomposition method can be
found in [BW93, [Wol97]. We finally mention [KGJ96] where fork/join machines are
decomposed, which are a restricted form of free choice STGs. In contrast to our set-
ting, the decomposition is already uniquely traced out by the given fork/join structure;
correctness only holds under fundamental mode conditions and is not formally proved.

In this paper, we have a fresh look at the decomposition problem. In particular, we
will suggest a method where there are no restrictions on the graph-theoretic structure
of the given STG N; to some degree we will even deal with arc weights greater 1 and



unsafe nets, which is a bit unusual for STGs, but can be useful as we will demonstrate
in an example. There are restrictions on the labelling, e.g. conflicts between input
and output signals are not allowed; an STG violating this restriction cannot be turned
into a hazard-free asynchronous circuit. STGs are required to be deterministic; but
very importantly, we allow several transitions to have the same label.

Our method is based on [Chu87al [Chu87hb], but components may generate several
output signals. We start from a partition of the output signals and construct for
each class of the partition a component C;; the component has as inputs all signals
that — according to the net structure — may directly cause one of its outputs. Cj is
obtained from NN by contracting stepwise all transitions belonging to the signals that
are neither input nor output signals for this component.

We call the contraction of a transition ¢ secure, if no other transition takes a token
from the preset of ¢ or if no other transition puts a token onto the postset of . This
is a part of being tr-preserving in the sense of [Chu87al, [Chu87h], but in contrast to
tr-preservation in general, it is easy to check from the local net structure. We suggest
to apply mainly secure contractions. Also in our approach, it might be necessary to
add further input signals to a component during the stepwise contraction process; we
give local graph-theoretic, i.e. easy, conditions when this is the case.

If we regard transition ¢ as internal, i.e. as labelled with the empty word A, then
[Chu87al, [Chu87b] shows that the tr-preserving contraction of ¢ preserves the language.
This is actually true for all secure contractions, as e.g. already indicated in [And83].
After presenting basic definitions of STGs in Section 2, we have a closer look at
contractions in Section 3, also considering bisimilarity and non-secure contractions.

In Section 4, we describe our method in detail. We give a flexible description which
allows not only secure contractions to be used but any operation that is admissible in
some sense. A benefit of this approach is that e.g. also non-secure contractions turn
out to be admissible under certain conditions, e.g. if each transition label occurs only
once as in [Chu87al [Chu87b]. This of course depends on our correctness criterion,
which has the following important features.

e We ensure that the composition of the C; is free of what Ebergen calls com-
putation interference [Ebe92], where one component produces an output that
is an unspecified input for another; it seems that this problem is ignored in
[Chu87al, [Chu87h].

e We only consider behaviour where the environment behaves as specified by the
original STG N, i.e. the composition of the components might specify additional
inputs, but we ignore these and any subsequent behaviour since they cannot
occur if the implementation runs in an appropriate environment. The same is
done e.g. in [Dil88, [Ebe92], so both these features are not new — but new in the
context of STG decomposition.

e We achieve both these features with a bisimulation-like correctness definition.
Since we restrict ourselves in this paper to the case that N and the C; are de-
terministic, bisimilarity actually coincides with language equivalence; but there
are several reasons for choosing a bisimulation style: First, for future extensions
to nondeterministic STGs, the additional distinctive power of bisimulation will



be important. Second, although one could argue that the explicit treatment
of markings in the definition of a bisimulation is not as elegant as the defini-
tion of the language, markings have to be treated anyway in order to deal with
computation interference. In fact, the treatment of markings and the explicit
requirements how input and output signals of one system are matched by the
other system, should better clarify the notion of correctness — and this is the
third reason. Fourth, the chosen style will be technically useful in our correctness
proof.

Interestingly, our proof technique is based on a kind of angelic bisimulation,
where internal transition occurrences only serve to find a matching behaviour,
but are not required to be matched on their own.

The main contribution of this paper is that — transferring the first and second
of these features to the area of STG decomposition — we obtain a more generally
applicable decomposition method with a much easier correctness proof compared to
[Chu87al, [Chu87b]. At the end of Section 4, we additionally show that also deletion
of redundant places and — under certain circumstances — non-secure contractions are
admissible in our approach. We present two examples for our method in Section 5;
further examples as well as a supporting tool are in preparation. Further research
topics are discussed in the conclusion in Section 6.

2 Basic Notions of Signal Transition Graphs

In this section, we introduce the kind of Petri nets we study in this paper, some
standard behaviour notions, and the operation of parallel composition. For general
information on ordinary Petri nets, the reader is referred to e.g. [Pet81, Rei85]. A
Signal Transition Graph or STG is a net that models the desired behaviour of an
asynchronous circuit. Its transitions are labelled with signals from some alphabet X
or with the empty word A, and we distinguish between input and output signals. A
transition labelled with A represents an internal, unobservable signal, which can be
an internal signal between components of a circuit. In this paper, we use A-labelled
transitions only in intermediate phases of our algorithm.

Thus, an STG N = (P,T,W,l, My, In, Out) is a labelled net consisting of finite
disjoint sets P of places and T of transitions, the arc weight W : PxTUT x P — IN,,
the labellingl : T — InU OutU{\}, the initial marking My : P — IN and the disjoint
sets In C ¥ and Out C X of input and output signals; INy denotes the natural numbers
including 0. We usually use a, b, ¢ for input and =, y, z for output signals; if [(¢) € In
(I(t) € Out resp.) then ¢ is an input (an output resp.) transition, drawn as a black
(a white resp.) box; if [(¢) = A, then ¢ is an internal transition, drawn as a line or a
box with two lines in it. When we introduce an STG N or N; etc., then we assume
that implicitly this introduces its components P, T', W, ... or Py, T}, ... etc.

We say that there is an arc from z € PUT toy € PUT if W(xz,y) > 0. For
each x € PUT, the preset of z is *z = {y | W(y,z) > 0} and the postset of x is
z* = {y | W(x,y) > 0}. If x € *yNy®, then = and y form a loop. A marking is a
function P — IN, giving for each place a number of tokens. We now define the basic
firing rule.



e A transition ¢ is enabled under a marking M, denoted by M][t), if W (.,t) < M.

