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1. Introduction

Across different disciplines the following problem often occurs: Given a nonnegative k×`
matrix A and given positive marginals, find a nonnegative k×` matrix B which fulfills the
given marginals and is biproportional to the matrix A. The iterative proportional fitting
procedure (IPF procedure) aims to solve this problem by iteratively fitting columns
and rows to match their respective given marginals. It is in use for problems such
as calculating maximum likelihood estimators in graphical log-affine models (Lauritzen
1996, Chapter 4.3.1), ranking webpages (Knight 2008) or determining passenger flows
(McCord et al 2010).

Our motivation for this paper arose from the apparent lack of knowledge of applica-
bility of Csiszár’s and Tusnády’s (1984) work to the analysis of IPF procedure. Having
read the recent literature on the IPF procedure there is evidence to suggest that the
cyclic behavior of the IPF procedure is still unknown. Whenever necessary and suf-
ficient conditions for convergence of the whole sequence of the IPF procedure are not
fulfilled, the procedure’s even-step and odd-step subsequences still converge. Jiroušek
and Vomlel (1994) stated this as a conjecture, Vomlel (2004) commented the case by say-
ing the IPF procedure “tends to come in cycles” and Zhang et al (2008) similarly wrote
that it “rather goes into cycles”. Most recently, Pukelsheim (2012) proved the cyclic be-
havior under an “IPF conjecture”, which remained open in the general case. The proof
sought-after has already been given by Csiszár and Tusnády (1984). They investigated
alternating minimization of I-divergence which is equivalent to the IPF procedure as we
know due to Csiszár (1975) and Cramer (2000). We elaborate the equivalence between
alternating minimization and iterative fitting, apply the proofs of Csiszár and Tusnády
to the IPF procedure and simplify them dramatically.

The IPF procedure has been introduced by Kruithof (1937) for predicting telephone
traffic between central stations and has become popular by the work of Deming and
Stephan (1940). Thereafter, a vast amount of literature on the IPF procedure has been
published. The first to prove necessary and sufficient conditions for convergence of
the IPF procedure for nonnegative matrices is Bregman (1967) using an L1-approach.
Csiszár (1975), presumably not knowing the earlier results, gives an alternative proof
by means of I-divergence. These two concepts, L1 and I-divergence, both appear to be
appropriate for the analysis of the IPF procedure. Recent results concerning the L1-
approach and a detailed overview of the literature can be found in Pukelsheim (2012).
Also Brown et al (1993) give an exhaustive survey of the literature up to 1993.

Section 2 quotes essential properties of I-divergence and generalizes them to the case of
weight matrices. Section 3 defines the IPF procedure in detail. The equivalence between
iterative fitting and alternating minimization of I-divergence is shown in Section 4. From
then on, the main focus lies on the procedure. Three multiple-points properties are
proven in Section 5. Section 6 proves convergence of the even-step IPF subsequence and
the odd-step IPF subsequence. From that, the aforementioned necessary and sufficient
conditions for convergence of the whole sequence of the IPF procedure are derived.

In the sequel, all indices i belong to the set {1, . . . , k} whereas all indices j belong
to the set {1, . . . , l}. A + as a subscript indicates the summation over the index that
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would otherwise appear in its place. A set as a subscript denotes the summation over all
entries belonging to that set, i.e. rI =

∑
i∈I ri. All matrices are real nonnegative k × `

matrices. The symbol � expresses dominance in the sense of measure theory. Thus, for
two matrices S and T the expression S � T is equivalent to tij = 0 implying sij = 0
for all entries (i, j). The symbol ≈ expresses equivalence of two measures. Thus, two
matrices S and T are equivalent when they have the same zero entries. We distinguish
between weight matrices and probability matrices. For both cases we demand positive
row and column sums. This is not restrictive, since columns or rows of zeros do not
change the IPF procedure. For probability matrices we further stipulate the total sum
of all entries to sum up to one.

2. I-divergence between weight matrices

Information divergence (I-divergence), also known as Kullback-Leibler divergence, rela-
tive entropy or information gain, plays a key role in the analysis of the IPF procedure.
Let us briefly recall its properties for probability matrices and generalize them to the
case of weight matrices. In this section, the matrices P = ((pij)) and Q = ((qij)) de-
note two probability matrices, p++ = q++ = 1, whereas the matrices S = ((sij)) and
T = ((tij)) are weight matrices. Thus, the matrices P and Q are seen as probability
measures and the matrices S and T as finite measures.

We use the conventions log 0 := −∞, log x/0 :=∞ for all x ≥ 0 and 0 ·±∞ := 0. The
I-divergence of the matrix S relative to the matrix T is defined by

I (S |T ) :=


∑
i,j

sij log
sij
tij

if S � T,

∞ if S 6� T.

(2.1)

For two vectors, I-divergence is defined analogously. It follows from the definition that
I (S |T ) is finite if and only if S � T . In the pertinent literature, I-divergence is only
defined for probability measures or a correction term for finite measures is added (Csiszár
and Tusnády 1984). For simplicity, it deems appropriate to stick to the definition given
in equation (2.1) and point out the minor restrictions when using weight matrices.