If M[t) and M" = M + W (t,.) — W(.,t), then we denote this by M|[t)M' and
say that ¢ can occur or fire under M yielding the follower marking M.

e This definition of enabling and occurrence can be extended to sequences as
usual: a finite sequence w € T* of transitions is enabled under a marking M,
denoted by M[w), and yields the follower marking M' when occurring, denoted
by M{w)M', if w = X and M = M' or w = w't, M[w'YM" and M"[t)M' for
some marking M" and transition ¢. If w is enabled under the initial marking,
then it is called a firing sequence.

e We can extend the labelling to sequences of transitions as usual, i.e. [(¢; ...t,) =
[(t1)...l(ty); note that internal signals are automatically deleted in this image
of a sequence. With this, we lift the enabledness and firing definitions to the
level of signals: a sequence v of signals from Y is enabled under a marking
M, denoted by Mf[uv)), if there is some transition sequence w with M[w) and
[(w) = v; M[v)yM' is defined analogously. If M = My, then v is called a trace.
The language L(N) is the set of all traces. We call two STGs language equivalent
if they have the same traces.

e A marking M is called reachable if My[w)M for some w € T*. The STG is
k-bounded if M (p) < k for all places p and reachable markings M; it is safe if it
is 1-bounded and bounded if it is k-bounded for some k.

Often, STGs are assumed to be safe and to have only arcs with weight 1. In the
first place, we are interested in such STGs; but we also deal with bounded STGs with
larger arc weights, in particular since they can turn up in our decomposition algorithm.
Note that there is no additional problem to synthesise a circuit from such an STG if
the reachability graph is used as an intermediate construction [VYCLAM94l [Wol97].

The idea of input and output signals is that only the latter are under the control of
the circuit modelled by an STG. The STG requires that certain outputs are produced
provided certain inputs have occurred, namely those outputs that are enabled under
the marking reached by the signal occurrences so far. At the same time, the STG
describes assumptions about the environment that controls the input signals: if some
input signal is not enabled, the environment is supposed not to produce this input at
this stage; if it does, the specified system may show arbitrary behaviour, and it might
even malfunction. Inputs and outputs will become really important in Section 4]

In this paper, we deal with specifications that completely specify the desired be-
haviour in the sense of determinism (except for intermediate stages in our decom-
position algorithm): an STG is deterministic if it does not have internal transitions
and if for each of its reachable markings and each signal s, there is at most one s-
labelled transition enabled under the marking. It is useful to distinguish two forms
how determinism can be violated.

e Two different transitions t; and t, are enabled concurrently under a marking M
if W(.,t1)+W(.,t2) < M, ie. if there are enough tokens for both transitions
together. If both transitions are labelled with the same signal s € ¥, then s is



enabled auto-concurrently under M. An STG is without auto-concurrency, if no
signal is enabled auto-concurrently under any reachable marking.

e Two different transitions ¢; and ¢, are in conflict under a marking M if they are
not enabled concurrently under M, but M[t;) and M[ty). If both transitions
are labelled with the same signal s € X, then s is in auto-conflict under M and
the STG has a dynamic auto-conflict.

e Two different transitions ¢; and t, — and also the signals labelling them — are
in structural conflict if *t; N *ty # (). If both transitions are labelled with the
same signal s € X, then s is in structural auto-conflict and the STG has such
a conflict. If ¢; is an input (or a A-labelled) and ¢, an output transition, then
they form a structural input/output conflict (or a structural \/output conflict)
and the STG has such a conflict.

Clearly, an STG without internal transitions is deterministic if and only if it is
without auto-concurrency and without dynamic auto-conflict; the latter is ensured if
there are no structural auto-conflicts. Note that internal transitions enabled concur-
rently or being in conflict do not introduce auto-concurrency or -conflict.

Simulations are a well-known important device for proving language inclusion or
equivalence. A simulation from Ny to Nj is a relation S between markings of N; and
Ny such that (My,, My,) € S and for all (M, M,) € S and M, [t) M| there is some
M} with M,[ly(t))) M, and (M7, M}) € S. If such a simulation exists, then Ny can go
on simulating all signals of N; forever.

Theorem 2.1 If there exists a simulation from Ny to Ny, then L(Ny) C L(N).
Proof: easy induction. O

Often, nets are considered to have the same behaviour if they are language equiv-
alent. But just as often this is not enough: consider the STGs in Figure [I, which
all have the language {\, send, send receive}; they model different channels for the
communication of one message: the STG on the right can deadlock without the oc-
currence of any visible signal by firing the A-transition, i.e. the channel can refuse
to accept a message; the middle one can deadlock after send, i.e. it just forgets the
message it has accepted in the send-action; the STG on the left will stop working
only after the message was sent and received. This — clearly important — difference is
taken into account by the more detailed behaviour equivalence bisimilarity.

A relation B is a bisimulation between N; and N if it is a simulation from N; to
N, and B! is a simulation from N, to N;. If such a bisimulation exists, we call the
STGs bisimilar; intuitively, the STGs can work side by side such that in each stage
each STG can simulate the signals of the other. This is more than just requiring that
there is a simulation from N; to Ny and one from N, to N;: the latter is true for the
STGs in Figure [[ although they are not bisimilar. For deterministic STGs, language
equivalence and bisimulation coincide.

In the following definition of parallel composition ||, we will have to consider the
distinction between input and output signals. The idea of parallel composition is



send receive send receive send receive

send A

Figure 1

that the composed systems run in parallel synchronizing on common signals. Since a
system controls its outputs, we cannot allow a signal to be an output of more than
one component; input signals, on the other hand, can be shared. An output signal
of one component can be an input of one or several others, and in any case it is an
output of the composition. A composition can also be ill-defined due to what e.g.
Ebergen [Ebe92] calls computation interference; this is a semantic problem, and we
will not consider it here, but later in the definition of correctness.

The parallel composition of STGs N; and N is defined if Out; N Outy = (). Then,
let A = (Iny U Outy) N (Iny U Outs) be the set of common signals. In the parallel
composition N = N || Ny, each s-labelled transition ¢; of N; is combined with each s-
labelled transition t, from N5 if s € A. In the formal definition of parallel composition,
x is used as a dummy element, which is formally combined e.g. with those transitions
that do not have their label in the synchronization set A. (We assume that * is not
a transition or a place of any net.) Thus, N is defined by

P = PIX{*}U{*}XPQ
T — {(tl,tQ) | tl € TI,tQ € TQ,ll(tl) — lg(tg) € A}
U{(tl,*) | tl € Tl,ll(tl) ¢ A}
U{(*,tg) | t2 € T2,l2(t2) ¢ A}
Wipi, t1) if pre P, t1 €Ty
W{((p1,p2), (t1,t2)) = { or
Wa(pa, ta) if pa € Py, ty €T
Wi(ty,py) if pp€ P, 1 €Th

W ((t1,t2), (p1,p2)) = { or
W2(t27p2) if P2 € PQ, tg [ T2

[ L) ifheT
I((t1,t2)) = { lo(ty) ifty € T
MN1 (pl) if p1 € Pl

My = My,UMy,, i.e. My((p1,p2)) :{ My, (p) ifps € Py
2

In = (Iny U Ing) — (Outy U Outy)
Out = QOuty U Out,

Clearly, one can consider the place set of the composition as the disjoint union of
the place sets of the components; therefore, we can consider markings of the compo-
sition (regarded as multisets) as the disjoint union of markings of the components;
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the latter makes clear what we mean by the restriction M| p, of a marking M of the
composition.