2.1. Probability matrices

We first cite the properties of I-divergence for probability matrices needed in the sequel
before generalizing them to weight matrices. I-divergence is nonnegative and equals zero
if and only if both probability matrices are equal (Kullback 1978, Theorem 3.1),

I (P |Q) ≥ 0 and (2.2)

I (P |Q) = 0⇔ P = Q. (2.3)

Hence, I-divergence serves as a distance between probability matrices. However, it is not
a metric and cannot be transformed into a metric by any reasonable function as shown
by Csiszár (1962).
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The Pinsker inequality between total variation |P − Q| := 1
2

∑
i,j |pij − qij | and I-

divergence (Pinsker 1964; Reid and Williamson 2009) provide a relation to the L1-norm,

|P −Q| ≤ 2
√

I (P |Q). (2.4)

The monotonicity theorem of Liese and Vajda 1987, Corollary 1.29 is applied to the
row sums of the probability matrices P and Q. Therefore, we obtain the row sum
inequality

I
(
(pi+)

∣∣ (qi+)
)
≤ I (P |Q) . (2.5)

I-divergence is lower semicontinuous (Liese and Vajda 1987, Theorem 1.47). For two
convergent sequences of probability matrices (Pn) and (Qn), it holds

I
(

lim
n→∞

Pn
∣∣∣ lim
n→∞

Qn
)
≤ lim inf

n→∞
I (Pn |Qn) . (2.6)

2.2. Weight matrices

We generalize the properties cited above to weight matrices. Setting the total sums
s := s++ and t := t++, we get whenever the weight matrix S is dominated by the weight
matrix T the conversion and lower boundary

I (S |T ) =
∑
i,j

s
sij
s

log
s
sij
s

t
tij
t

= s I

(
1

s
S

∣∣∣∣ 1

t
T

)
+ s log

s

t

≥ s log
s

t
> −∞. (2.7)

Consequently, for weight matrices S and T with the same total sum, s = t,
I-divergence is nonnegative and equals zero if and only if both weight matrices are
equal.

Whenever the weight matrices S and T have the same total sum, s = t, we get the
generalized Pinsker inequality

|S − T | = s

∣∣∣∣1sS − 1

s
T

∣∣∣∣ ≤ 2s

√
I

(
1

s
S

∣∣∣∣ 1

s
T

)
= 2
√
s I (S |T ). (2.8)

The row sum inequality holds for weight matrices as well, since

I ((si+) | (ti+)) = s I

((si+
s

) ∣∣∣∣ ( ti+t
))

+ s log
s

t

≤ s I

(
1

s
S

∣∣∣∣ 1

t
T

)
+ s log

s

t
= I (S |T ) . (2.9)

I-divergence is also lower semicontinuous for sequences of weight matrices (Sn) and
(Tn) with constant total sums sn++ = s and tn++ = t for all n ∈ N, since

4



Gietl, Reffel Accumulation Points of the Iterative Proportional Fitting Procedure

I
(

lim
n→∞

Sn
∣∣∣ lim
n→∞

Tn
)

= s
∑
i,j

lim
n→∞

snij
s

log
limn→∞

snij
s

limn→∞
tnij
t

+ s
∑
i,j

lim
n→∞

snij
s

log
s

t

≤ s lim inf
n→∞

I

(
1

s
Sn
∣∣∣∣ 1

t
Tn
)

+ lim
n→∞

sn++ log
s

t

= lim inf
n→∞

∑
i,j

snij log
snij
tnij

+
∑
i,j

snij log
t

s

+ s log
s

t

= lim inf
n→∞

I (Sn |Tn) + s log
t

s
+ s log

s

t
= lim inf

n→∞
I (Sn |Tn) . (2.10)

3. IPF procedure

We specify the IPF procedure in full detail. Our notation sticks to Pukelsheim (2012)
as close as possible. The IPF procedure takes as input an arbitrary weight matrix A =
((aij)) and two vectors with positive entries r = (r1, . . . , rk) and c = (c1, . . . , c`). The
matrix A is referred to as the input matrix, whereas r is called the row marginals and c
is called the column marginals.

The procedure is initialized by setting A(0) := A. Subsequently, the IPF sequence
(A(t)) is calculated by alternately repeating the following two steps:

• Odd steps t+ 1 fit row sums to row marginals. To this end, all entries in the same
row are multiplied by the same multiplier yielding

aij(t+ 1) :=
ri

ai+(t)
aij(t) for all entries (i, j). (3.1)

• Even steps t + 2 fit column sums to column marginals. To this end, all entries in
the same column are multiplied by the same multiplier yielding

aij(t+ 2) :=
cj

a+j(t+ 1)
aij(t+ 1) for all entries (i, j). (3.2)

By induction, for all steps t ≥ 0 the inequality aij(t) > 0 holds if and only if aij > 0
holds. Consequently, all row sums ai+(t) and all column sums a+j(t) always stay positive.
Thus, the IPF procedure is well defined. We say that the IPF procedure converges, when
the IPF sequence (A(t)) converges.

4. Equivalence of iterative fitting and alternating minimization

In this section, we elaborate that each fitting step done by the IPF procedure is equivalent
to a minimization with respect to I-divergence.