We will denote a marking M;UM, of the composition also by (M, Ms). By defini-
tion of ||, the firing (My, My)[(t1,t2)) (M, M) of N corresponds to the firings M;[t;) M!
in N;, © = 1,2; here, the firing of x means that the empty transition sequence fires.
Therefore, all reachable markings of N have the form (M;, M), where M; is a reach-
able marking of N;, 1 =1, 2.

If the components do not have internal transitions, then also their composition has
none. To see that IV is deterministic if N; and N, are, consider different transitions
(t1,t2) and (), %)) with the same label that are enabled under the reachable marking
(M, My). The transitions differ in at least one component, say the first, and since it
cannot be the case that ¢; is a transition while ¢] = % (then we would have [((t1,t3)) €
Iny U Outy but [((¢),t5)) & Iny U Outy), t; and ¢} are different transitions with the
same label enabled under the reachable marking M, which contradicts that Ny is
deterministic. But note that /N might have structural auto-conflicts even if none of
the N; has.

It should be clear that, up to isomorphism, composition is associative and com-
mutative. Therefore, we can define the parallel composition of a family (or collection)
(Cy)ier of STGs as ||;er Cy, provided that no signal is an output signal of more than one
of the C;. We will also denote the markings of such a composition by (M, ..., M,) if
M; is a marking of C; for i € I = {1,...,n}.

3 Transition Contraction

We now introduce transition contraction, which will be most important in our decom-
position procedure.

Definition 3.1 Let N be an STG and t € T with W (., ), W (t,.) € {0,1}, *tnt* =0
and [(t) = A\. We define the t-contraction N of N by

= {(p,*x) |lpeP—(tut’)}
U {(p,p) Ipectp et}
T = T-{t}
) = Wi(p,t1) +W(p', t)
(t1, (p,p") = W(t,p) +W(t,p')
Z _
)

~

U7
= Mny(p) + My(p')
n=1In Out = Out

In this definition, we assume W (x,t1) = W (t1,x) = My(x) = 0. We say that the
markings M of N and M of N satisfy the marking equality if for all (p,p’) € P

M((p,p")) = M(p) + M(p").



The first requirement about the arc weights of ¢ is presumably not so essential
for our results, compare [And83], hence it is more a convenience. It is motivated
by the usual, though not necessary, assumption that STGs are safe and have no
arc weights greater 1. Note that a contraction might destroy these properties such
that a subsequent contraction of a A-transition is not possible. For the moment,
we only remark that comparable approaches would not even allow such ‘destructive’
contractions; we will consider generalizations in the future. The second requirement
about the absence of loops seems difficult to avoid.

a b
13% |14] | 15 N
t-contraction
S c v23 y24 25 ©
d

t-contraction 1,3 =
kil N
b

a
1,2
cCEmmm —X

(b)

Figure 2

Figure 2 (a) shows a part of a net and the result when the internal transition
is contracted. In many cases, the preset or the postset of the contracted transition
has only one element, and then the result of the contraction looks easier as e.g. in
Figure 2] (b).

We make the following easy observation:

Lemma 3.2 If t € Ty satisfies the requirements of Definition [31 and Ny || Ny is
defined, then (t, %) satisfies the requirements of[31in Ny || Ny and Ny || No = Ny || N
(up to isomorphism), i.e. contraction and parallel composition commute.

For the rest of this section, we fix an STG N with a transition ¢ satisfying the
requirements of Definition B:Bmd denote its ¢-contraction by N. Furthermore, we
define the relation B as {(M, M) | M and M satisfy the marking equality }.
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The first theorem will show that contraction preserves behaviour in a weak sense;
then, we will show that under additional assumptions, it preserves behaviour in a
stronger sense. We begin with a lemma.

Lemma 3.3 Let M and M be markings of N and N satisfying the marking equality.
1. M[t)M" implies M((p,p')) = M'(p) + M'(p').

2. If M[t,))M' for t; # t, then M[t,)M’, and M' and M’ satisfy the marking
equality.

3. M[v)yM; implies M[v)YM, such that also M, and M, satisfy the marking e-
quality.

Proof:

1. t removes a token from p and adds a token to p’, hence M (p)+ M(p') = M'(p) +
M'(p'). This argument fails in general if *t N ¢* # .

2. W(lp,p')st1) = Wip,th) + W', t1) < M(p) + M(p') = M((p,p')); hence,
M]t;)M' for some M'.
M'((p,p') = M((p,p') =W ((p, p'), t1)+ W (t1, (p, p')); according to the marking
equality and the definition of W, the latter is M (p)—W (p, t1)+W (t1, p)+M (p')—
W' tr) +W(t,p') = M'(p) + M'(p').

3. Apply the first two parts inductively to show that M[w)M; implies M[w') M,
such that also M; and M, satisfy the marking equality, where w' is w after
deleting all occurrences of ¢; then we are done, since [(t) = A.

Theorem 3.4 B is a simulation from N to N; in particular, L(N) C L(N).

Proof: This follows from the last part of Lemma [3.3], since the initial markings satisfy
the marking equality. 0

The next two results show that under additional assumption the ¢-contraction is
bisimilar or at least language-equivalent.

Theorem 3.5 Assume that (*t)* C {t}. Then:

1. B is a bisimulation from N to N.

2. If ty and ty with t; # ty are concurrently enabled under a reachable marking
M of N, then there is a reachable marking M' of N that satisfies the marking
equality with M and also enables t; and ty concurrently.

3. The contraction preserves boundedness and freedom from auto-concurrency.

10



Proof: First observe that the third part follows from the other two, hence we con-
centrate on these. In particular, each reachable marking of N satisfies the marking
equality with some reachable marking of N: hence, if N is k-bounded, then N is
2k-bounded.

If °t = 0, then P = P — t* and the marking M satisfying the marking equality
with some marking M of N is given by M = M|%. Since ¢ can put arbitrarily many
tokens onto ¢°, both claims are quite easy to see; hence, let *t # ().

B is a simulation by Lemma 3.3, hence we only have to show that B! is a sim-
ulation, too. Let (M, M) € B and M|t;)M,. Firing ¢ under M as often as possible
gives a marking M’ that still satisfies the marking equality with M by Lemma
and M'(py) = 0 for some py € *t. We check the places p € P to see that M’ enables
t12

pEgtut: Wip,t)) =W((p,*),t1) < M((p,*)) = M'(p)

p € °t: W (p,t:) = 0 by assumption

pet  Wip,t))=Wipo,tr) + Wip,t1) = W((po,p), t1) < M((po,p))
:M'( o) + M'(p) = M'(p)

Now we have M'[t;) M| for some M| and (M, M;) € B by Lemma B3l Since a
sequence of t’s followed by ¢; has the same label as just ¢;, we have shown the first
part.

For the second part, one finds M’ as above, and also the check that M’ enables ¢,
and t, concurrently is very similar; e.g. for p g tute, we have:
W(pa tl) + W(p7 t2) = W((pa *)7 tl) + W((pa *)7 t2) S M((pa *)) = M,(p) .

Theorem 3.6 Assume that *(t*) = {t}; in particular, t* # 0. Further, assume that
dpo € t* 1 My(po) = 0; then:

1. {(M,M) e B '|3q €t*: M(q) =0} is a simulation from N to N; N and
N are language equivalent.

2. If ty and ty with t; # ty are concurrently enabled under a reachable marking
M of N, then there is a reachable marking M' of N that satisfies the marking
equality with M and also enables t; and ty concurrently.

3. The contraction preserves boundedness and freedom from auto-concurrency.

Proof: First observe that the third part follows from the other two, hence we con-
centrate on these. In particular, each reachable marking of N satisfies the marking
equality with some reachable marking of N; hence, if N is k-bounded, then N is
2k-bounded.

To show the first part, observe that the initial markings are related by hypothesis.
Now assume (M, M) is in the given relation, gy € t* with M(qy) = 0, and M[t;) M.

We choose p; € t* such that m = W(py,t;) — M(p;) is maximal; due to gy, m
is not negative. We check that t can fire m times under M: for all p € °t, we
have M(p) + M(p1) = M((p,p1)) > W((p,p1),t1) = W(p,t1) + W(p1,t1) , and thus
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M (p) > W (py,t1) —M(p1) +W (p,t1) > m. Firing ¢t under M m times gives a marking
M', which satisfies the marking equivality with M by Lemma 33l By choice of py,
we have: (x) M'(p1) = W(py,t1) and M'(p) > W (p, ;) for all p € ¢°.

We check that t; is enabled under M’ by considering all places p:

p & tute: W(p(, t)1) =W((p,*),t1) < M((p,*)) = M'(p)

p €t see (

pEt: W(p,t1) + W(pr, t1) = W((p,p1), t1) < M((p,p1)) = M'(p) + M'(p1)
= M'(p) + W(p1,t1) by (x), hence W(p,t;) < M'(p)

Now we have M'[t;) M| for some M. Since W (t1,p1) = 0 by hypothesis, we have
M (p1) = 0 by (x). Therefore (M, M]) is in the given relation by Lemma B3l As
above, since a sequence of t’s followed by ¢; has the same label as just ¢;, we have
shown the first claim.

Language equivalence follows since, together with Theorem B.4] we have simula-
tions in both directions.

The second part can be shown in a similar way. If M is reachable, it is related to
some reachable M by the simulation of the first part; let gy € t* with M (gy) = 0.

We construct M’ as above and check that M’ enables t; and ¢ concurrently as
above by adding in the above argument to every atomic term containing ¢; an analo-
gous term containing to. E.g. we choose p; € t* such that m = W (py,t1)+W(py, t2) —
M (p;) is maximal; due to gg, m is not negative. O

If the preconditions of Definition 3.1l and Theorem 3.5 or B.6] are satisfied, then we
call the contraction of ¢ secure.

4 Decomposing a Signal Transition Graph

For this section, we assume that we are given a fixed STG N as a specification of some
desired behaviour. Our aim is to decompose it into a collection of components (C;);cr
that together implement the specified behaviour; in particular, this should help to
avoid the state explosion problem, and therefore we have to avoid the complete state
exploration for V.

In particular in the area of circuit design, it seems most often to be the case that, if
an in- or output is specified, then its effects are specified without any choices; therefore,
we assume that N is deterministic. The specifier is responsible for guaranteeing
determinism, i.e. that N has no internal transitions and is without auto-concurrency
and without dynamic auto-conflicts; in many cases, the latter two requirements can
be proven by place invariants or N might even be free of structural auto-conflicts,
such that determinism can be checked without state exploration. In this paper, we
will concentrate on the construction of components that are also deterministic.

We further assume that N is free of input/output conflicts; these are very hard
to implement, since the input, which is under the control of the environment, might
occur at roughly the same time as the output, which is under the control of the system,
and can therefore not prevent the output as specified; technically, this may even lead
to malfunction.
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In applications, N will be bounded and most often even safe; but our results also
hold in the general case.

In the first subsection, we define when a collection of components is a correct
implementation; in the second, we describe our decomposition algorithm, which uses
what we call admissible operations. In the third subsection, we prove that it indeed
produces correct components, and in the fourth, we show that certain contractions
and place deletions are admissible.

4.1 Correctness definition

Components (C;);e; are correct when their parallel composition ‘somehow’ matches
the behaviour prescribed by the STG N; for this, their composition must of course
be defined according to the definition in Section 2l but it must also be well-defined
in the sense of being free of computation interference, see [Ebe92]. To compare the
behaviour of N and ||;e; Cj;, one could require language equivalence, as Chu does
in [Chu87al [Chu87b|, but this is actually too restrictive; one could also take a more
liberal refinement notion that is still language based, like Dill does in [Dil8§]. Our
idea of correctness is very close to the notion of [Dil88, [Ebe92], but we will define
correctness in a bisimulation style.

We have discussed this choice in the introduction; recall that, in particular, the
chosen style will be technically useful in our correctness proof. We now give the formal
definition and comment on it afterwards.

Definition 4.1 A collection of deterministic components (C;);cr is a correct decom-
position or a correct implementation of a deterministic STG N, if the parallel com-
position C' of the C} is defined, Inc C Iny, Oute C Outy and there is a relation B
between the markings of N and those of C with the following properties.

1. (MN,Mc) eB
2. For all (M, M') € B, we have:

(a) Ifa € Iny and M[a))M;, then either a € Inc and M'[a))M] and (M, M7) €
B for some M or a & Inc and (M, M') € B.

(b) If z € Outy and M[x))M;, then M'[z))M] and (M, M]) € B for some

(c) If z € Oute and M'[x))M], then Mz))M; and (M, M]) € B for some
M.