Let the input matrix A, the row marginals r and the column marginals c be given as
in Section 3. We define the set C of matrices C that fulfill the column marginals and are
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dominated by matrix A, and the set R of matrices R that fulfill the row marginals and
are dominated by matrix A,

C :=
{
C = ((cij)) ∈ Rk×l≥0

∣∣∣ c+j = cj and C � A
}
, (4.1)

R :=
{
R = ((rij)) ∈ Rk×l≥0

∣∣∣ ri+ = ri and R� A
}
. (4.2)

For the two sets C and R and an arbitrary weight matrix S we define

I (C |S) := inf
C∈C

I (C |S) , (4.3)

I (S |R) := inf
R∈R

I (S |R) and (4.4)

I (C |R) := inf
C∈C,R∈R

I (C |R) . (4.5)

In most parts of the sequel, the matrices C ∈ C appear in the I-divergence’s first ar-
gument, and the matrices R ∈ R its second argument. This arrangement facilitates
a comparison with the results in Pukelsheim (2012) by setting the focus on the even-
step IPF subsequence. However, the reverse arrangement would be equally legitimate of
course.

Lemma 4.1 (Minimization over C and R).

(i) The sets C and R are compact.

(ii) The infima of equations (4.3), (4.4) and (4.5) are attained.

(iii) If the infima of equations (4.3) and (4.4) are finite, the attaining matrices are
unique.

Proof. (i) It is straightforward to show that the two sets are closed and bounded.
(ii) Matrices in C and R have constant total sums. Therefore, I-divergence is lower

semicontinuous in both arguments on the space C × R as shown in inequality (2.10).
Then, I-divergence is also lower semicontinuous in each single argument when keeping
the other argument constant. On compact sets, each lower semicontinuous function
attains its minimum (Barbu and Precupanu 2010, Theorem 2.8).

(iii) For a matrix C attaining the finite infimum of equation (4.3), it holds C � S.
Hence, we can rewrite the I-divergence of C relative to S as I (C |S) =∑

i,j (cij/sij) · log(cij/sij) · sij . Since the mapping x 7→ x log x is strictly convex, C
is unique.

For a matrix R attaining the finite infimum of equation (4.4), it holds S � R.
Hence, we can rewrite the I-divergence of S relative to R as I (S |R) =

∑
i,j sij log sij −∑

i,j sij log rij . In order to minimize I (S |R), the value of rij seems to be arbitrary if
sij = 0. However, the constraint of fixed row marginals forces rij = 0 whenever sij = 0.
Otherwise a transfer of the value rij within row i to an entry (i, j∗) with sij∗ > 0 reduces
the I-divergence, since the mapping x 7→ − log x is strictly decreasing. From the strict
convexity of x 7→ − log x, we conclude the uniqueness of R.
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When minimizing the I-divergence’s second argument only, we define for all matrices
C ∈ C with I (C |R) <∞ the matrix PR,2(C) ∈ R with I(C|PR,2(C)) = I (C |R) as the
IR,2-projection of the matrix C on the set R in the second argument. It is denoted by

PR,2(C) := argminR∈R I (C |R) <∞. (4.6)

Similarly, we define for all matrices R ∈ R with I (C |R) < ∞ the matrix PC,1(R) ∈ C
with I(PC,1(R)|R) = I (C |R) as the IC,1-projection of the matrix R on the set C in the
first argument. It is denoted by

PC,1(R) := argminC∈C I (C |R) <∞. (4.7)

The explicit form of the matrices PR,2(C) and PC,1(R) are given in Theorem 4.2. There,
the matrix A(t) in part (i) can be replaced by an arbitrary matrix in C and the matrix
A(t+ 1) in part (ii) can be replaced by an arbitrary matrix in R.

Theorem 4.2 (Equivalence of fitting and I-projecting). Let the input matrix A, the row
marginals r and the column marginals c be given. Let t ≥ 0 be an even step of the IPF
sequence (A(t)).

(i) The matrix A(t+ 1) is the fitting of the matrix A(t) to the row marginals r if and
only if the matrix A(t + 1) is the IR,2-projection of the matrix A(t) on the set R,
formally

aij(t+ 1) =
ri

ai+(t)
aij(t) for all entries (i, j)⇔ A(t+ 1) = PR,2(A(t)). (4.8)

(ii) The matrix A(t+ 2) is the fitting of the matrix A(t+ 1) to the column marginals c
if and only if the matrix A(t + 2) is the IC,1-projection of the matrix A(t + 1) on
the set C, formally

aij(t+ 2) =
cj

a+j(t+ 1)
aij(t+ 1) for all entries (i, j)⇔ A(t+ 2) = PC,1(A(t+ 1)).

(4.9)

Proof. For both cases we assume the left-hand side and prove that it is the respec-
tive finite minimum. Uniqueness of the finite minimum (Lemma 4.1 (iii)) guarantees
equivalence.

(i) Let A(t + 1) be defined by aij(t + 1) = (ri/ai+(t)) · aij(t). It holds
ai+(t + 1) =

∑
j (ri/ai+(t)) · aij(t) = ri. From Section 3, it follows that A(t + 1) ≈ A.