(d) If z € Out; for some i € I and M'| p,[x)), then M'[x)). (no computation
interference)

Here, and whenever we have a collection (C});es in the following, P; stands for P,
Out; for Outc, etc. O

In this definition, we allow C' to have fewer input and output signals than N; the
reasons are as follows: There might be some input signals that are not relevant for
producing the right outputs; whereas N makes some assumptions on the environment
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regarding these inputs, C' does not — hence, the environment might produce these
signals any time, but they are ignored. Analogously, there might be outputs that
actually never have to be produced; if N has such outputs, this presumably indicates
an error in the specification since most likely these outputs were intended to occur.
In contrast, N might very well contain irrelevant inputs, in particular in the following
case: N specifies a system that is itself a component of a larger system, and these
inputs are important in other parts; but the designer has not realized that they are
not important for this part. Thus, it is useful that our algorithm might detect such
so-called globally irrelevant inputs.

1 a 2 b 5_» n(_» 4 y C5)
4,5 / \ 1,2,3
%P%%o %P%[PO

C,
Figure 3

Figure [ shows a very simple example of an STG N and a decomposition into two
components C and (5 that can be constructed by our algorithm; a is only an input of
N but not of any component, but still the latter is a correct implementation as demon-
strated by B = {(1, (12,123)), (2, (12,123)), (3, (3,123)), (4, (45,4)), (5, (45,5))}. (Here
we have identified a marking of NV or a component with its single marked place.)

The first three clauses of Part 2 are as usual; the first says that an input allowed by
the specification is also allowed by C' (or ignored), the second that specified outputs
can be made by C, and the third that it does not make others. It should be remarked
that in b) the then-part could simply require M'[z)): due to determinism there is
only one follower marking in C, which due to ¢) matches M, the unique follower
marking in N. More interestingly, it would also be possible to require only M'[y))
for some y € Outc: again, ¢) would ensure that this output is specified and the
ensuing behaviour matches the specification; but this clause would only say that, in
case of several specified outputs, at least one will be performed. Whether the others
are possible or not cannot be observed, since outputs are under the control of the
system and, once one output is performed, it cannot be checked whether others had
been possible as well; this view is e.g. taken in [Seg93]. Our decomposition algorithm
guarantees the stronger form of correctness given in clause b) above.

Remarkably, there is no clause requiring a match for inputs of C. If M'[a))M] for
some input a, then either M[a))M;, in which case the uniquely defined M| and M;
match by a), or the input is not specified; in the latter case, the environment is not
supposed to supply it, such that we can ignore this potential behaviour of C' which
will never occur in an appropriate environment, i.e. one that satisfies the assumption
of the specification.

The usefulness of this feature is demonstrated by the simple example in Figure
C; and C, are an intuitively correct decomposition of N (again obtainable by our
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algorithm), since together they answer an input a by x and a following b by v, just as
specified. But in Cy || Cy, which is just the disjoint union of Cy and Cs, b is enabled
initially in contrast to N. Note that this implies that N and C; || Cy are not language
equivalent, as e.g. required in [Chu87al [Chu87h].

1 a 2 X 3 b 4 y 5
oo -0} -0o]-0
1 a 2 X 345 K N\ 123 b 4 Y 5
o—} -0 -0 o} -0 -0
C, C,

Figure 4

The fourth clause is a requirement that could easily be overlooked: if, in state
M', C; on its own could make an output x that is an input of some C;, but not
allowed there, then there simply exists no xz-labelled transition enabled under M’ due
to the definition of parallel composition; but x is under the control of C;, so it might
certainly produce this output, and we must make sure that it is present in C, i.e. does
not lead to a failure of C; for instance.

b
%P%F%EP 5
N

%P%Fo/ o~
C, N

%L%F%FO
g c,

o4 -0 - Ho%[ly%o

o} -0 — O

X

Figure 5

An example is shown in Figure 5l The parallel composition C' of C'; and C; looks
very much the same as N, and they certainly have the same language - they are even
bisimilar. But putting circuits for C'; and C together, C will possibly produce output
x after receiving input a, although x cannot occur in C after a alone; this occurrence
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is not specified in N, and therefore C; and C5 should not be a correct decomposition
of N — and they are indeed not one due the fourth clause.

Remark: Since N and C are deterministic, there is a smallest B as above if there
is one at all, and its elements correspond one-to-one to the reachable markings of
the composition of the mirror of N with C'; the mirror of N is N with input and
output signals exchanged, it is the maximal environment compatible with the system
specification N. Such a composition is sometimes considered in the definition of a
correct implementation, see e.g. [Ebe92]. O

4.2 The decomposition algorithm

An essential notion of our algorithm is that of an admissible operation for the trans-
formation of an STG; in particular, secure contractions will turn out to be admissible.
We will define this notion in three steps; for understanding this section, it is enough to
know that each admissible operation is a tc/pd-operation, i.e. a transition contraction
or the deletion of a place (and its incident arcs). We will introduce the further prop-
erties as they are needed in the correctness proof; we hope this makes the definition
easier to understand, which is tuned to the proof and rather technical.

To initialize the algorithm, one has to choose a feasible partition of the signals
of N, i.e. a family (In;, Out;);c; for some set I such that the sets Out;, i € I, are a
partition of Quty and for each ¢ € I we have In; C Iny U QOuty, and furthermore:

(C1) If output signals 2 and y of N are in structural conflict, then 2 € Qut; implies
y € QOut; for each 1 € I.

(C2) If there are t,t' € Ty with t*N*t' # () and Iy (t') € Out; for some i € I, then
In(t) € In; U Out;. (In(t) gives concession to Iy (t').)

For a feasible partition, the initial decompositionis (C;);cr, where C; = (P, T, W, [,
My, In;, Out;) is a copy of N except for the labelling and the signals; I;(t) = [(¢) if
[(t) € In; U Out; and [;(t) = X otherwise.

Now we transform the C; stepwise by applying repeatedly an admissible operation
to one C; until either no A-labelled transitions are left, in which case a decomposition
has been found, or one of the following failures occurs:

e The C; transformed last has a structural auto-conflict. Then the last operation
was a contraction of some ¢, and one adds [(t) to In; and starts the algorithm
for this ¢ again from the new initial Cj; alternatively, it suffices to undo the
last contractions on C; up to and including the first contraction of a transition
labelled [(t), if this saves time.

e There are internal transitions in C;, but no known admissible operation is ap-
plicable. In this case, one adds [(¢) to In; for some internal transition ¢ and
restarts as above.
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The reason for the backtracking and addition of an input in the first case is as
follows. We take the structural auto-conflict as an indication of a dynamic auto-
conflict. Such a dynamic auto-conflict shows that ¢ was labelled in N with a signal
C; should better know about in order to decide which of the two equally labelled
transitions to fire.

As an example, consider N in Figure [6] and the construction of a component
generating x. Taking ¢ as only input is feasible, and contracting the transitions that
were y-, b- and a-labelled gives the component shown in the middle; here it is not
clear whether x should be generated upon input of ¢ or not. Now we undo the last
contraction and add a as input signal; this gives the component on the left, which does
what is required. Alternatively, we could have contracted the a-labelled before the
b-labelled transition; then we would undo the contraction of the b-labelled transition
and obtain the component on the right, which is alright as well.

o400

1 t

N
b 4 c 5 Y 7
t, t,
l contraction of t,,t,,t,
c 4 X 6
N 0O ” ,
C, 1.2,3 I ~ O
(with structural c

O

auto-conflict)

i 2 80
O (¢) . L
add‘“ backtracklnw

2 c 4 X 6 c 4 X 6
o -0 -0 1 o ] O
1,3 1.2

C 57 b 3 C 57
1O o—] O
C, (possibility 1) C, (possibility 2)
Figure 6

Note that this treatment of structural auto-conflicts might be over-cautious, be-
cause it could be that despite the structural auto-conflict there actually is no dynamic
auto-conflict. To check this, one would — in general — perform a state exploration,
which here we try to avoid. In a computer-aided procedure this is presumably the
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place for human intervention which could possibly supply a proof that there actually
is no dynamic auto-conflict requiring a restart.

There might even be some more room for improvement: even if C; has a dynamic
auto-conflict, this might occur under a marking that is in fact not reachable if C; runs
in the environment formed by the other components and an ‘outer’ environment as
specified by N.

As indicated, if a failure occurs, the algorithm is restarted; therefore, in each step,
for some C; either the number of internal transitions goes down or it stays the same
and the number of places decreases — since each admissible operation is a tc/pd-
operation — or the number of signals (which is bounded by |Iny U Outy|) increases
in case of a restart. Thus, eventually a decomposition will be found in any case. Of
course, this decomposition might not be useful since the C; might be too large —in an
extreme case, they could all be equal to N except for the labelling. But, as we have
argued in the introduction, our algorithm is at least much more generally applicable
than the approaches presented in the literature so far.

4.3 The correctness proof

Each admissible operation will be pre-admissible in the following sense:

Definition 4.2 An operation is pre-admissible if it is a tc/pd-operation that when
applied to an STG without dynamic auto-conflicts and satisfying (a) and (b) below
preserves freeness from auto-concurrency and gives an STG satisfying (a) and (b)
again:

(a) There is neither a structural input/output nor a structural \/output conflict.

(b) If t5 is an output transition and ¢;*N*ty # (), then ¢; is not an internal transition.

|

Two easy consequences of this definition are formulated in the following lemma.

Lemma 4.3 1. At each stage of the algorithm, each C; satisfies (a) and (b) of
Definition [{.9 and is free of dynamic auto-conflicts.

2. When the algorithm terminates, the resulting C; and hence also C' are determin-
istic.

Proof: The initial C; satisfy (a), since by assumption on N an output transition of
C; can in N only be in structural conflict with another output transition, which will
also be an output transition of C; due to condition (C1) in the definition of a feasible
partition. They satisfy (b) by condition (C2) of this definition. Furthermore, they
are free of dynamic auto-conflicts since N is.

Hence, the first claim follows from Definition and the fact that we restart the
algorithm in case a structural auto-conflict turns up.

For the second claim observe that, by assumption and Part 1, there are no internal
transitions and no dynamic auto-conflict. Since there is no auto-concurrency initially,
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there is also none in the end due to Definition and Part 1. The result follows, as
already observed in Section 2L O

We now come to the central notion in our correctness proof; it is a variant of
a bisimulation with an angelic treatment of internal transitions, and it is needed to
describe in what sense the intermediate stages of our algorithm are correct (like a loop
invariant). If there is an internal transition in an initial C;, then this corresponds to
a signal of the system that this component does not ‘see’; if we assume that by some
angelic intervention such a transition, which is internal to C; and not connected in any
way to the outside, fires if the signal occurs, then the C; together work as intended,
and this sort of behaviour is captured with an angelic bisimulation. For the final C;,
an angelic bisimulation guarantees correctness, since there are no internal transitions.

We regard it as an interesting contribution that this kind of bisimulation is useful
even though we do not assume any angelic nondeterminism in our correctness defi-
nition. In the future, we will study decompositions where components communicate
with each other by signals that are internal to the implementation; these internal
signals will certainly have to be of a different kind compared to the A-transitions we
study here.

Definition 4.4 A collection of components (C;);er is an angelically correct decom-
position or implementation of a deterministic STG N, if the parallel composition C'
of the Cj is defined, Inc C Iny, Oute C Outy and there is an angelic bisimulation
relation B between the markings of N and those of C, i.e. B satisfies the following
properties.

1. (MN,Mc) eB
2. For all (M, M') € B, we have:

(a) Ifa € Iny and M[a))M;, then either a € Inc and M'[a)) M/ and (My, M]) €
B for some M or a & Inc and M'[A\)YM;| and (M, M]) € B for some M.

(b) If x € Outy and Mlz))M;, then M'[z))M] and (M, M]) € B for some
(c) If z € Out; for some 7 € I and M'| p[x)), then some M| and M; satisfy
M'[z))M], M[z))M,; and (M, M) € B.

O

This definition looks very much like Definition [}, the differences are that here
[z)) in C' might involve additional A-transitions besides an z-labelled transition, that
in 2(a) internal transitions are allowed to match an input of N that is not one of C,
and that 2(c) is a combination of £.J12(c) and (d) and guarantees a matching only for
some M| — this is an angelic part of the definition. It is also angelic that we do not
require a match for the firing of only internal transitions in C.

We come to the final definition of an admissible operation, which leads to the
correctness result.
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Definition 4.5 We call a pre-admissible operation applied to some member of a
family (C;);er that satisfies (a) and (b) of Definition admissible if it preserves
angelic correctness w.r.t. V. O

Theorem 4.6 When the algorithm terminates, the resulting C; are a correct decom-
position of N.

Proof: The initial decomposition is angelically correct due to B = {(M, (M, ..., M) |
M is reachable in N'}. The defining clauses for an angelic bisimulation are satisfied,
since the firing of a transition ¢ in N or in some C; can be matched by firing all copies
of this transition in /N and all the Cj;.

Admissible operations preserve angelic correctness by definition, since the C; al-
ways satisfy conditions (a) and (b) of Definition by Lemma Hence, the
resulting C; are an angelically correct decomposition of V.

Furthermore, the C; and C are deterministic by Lemma 3. Therefore, (a), (b)
and (c) of Definition [£4] immediately give (a), (b) and (d) of Definition [ Further,
M7 in (c) of @Il is uniquely determined by M’ and z by determinism of C, thus it is
the M| in (c) of 4] and therefore also (c) of A1l follows. O

4.4 Admissible operations

It remains to present some admissible operations, and to show in particular that secure
contractions are admissible.