Thus, A(t+ 1) ∈ R and I (A(t) |A(t+ 1)) <∞.
We prove I (A(t) |A(t+ 1)) ≤ I (A(t) |R) for all R ∈ R, which shows that for A(t+ 1)

the desired minimum is attained. Without loss of generality we assume A(t)� R, since
otherwise the intended inequality is trivial. We make use of ri+ = ri for all R ∈ R and
the row sum inequality (2.9) and obtain for all R ∈ R with A(t)� R the inequality

I (A(t) |A(t+ 1)) =
∑
i,j

aij(t) log
aij(t)
ri

ai+(t)aij(t)
=
∑
i,j

aij(t) log
ai+(t)

ri

=
∑
i

ai+(t) log
ai+(t)

ri+
= I ((ai+(t)) | (ri+)) ≤ I (A(t) |R) . (4.10)
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(ii) Let A(t + 2) be defined by aij(t + 2) = (cj/a+j(t + 1)) · aij(t + 1). It holds
a+j(t + 2) =

∑
i (cj/a+j(t+ 1)) · aij(t+ 1) = cj . From Section 3, it follows that

A ≈ A(t+ 1) ≈ A(t+ 2). Thus, A(t+ 2) ∈ C and I (A(t+ 2) |A(t+ 1)) <∞.
We prove for all C ∈ C the so-called three-points property

I (C |A(t+ 2)) + I (A(t+ 2) |A(t+ 1)) = I (C |A(t+ 1)) . (4.11)

Since C � A by definition (4.1) and A ≈ A(t + 1) ≈ A(t + 2), it holds C � A(t + 1)
and C � A(t+ 2). We make use of c+j = cj for all C ∈ C and obtain for all C ∈ C the
equation

I (C |A(t+ 2)) + I (A(t+ 2) |A(t+ 1))

=
∑
i,j

cij log
cij

cj
a+j(t+1)aij(t+ 1)

+
∑
i,j

cj
a+j(t+ 1)

aij(t+ 1) log

cj
a+j(t+1)aij(t+ 1)

aij(t+ 1)

=
∑
i,j

cij log
cij

aij(t+ 1)
+
∑
i,j

cij log
a+j(t+ 1)

cj
+
∑
i,j

cjaij(t+ 1)

a+j(t+ 1)
log

cj
a+j(t+ 1)

= I (C |A(t+ 1)) +
∑
j

c+j log
a+j(t+ 1)

cj
+
∑
j

cja+j(t+ 1)

a+j(t+ 1)
log

cj
a+j(t+ 1)

= I (C |A(t+ 1)) +
∑
j

cj log
a+j(t+ 1)

cj
−
∑
j

cj log
a+j(t+ 1)

cj

= I (C |A(t+ 1)) . (4.12)

With c++ = a++(t + 2), it follows I (C |A(t+ 2)) ≥ 0 and, consequently,
I (A(t+ 2) |A(t+ 1)) ≤ I (C |A(t+ 1)) for all C ∈ C. This shows that for A(t + 2)
the desired minimum is attained.

Given an arbitrary probability measure as well as an arbitrary marginal and assuming
the existence of an I-projection of the probability measure on the set of probability
measures fulfilling the given marginal, Cramer (2000) proved the result of the above
Theorem 4.2 in his Theorems 3.4 and 3.8.

The alternating minimization procedure is defined by alternating IR,2- and IC,1-pro-
jections starting with the IR,2-projection of the matrix A(0) = A. Hence, in an even
step t the matrix A(t) of the alternating minimization procedure is calculated by t/2 of
PR,2-projections and t/2 of PC,1-projections in the alternating form

PC,1 ◦ PR,2 ◦ PC,1 . . . PR,2 ◦ PC,1 ◦ PR,2(A(0)). (4.13)

Since A(t + 1) = PR,2 (A(t)) and A(t + 2) = PC,1 (A(t+ 1)) by Theorem 4.2, iterative
fitting and alternating minimization are equivalent.

5. Multiple-points properties

The proofs in Section 6 rely on how a matrix C ∈ C and a matrix R ∈ R relate
to progressing in the odd-step IPF subsequence from one of its members to the next,
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that is, from A(t + 1) via A(t + 2) to A(t + 3). This five-points relation is detailed
in Theorem 5.3. The preparatory Lemmas 5.1 and 5.2 start out with three-points and
four-points relations. A geometrical interpretation can be found in Appendix A. The
following lemma recalls equation (4.11) for further reference.

Lemma 5.1 (Three-points property). Let t ≥ 0 be an even step of the IPF sequence (A(t))
and let C ∈ C be arbitrary. We then have

I (C |A(t+ 2)) + I (A(t+ 2) |A(t+ 1)) = I (C |A(t+ 1)) . (5.1)

Whereas the three-points property deals with the fitting of columns, the following
four-points property deals with row fitting.

Lemma 5.2 (Four-points property). Let t ≥ 0 be an even step of the IPF sequence (A(t))
and let C ∈ C and R ∈ R be arbitrary. We then have

I (C |A(t+ 3)) ≤ I (C |A(t+ 2)) + I (C |R) . (5.2)

Proof. If I (C |A(t+ 2)) = ∞ or I (C |R) = ∞ holds, inequality (5.2) also holds. We
therefore suppose C � A(t+ 2) and C � R. From Section 3, we have

aij(t+ 3) =
ri

ai+(t+ 2)
aij(t+ 2) for all entries (i, j). (5.3)

Hence, we obtain A(t + 2) ≈ A(t + 3) and, consequently, C � A(t + 3). Applying
equation (5.3) we get

I (C |A(t+ 3)) =
∑
i,j

cij log
cij

ri
ai+(t+2)aij(t+ 2)

=
∑
i,j

cij log
cij

aij(t+ 2)
+
∑
i,j

cij log
ai+(t+ 2)

ri

= I (C |A(t+ 2)) +
∑
i

ci+ log
ai+(t+ 2)

ri
. (5.4)

We have ri = ri+ for all rows i and, thus,

I (C |A(t+ 2)) +
∑
i

ci+ log
ai+(t+ 2)

ri

= I (C |A(t+ 2)) +
∑

i: ci+>0

ci+ log
ci+ai+(t+ 2)

ri+ci+

= I (C |A(t+ 2)) +
∑

i: ci+>0

ci+ log
ci+
ri+

+
∑

i: ci+>0

ci+ log
ai+(t+ 2)

ci+

= I (C |A(t+ 2)) + I ((ci+) | (ri+))− I ((ci+) | (ai+(t+ 2))) . (5.5)
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Applying the row sum inequality inequality (2.9) and inequality (2.7) with c++ = a++(t+
2) we get

I (C |A(t+ 2)) + I ((ci+) | (ri+))− I ((ci+) | (ai+(t+ 2)))

≤ I (C |A(t+ 2)) + I (C |R) . (5.6)

Combining equations (5.4) and (5.5) and inequality (5.6) completes the proof.

The three-points property and the four-points property together yield the five-points
property.

Theorem 5.3 (Five-points property). Let t ≥ 0 be an even step of the IPF sequence (A(t))
and let C ∈ C and R ∈ R be arbitrary. We then have

I (A(t+ 2) |A(t+ 3)) + I (C |A(t+ 3)) ≤ I (C |A(t+ 1)) + I (C |R) . (5.7)

Proof. Summation of the three-points property and the four-points property yields

I (C |A(t+ 2)) + I (A(t+ 2) |A(t+ 1)) + I (C |A(t+ 3))

≤ I (C |A(t+ 1)) + I (C |A(t+ 2)) + I (C |R) . (5.8)

If I (C |A(t+ 1)) = ∞ holds, inequality (5.7) also holds. We therefore suppose C �
A(t + 1). From Section 3, we have C � A(t + 2) and, thus, I (C |A(t+ 2)) < ∞. For
this reason, we can subtract I (C |A(t+ 2)) from both sides of inequality (5.8) and get

I (A(t+ 2) |A(t+ 1)) + I (C |A(t+ 3)) ≤ I (C |A(t+ 1)) + I (C |R) . (5.9)

From Theorem 4.2 (i), we know

I (A(t+ 2) |A(t+ 3)) = min
R∈R

I (A(t+ 2) |R) ≤ I (A(t+ 2) |A(t+ 1)) . (5.10)

Combining inequalities (5.9) and (5.10) completes the proof.

6. Accumulation points of the IPF sequence

We now present the central results of this paper. The role of the following monotonicity
lemma is similar to the role of Lemma 1 in Pukelsheim (2012), where monotonicity is
proved for an L1-error function.

Lemma 6.1 (Monotonicity). There exists a matrix C∗ ∈ C such that I (C∗ |R) =
I (C |R) holds. For all even steps t ≥ 2 of the IPF sequence (A(t)), this matrix C∗

satisfies the inequality

I (C∗ |A(t+ 2)) ≤ I (C∗ |A(t)) . (6.1)

10
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Proof. Lemma 4.1 (ii) guarantees the existence of a matrix C∗ ∈ C such that I (C∗ |R) =
I (C |R) holds. By applying the three-points property (Lemma 5.1) to C∗ ∈ C, we get

I (C∗ |A(t+ 2)) + I (A(t+ 2) |A(t+ 1)) = I (C∗ |A(t+ 1)) . (6.2)

Since t ≥ 2 holds, we can apply the four-points property (Lemma 5.2) to C∗ ∈ C and
step t− 2 and obtain

I (C∗ |A(t+ 1)) ≤ I (C∗ |A(t)) + I (C∗ |R) for all R ∈ R. (6.3)

Combining equation (6.2) and inequality (6.3) yields

I (C∗ |A(t+ 2)) + I (A(t+ 2) |A(t+ 1)) ≤ I (C∗ |A(t)) + I (C∗ |R)

= I (C∗ |A(t)) + I (C |R) . (6.4)

Since I (A(t+ 2) |A(t+ 1)) ≥ I (C |R) holds by definition of I (C |R), we get

I (C∗ |A(t+ 2)) ≤ I (C∗ |A(t)) . (6.5)

Whereas Lemma 6.1 deals with the even-step IPF subsequence only, the following
lemma gives a limit for the I-divergence of an even-step matrix A(t + 2) relative to its
successor A(t+ 3).

Lemma 6.2 (Convergence of I-divergence). We have

lim
t=0,2,4,...