Lemma 4.7 1. A contraction applied to an STG satisfying conditions (a) and (b)
of Definition [{.3 preserves these properties.

2. Secure contractions are pre-admissible.

Proof: The second claim follows from the first and Theorems and Hence, we
concentrate on the first claim.

So assume contraction of ¢ is applied to some STG S satisfying conditions (a) and
(b). Assume the result violates (a) due to some input or internal transition ¢; and
some output transition ¢,. Then there are places pi € *¢; such that p1 € *t and p2 € t*
or vice versa; compare Figure [[(a). In the first case, ¢ and t, violate (b) in S; in the
second case, ¢ and t, violate (a) in S.

Finally, assume the result violates (b) due to some internal transition ¢; and some
output transition ¢5. Then there are places pl € t;* and p2 € *ty such that pl € *t
and p2 € t* or vice versa; compare Figure[D[(b). In the first case, ¢t and ¢, violate (b) in
S; in the second case, t and ¢, violate (a) in S. (Note that in this case the contraction
is not secure, but such contractions are considered in the first part, too.) O

The following is the essential lemma for the treatment of contractions; it shows
what we need (a) and (b) of Definition 2] for in our approach.

Lemma 4.8 Contraction applied to some member of a family (C;);er that satisfies
(a) and (b) of Definition [[-9 preserves angelic correctness w.r.t. N.
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Proof: Assume contraction of ¢ is applied to C; and results in C}, C resp.; assume
further that B is an angelic bisimulation for N and (C;);e;. We define B as {(M, M) |
there is (M, M') € B such that M’ and M satisfy the marking equality }. Similarly,
we will denote by M, the marking of C that satisfies the marking equality with the
marking M; of C.

We check that B is an angelic bisimulation for N and (C})e;, where C} is C; and
C! = C; otherwise. Clearly, the initial markings of N and C are related since the
initial markings of NV and C are.

So let (M, M) € B due to (M, M') € B.

(a) Let a € Iny and Mla))M;. Either a € In¢c and for some M| M'[a))M] and
(M, M) € B; then we get M|a))M, by Lemma B33 and (M,, M;) € B. Or a & Inc
and for some M| M'[))M! and (M, M}) € B; again we get M[))M; by Lemma 3313
and (Ml,ﬁl) € B

(b) analogously.

(c) Let 2 € Out; for some i € I and M| pi[z)). We have two subcases:

i # j: M and M’ coincide on P/ = P;, hence M'|p,[z)).

t = j: The image-firing of signal x involves an z-labelled transition ¢;. Since
contractions are pre-admissible, also C; satisfies (a) and (b) of Definition .2} by (b),
only firing internal transitions cannot help to enable ¢;, and thus ¢; must already be
enabled under M|pr. By (a) and (b) of Definition in Cj}, no place in *¢; can be
in *t U t*; therefore, *¢, is the same in Cj and CJ, M and M’ coincide on *t;, and
M| 1))
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In either case, some M| and M; satisfy M'[z)) M|, M|x))M; and (M, M]) € B,
and we are done as in (a). O

The first result of this subsection immediately follows from these lemmata.

Theorem 4.9 Contractions that preserve freeness of auto-concurrency, i.e. secure
contractions in particular, are admissible.

Thus, secure contractions can be used in the decomposition algorithm, but al-
so others if they do not introduce auto-concurrency. This can possibly be checked
without state exploration by using place invariants, or it holds automatically if each
transition label occurs only once as assumed in [Chu87al, [Chu87b]. We have no prac-
tical experience so far how useful such non-secure contractions can be; whenever we
wanted to apply such a contraction, we were able to make it secure by first applying
a place deletion as described in the following.

A place p of an STG S is (structurally) redundant (see e.g. [Ber87]) if there is a
set of places @, a valuation V' : Q U {p} — INy and some ¢ € IN, with the following
properties:

* V(p)Ms(p) = Egeq V(0)Ms(q) =
( t,p)—

e for all transitions ¢, V (p)(W (t,p) — W (p, 1)) = Xyeq V(@) (W (t,q) — W(q,t)) > 0

e for all transitions ¢, V(p)W (p,t) — X,cq V(@)W (q,t) < c

If the third item holds (at least) for all output transitions ¢, we call p output-redundant.

The first two items ensure that the valuated token number of p is at least ¢ larger
than the valuated token sum on () for all reachable markings, while the third item
says that each transition or at least each output transition needs at most ¢ ‘valuated
tokens’ more from p than from the places in Q).

Clearly, the deletion of a redundant place in S turns each reachable marking of
S into one of the transformed STG that enables the same transitions, hence the
deletion gives a bisimilar STG. Still, it is not completely obvious that such deletions
are admissible operations, since the latter are defined w.r.t. the structure of STGs,
which certainly changes, and since such a deletion can increase the concurrency.

Theorem 4.10 The deletion of an (outpul-)redundant place is an admissible opera-
tion.

Proof: To check pre-admissibility, take an STG S that is without dynamic auto-
conflicts and satisfies properties (a) and (b) of Definition

First assume that the deletion introduces auto-concurrency, say the equally la-
belled transitions ¢t and t' are concurrent under the reachable marking AM'. Then,
M'" = M| p,_p} for some reachable marking of S, and ¢ and ¢’ are also enabled under
M — this holds for any place deletion. Since they cannot be concurrent by assump-
tion, they must be in conflict; this is a contradiction since S does not have dynamic
auto-conflicts.

Since the deletion of a place does not add structural conflicts or arcs, it is clear
that (a) and (b) of Definition [4.2] are preserved.
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To conclude the proof, it follows from the above observation, that an angelic
bisimulation for N and C' before a deletion can be turned into one for N and C' after
the deletion by omitting p from each marking of C'. This can clearly not disturb 1
and 2(a) and (b) of Definition 4] and output-redundancy ensures (c). O

A special case of a redundant place is a loop-only place, i.e. a marked place p such
that p and ¢ form a a loop with arcs of weight 1 for all £ € *p U p*. Another simple
case is that of a duplicate: place p is an (extended) duplicate of place g, if for all
transitions t W (t,p) = W (t,q), W(p,t) = W(q,t) and My(p) > My(q).

5 Examples

We will now demonstrate our algorithm for two realistic examples. In these examples,
we will use labels like a+ and a—, which really denote rising and falling edges of the
signal a. To fit them into the approach presented here, one can either regard the +
and — as comments and the a-labelled transitions as toggle-transitions that let rising
and falling edges of a alternate. Alternatively, we can regard a+ and a— as signals
in the sense of this paper; the only adaptations needed are the following: we only
consider feasible partitions, where a4+ € In; iff a— € In; and the same for Out;; when
the algorithm has to be restarted and some a+ is added to In;, we also add a— and
vice versa. This ensures that each STG has either both edges of a signal as outputs
or none, and the same for inputs. (The latter view involves a little change of the
algorithm, but the correctness proof still works without any changes.)