I (A(t+ 2) |A(t+ 3)) = I (C |R) . (6.6)

Proof. Lemma 4.1 (ii) guarantees the existence of a matrix C∗ ∈ C and a matrix R∗ ∈ R
such that I (C∗ |R∗) = I (C |R) holds. We now apply the five-points property (Theo-
rem 5.3) to an arbitrary even step t ≥ 0 and the matrices C∗ ∈ C and R∗ ∈ R. This
yields

I (A(t+ 2) |A(t+ 3)) + I (C∗ |A(t+ 3)) ≤ I (C∗ |A(t+ 1)) + I (C∗ |R∗) . (6.7)

By definition of the sets C and R, we have C∗ � A and R∗ � A. Hence, all I-divergences
appearing in inequality (6.7) are finite. Thus, for all even steps t ≥ 0, we have

I (A(t+ 2) |A(t+ 3))− I (C∗ |R∗) ≤ I (C∗ |A(t+ 1))− I (C∗ |A(t+ 3)) . (6.8)

As a consequence, for all even steps τ ≥ 0 we get∑
t=0,2,4,...,τ

[
I (A(t+ 2) |A(t+ 3))− I (C∗ |R∗)

]
≤

∑
t=0,2,4,...,τ

[
I (C∗ |A(t+ 1))− I (C∗ |A(t+ 3))

]
= I (C∗ |A(1))− I (C∗ |A(τ + 3)) ≤ I (C∗ |A(1))− I (C |R) <∞. (6.9)

11
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Since I (A(t+ 2) |A(t+ 3)) ≥ I (C∗ |R∗) holds for all even steps t ≥ 0, the series is
nondecreasing in τ = 0, 2, 4, . . .. Hence, it converges for τ → ∞ and its terms form a
null sequence. As a result, we get

lim
t=0,2,4,...

I (A(t+ 2) |A(t+ 3)) = I (C∗ |R∗) = I (C |R) . (6.10)

We now make use of Lemma 6.1 and Lemma 6.2 to prove convergence of the even-step
IPF subsequence as well as convergence of the odd-step IPF subsequence.

Theorem 6.3 (Accumulation points of the IPF sequence). Let (A(t)) be the IPF se-
quence as specified in Section 3. Then the following two statements hold:

(i) The even-step IPF subsequence (A(t))t=0,2,4,... converges.

(ii) The odd-step IPF subsequence (A(t+ 1))t=0,2,4,... converges.

As a result, the IPF sequence (A(t)) has at most two accumulation points.

Proof. (i) According to Lemma 4.1 (i), the sets C and R are compact. Hence, there
exists a sequence (t̃n) of even steps such that (A(t̃n + 2)) ⊆ C converges. Moreover,
there exists a subsequence (tn) of (t̃n) such that (A(tn + 3)) ⊆ R also converges. Set
C∗ := limn→∞A(tn + 2) and R∗ := limn→∞A(tn + 3). Applying lower semicontinuity of
I-divergence (inequality (2.10)) and Lemma 6.2 we get

I (C∗ |R∗) = I
(

lim
n→∞

A(tn + 2)
∣∣∣ lim
n→∞

A(tn + 3)
)

≤ lim inf
n→∞

I (A(tn + 2) |A(tn + 3)) = I (C |R) . (6.11)

Since I (C∗ |R∗) ≥ I (C |R) holds by definition of I (C |R), we have I (C∗ |R∗) = I (C |R).
We can now apply Lemma 6.1 to the matrix C∗. As a result, the sequence

(I (C∗ |A(t+ 2)))t=0,2,4,... is nonincreasing. Since c∗++ = a++(t + 2) holds for all even
steps t ≥ 0, the sequence is also bounded from below by 0 (inequality (2.7)) and, thus,
convergent. Consequently, we get

lim
t=0,2,4,...

I (C∗ |A(t+ 2)) = lim
n→∞

I (C∗ |A(tn + 2)) = I (C∗ |C∗) = 0. (6.12)

Here, the penultimate equality follows from the continuity of I-divergence in the second
argument. This holds, since x 7→ log(1/x) is a continuous mapping and the I-divergence
I (C∗ |A(tn + 2)) is defined as

I (C∗ |A(tn + 2)) =
∑
i,j

c∗ij log
c∗ij

aij(tn + 2)
. (6.13)

Only the case aij(tn + 2) → 0 could cause problems. For this reason, we have to
examine the two cases c∗ij = 0 and c∗ij > 0. Since 0 · ±∞ = 0 holds by convention,

12
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the first case turns out to be unproblematic. The second case cannot occur due to
c∗ij = limn→∞ aij(tn + 2).

By combining the generalized Pinsker inequality (2.8) with equation (6.12) we obtain

lim
t=0,2,4,...

|C∗ −A(t+ 2)| = 0. (6.14)

(ii) Since A(t+ 1) continuously depends on A(t) for all even steps t ≥ 0 by definition
of the IPF procedure (equation (3.1)), convergence of the even-step IPF subsequence
(A(t))t=0,2,4,... implies convergence of the odd-step IPF subsequence (A(t + 1))t=0,2,4,....

Theorem 6.3 proves Pukelsheim’s conjecture on the accumulation points of the IPF
sequence (Pukelsheim 2012, Lemma 4). Moreover, it permits us to derive the well-known
criteria for convergence of the IPF procedure (Bregman 1967; Csiszár 1975).

Theorem 6.4 (Convergence of the IPF procedure). The IPF procedure as specified in
Section 3 converges if and only if there exists a weight matrix D dominated by the input
matrix A and fulfilling the row marginals r and the column marginals c.

Proof. If, on the one hand, the entire IPF sequence (A(t)) converges to a limit B, we
have B ∈ R and B ∈ C. This yields B � A as well as bi+ = ri for all rows i and b+j = cj
for all columns j.

If, on the other hand, there exists a weight matrix D � A fulfilling the row marginals r
and the column marginals c, we have D ∈ R ∩ C and r+ = c+. Hence, I (C |R) is
bounded from below by 0 and this bound is attained for C = R = D. Set C∗ :=
limt=0,2,4,...A(t + 2) and R∗ := limt=0,2,4,...A(t + 3). Applying lower semicontinuity of
I-divergence (inequality 2.10) and Lemma 6.2 we get

0 ≤ I (C∗ |R∗) = I

(
lim

t=0,2,4,...
A(t+ 2)

∣∣∣∣ lim
t=0,2,4,...

A(t+ 3)

)
≤ lim inf

t=0,2,4,...
I (A(t+ 2) |A(t+ 3)) = I (C |R) = 0. (6.15)

Together with r+ = c+, this yields C∗ = R∗ completing the proof.

The proof of Theorem 6.4 shows that convergence of the IPF procedure is equivalent
with the two conditions I (C |R) = 0 and r+ = c+. It is well-known that the second
condition alone does not imply convergence. Neither does the first condition alone, as is
illustrated in the following example.

Example 6.5. Choose

A :=

(
2 0
0 3

)
, r :=

(
3

4
,
1

3

)
and c :=

(
1

2
,
1

2

)
. (6.16)

This yields

C =

{(
1
2 0
0 1

2

)}
and R =

{(
3
4 0
0 1

3

)}
. (6.17)
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As a result, we get C ∩ R = ∅ and the IPF procedure has two accumulation points.
However, I (C |R) = I (C∗ |R∗) = 0 holds.

Remark 6.6. For practical applications we need a criterion for when to stop the IPF
procedure, especially when the procedure does not converge.

Pukelsheim (2012, Lemma 5) shows that the L1-error of the IPF sequence converges
to a limit which can be computed directly from the input matrix A and the marginals r
and c. Thus, the IPF procedure can be stopped as soon as the L1-error of the matrix A(t)
is sufficiently close to this limit.

Csiszár and Tusnády (1984, p. 219) suggest another approach, which is more closely
related to I-divergence. They prove for all even steps t ≥ 0 the upper boundary

I (A(t+ 2) |A(t+ 3))− I (C |R) ≤ c+ ln max
i,j

aij(t+ 3)

aij(t+ 1)
. (6.18)

Due to convergence of the odd-step IPF subsequence (Theorem 6.3 (ii)) the right-hand
side of inequality (6.18) converges to 0 for t → ∞ along t = 0, 2, 4, . . .. Thus, the IPF
procedure can be stopped as soon as this term is smaller than a given ε > 0.

Inequality (6.18) can be seen as follows. Lemma 4.1 (ii) guarantees the existence of a
matrix C∗ ∈ C such that I (C∗ |R) = I (C |R) holds. Applying the five-points property
(Theorem 5.3) we get

I (A(t+ 2) |A(t+ 3)) + I (C∗ |A(t+ 3)) ≤ I (C∗ |A(t+ 1)) + I (C∗ |R) . (6.19)

This yields

I (A(t+ 2) |A(t+ 3))− I (C |R) ≤ I (C∗ |A(t+ 1))− I (C∗ |A(t+ 3))

=
∑
i,j

c∗ij ln
aij(t+ 3)

aij(t+ 1)
≤ c+ ln max

i,j

aij(t+ 3)

aij(t+ 1)
. (6.20)

An even sharper bound can be found by separately calculating the maximum of
aij(t+ 3)/aij(t+ 1) for each column j yielding∑

i,j

c∗ij ln
aij(t+ 3)

aij(t+ 1)
≤
∑
j

cj ln max
i

aij(t+ 3)

aij(t+ 1)
. (6.21)

7. Outlook

The IPF procedure can also be applied to a multivariate input array with more than
two sets of given multidimensional marginals. When fitting cyclically, necessary and
sufficient conditions for convergence of the whole IPF sequence are well known (Csiszár
1975). However, convergence of the respective IPF subsequences is still an open problem.

Kullback (1968) introduced the IPF procedure on a continuous space, but failed
to prove convergence of the whole IPF sequence. A complete proof was given by
Rüschendorf (1995) under certain regularity constraints. Finding necessary and suffi-
cient conditions for convergence of the whole IPF sequence in analogy with Theorem 6.4
is another open issue. Also, the convergence of the even-step IPF subsequence and the
odd-step IPF subsequence on a continuous space remains a conjecture.

14
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A. Geometric interpretation of the multiple-points properties

The multiple-points properties presented in Section 5 are interpreted geometrically. To
present intelligible graphics, we stick to the two-dimensional Euclidean space. Here,
the squared Euclidean distance d2 plays the role of I-divergence. Thus, the asymmetry
of I-divergence is neglected. The I-projections are seen as orthogonal projections. All
matrices are handled as points. Csiszár (1975) as well as Csiszár and Tusnády (1984)
adumbrate this interpretation.