Our examples will be made available in greater detail on the web; for this, see
http://www.eit.uni-kl.de /beister /eng/projects/deco_examples/main_examples.html

The first example demonstrates the possible savings w.r.t. the number of markings
and deals with the specification of a FIFO-queue controller, see Figure Rl It has
already been studied and decomposed somewhat informally in [BW93]. This STG is
particularly simple, since it is a so-called marked graph, where the arc weights are 1
and each place has exactly one transition in its preset and one in its postset; thus,
there are no conflicts.

Admissible operations preserve these properties; thus, every well-defined contrac-
tion is secure. The only possible obstacle for contracting an internal transition is a
loop. If we assume that no transition is dead in N, i.e. each can be fired under some
reachable marking, then each cycle must contain a token; since a loop generated by
the algorithm arises from a cycle in the marked graph N, the loop place is marked
and deleting it is an admissible operation. Therefore, in examples like this there will
never be the need for a restart.

In our example, the deletion of loop-only places turns out to be necessary indeed;
note that place deletions have not been discussed in the literature so far. In fact, it is
also very convenient to delete redundant places early; in this example, several dupli-
cates can be found. It should be remarked that — although N and all the constructed
components are safe —, one does come across places with more than one token on
them. Hence, it is important that we do not restrict ourselves to the treatment of safe
nets.
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A component that generates R1+ and R1— needs inputs Rin+, Rin—, A2+ and
A2—. Making all other transitions internal and contracting 721 gives the component
in Figure [@ which already has a loop-only place (P24 22). Deleting this place and
contracting 722 gives the component in Figure [[0f here, place P24.23.22_37 is a
duplicate of P23_37. The final result for this component is shown in Figure [[I it has
12 reachable markings.

If we generate a component for each of the output signals (i.e. for each pair of
edges of such a signal), we get a decomposition into six components, which have 12
(R1), 26 (R2), 12 (R3), 4 (Ain), 8 (RY), and 4 (Rout) reachable markings, while the
original N has 832. Figure [[2 shows the resulting modular controller structure.
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Figure 12

The second example demonstrates that our algorithm can deal with arbitration,
and it gives a case where one finds a well known circuit specification as component
in a correct decomposition. Figure [[3] shows the STG specification of a low latency
arbiter known from literature [YKKI94]. Upon a request R1+ or R2+, the circuit
arbitrates with A1+ or A2+, i.e. there is a critical input race between R1+ and R2+
[WBO0O]. In parallel to the arbitration, the circuit requests a resource itself with R+.
When it gets the resource (G+), it grants it depending on the arbitration with G1+
or G2+. When the resource is returned with R1— or R2—, it returns the resource
and all signals are returned to the original level. (Note that the place P4 is not safe.)

Race behaviour cannot be correctly implemented by a pure logic circuit; additional
analogue circuitry is needed to avoid anomalous behaviour like metastability. Present
day STG-based tools, therefore, cannot handle such behaviour. The problem is usually
solved by using specific library elements, in particular a so-called two-way mutual
exclusion (ME) element (e.g. [YKKIL94]). This solution burdens the designer with
the task to split off an ME-element; our decomposition method can give support here
— with results that we have proven to be correct — and we will demonstrate this now.
A component for the generation of the Aix, i = 1,2 and x € {+, —}, must have the
Rix as inputs according to the definition of a feasible partition. The corresponding
initial C; is shown in Figure [I4]

The secure contractions of 712, T13, T6 and T'7 give the STG in Figure I3, and
the further secure contractions of 74 and T'5 give the STG in Figure [I6l

The remaining internal transitions do not allow a secure contraction; but place
P18_14 is redundant due to @ = {P11, P12, P23_15, P24_16} with V' = 1. After
deletion of this place, we can perform the secure contractions of T'14 and 715, which
gives the STG in Figure[I7. The places in ‘the middle column’ except for P19 can be
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shown to be redundant, and deleting them gives the standard STG representation of
the ME-element (e.g. [YKKL94]). (Note that one of the deleted places is a loop-only
place.)
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This example is concerned with splitting of a library element and not with savings
in the state space. In fact, the second component that generates the other output
signals R+ and Gix, i = 1,2 and * € {4+, —}, is not smaller than N. But it does
not specify critical races (because the Aix are inputs for this component), and can
therefore be implemented with the known STG-based methods.
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6 Conclusion and Future Work

STG decomposition can help in the synthesis of circuits: it may avoid state explosion,
it supports the use of library elements, and it leads to a modular implementation that
can be more efficient. We have presented a decomposition algorithm that is much
more generally applicable than those known from literature, and we have given a
formal correctness proof. (In particular, we do not restrict ourselves to live and safe
free-choice nets or to marked graphs, and we do not require that each label occurs
only once.) The algorithm is based on what we call admissible operations, and certain
transition contractions and place deletions have been shown to be admissible. We have
demonstrated the usefulness of our algorithm with some practical examples.

There are a number of open problems we will tackle in the near future. The first
one concerns determinism: we have assumed that the given STG-specification NV,
its components C; we have constructed, and their parallel composition C' are deter-
ministic. One would get much more freedom in finding components, if one allowed
internal signals for the communication between components; then the composition C
would not be deterministic anymore, and to treat such STGs it becomes essential to
use some form of bisimulation that is not angelic. Also for N, it can be useful to
allow nondeterminism: e.g. to treat arbitration in general, it can be necessary to have
several enabled transitions with the same label.

Of course, we have to study more examples; for this, integration of the decompo-
sition algorithm into a tool is needed, and this is already under way. One question
then is how useful non-secure contractions and output-redundant, but not redundant
place deletions are. Another aspect is that we would like to see examples where it is
useful to continue in the algorithm in cases where there is a structural auto-conflict
but no dynamic auto-conflict; see the discussion in Section 4.2.

Depending on the choice of a feasible start partition and on the choices of signals
for restarts (which for the first kind of failure in Section 4.2 depend on the order of the
transition contractions), we can arrive at different decompositions — compare Figure [6l
We want to study quality criteria (like the overall number of reachable markings) for
decompositions and methods to find good decompositions.

Finally, as argued in [WB00], STGs are not always sufficient to specify the desired
behaviour; as an improvement, gSTGs are suggested. Therefore, we want to generalize
our approach to gSTGs, and we also want to generalize our correctness criterion to take
concurrency into consideration, where it seems to be natural to require the modular
implementation to exhibit at least the concurrency prescribed in the specification.

Acknowledgment The authors thank Ben Kangsah for helping with the figures
and working out part of the examples.
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