The three-points property

I (C |A(t+ 2)) + I (A(t+ 2) |A(t+ 1)) = I (C |A(t+ 1)) (A.1)

is displayed in Figure 1. The set C is a lower dimensional simplex in the space Rk×`≥0

C

b

A(t + 1)

b
A(t + 2)

b
C

I (
A
(t
+
2)

|A
(t
+
1)
)

I (C
|A(t+

1))

I (C |A(t+ 2))

b

Figure 1: Geometric interpretation of the three-points property (Lemma 5.1) in the two-
dimensional Euclidean space. The three-points property can be interpreted as
the Pythagorean theorem with I-divergence as the squared Euclidean distance.

because of its linear restrictions. Hence, in two-dimensional space we depict C as a line
segment. Now we fix an arbitrary point as A(t+1) and another point on the line segment
as C. The orthogonal projection of A(t + 1) on the line segment C is labeled A(t + 2).
We assume the line segment C to be sufficiently long to secure a right angle between the
line segment C and the line segment A(t+ 1)A(t+ 2). The Euclidean distances between
the three points A(t+ 1), A(t+ 2) and C are displayed as dashed lines. Now, the three-
points property can be interpreted as the Pythagorean theorem with I-divergence as the
squared Euclidean distance.

The interpretation of the four-points property

I (C |A(t+ 3)) ≤ I (C |A(t+ 2)) + I (C |R) (A.2)

is again based on the Pythagorean theorem. In analogy to the display of the set C, the set
R is depicted as a line segment, too. We fix an arbitrary point A(t+ 2). The orthogonal
projection of the point A(t + 2) on the line segment C is labeled as A(t + 3). Again,
we assume the line segment R to be sufficiently long to secure a right angle between
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the line segment R and the line segment A(t+ 2)A(t+ 3). The origin of the Cartesian
coordinate system is set in the point A(t+ 3). The figure is rotated such that the x-axis
of the coordinate system overlaps with the line segment R and the point A(t+ 2) is on
the positive y-axis. Now, we have to distinguish in which quadrant the point C lies.
There, point C lying in the first quadrant is symmetrical to point C lying in the second
quadrant and the same symmetry holds for the third and fourth quadrant.

In Figure 2 we reuse the Figure 1 and display the case of point C lying in the first
quadrant. When setting the point R on the negative x-axis, the distance d(C,R) is
obviously larger than d(C,A(t+ 3)) and the four-points property follows. Thus, we set
the point R on the right-hand side of the point A(t + 3). The dotted lines depict the
orthogonal projection a on the line segment A(t+3)A(t+2) and the orthogonal projection
r on the line segment R. By the Pythagorean theorem it holds d(C,A(t + 3))2 =
d(C, a)2 + d(C, r)2. With d(C, a) ≤ d(C,A(t+ 2)) and d(C, r) ≤ d(C,R) the four-points
property follows. In the case of point C lying in the third or fourth quadrant, we focus

C

R

b
A(t + 2)

b

A(t + 3)

b
C

b

R

I (C |A(t+ 2))

I (C
|A(t

+ 3))

I
(C

|R
)

b

b

ba

b
r

Figure 2: Geometric interpretation of the four-points property (Lemma 5.2) in the two-
dimensional Euclidean space. This is again an application of the Pythagorean
theorem.

on the triangle A(t+ 3)A(t+ 2)C. The angle α at point A(t+ 3) is always obtuse, hence
cos(α) ≤ 0. The law of cosines

d(C,A(t+ 2))2 =d(C,A(t+ 3))2 + d(A(t+ 2), A(t+ 3))2

− 2d(C,A(t+ 3))d(A(t+ 2), A(t+ 3)) cos(α) (A.3)

yields d(C,A(t + 3))2 ≤ d(C,A(t + 2))2 and consequently d(C,A(t + 3))2 ≤ d(C,A(t +
2))2 + d(C,R)2.

The five-points property

I (A(t+ 2) |A(t+ 3)) + I (C |A(t+ 3)) ≤ I (C |A(t+ 1)) + I (C |R) (A.4)

is the summation of the three-points property and the four-points property with subse-
quent subtraction of I (C |A(t+ 2)) on both sides and the inequality
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C

R
b

A(t + 1)

b
A(t + 2)

b

A(t + 3)

b
C

b

R

I (C
|A(t+

1))

I (C
|A(t

+ 3))

I
(C

|R
)

I
(A

(t
+

2
)
|A

(t
+

3
))

Figure 3: An elementary geometric interpretation of the five-points property (Theorem
5.3) in the two-dimensional Euclidean space fails. However, the geometry of
the IPF procedure is revealed.

I (A(t+ 2) |A(t+ 3)) ≤ I (A(t+ 2) |A(t+ 1)). Figure 3 displays the outcome, but we
are unable to give an elementary geometrical interpretation. Yet, the figure gives a
geometric interpretation of the whole IPF sequence. The sequence can be seen as alter-
nating orthogonal projections on the line segments C and R. In the situation displayed
here, the convergence of the even-step IPF subsequence to the right end of the upper
line segment C is obvious.

Acknowledgements. We are very grateful to our advisor Friedrich Pukelsheim for
continuing support. We thank Friedrich Pukelsheim as well as our friend and colleague
Kai-Friederike Oelbermann from our Augsburg group for their valuable remarks when
discussing the work. We are thankful to Fero Matúš and Ludger Rüschendorf for their
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