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ABSTRACT- The electronic structure of the strongly correlated system LapCuQyis calculated, using a realistic tight-binding model
for the electronic states in the Copper Oxide planes. The model includes the Oxygen p (x) and p (y) orbitals and the Copper 3 d
(x-y2)orbitals. The hybridization between the Copper d (x2-y?)and the Oxygen p (x) and p (y) orbitals is considered, as well as
the direct overlap between the p orbitals of neighboring Oxygen ions. The Coulomb interaction between the electrons in the d shell
of the Copper ions is treated by introducing slave bosons, thereby restricting the allowed Cu ionic configurations in the system to
be Cu™* *and Cu* .The system may exhibit a phase characterized by the participation of the d electrons in coherent itinerant states.
However, there also exists the possibility of another phase characterized by the localization of the d electrons. This second phase
occurs when the bare charge transfer energy is sufficiently large. Thus, for the stochiometric system there are two possible zero
temperature states; 4 metallic state and a charge transfer insulator state. The p-p hopping matrix element is large and it is found
that its sign, relative to the other hopping matrix elements, has a significant effect on the position of the phase boundary. Inferring
values tight-binding integrals from band structure calculations, one concludes that the paramagnetic phase of LayCuO4should be
metallic. The electronic structure and Fermi-surface are calculated for this phase. The presence of long ranged anti-ferromagnetic
order is expected to open up a Slater gap at the Fermi-energy, yiclding the experimentally observed low temperature insulating
phase.

INTRODUCTION

The nature of the stochiometric state of the high temperature superconductors is the subject of
controversy. It is known that this state is insulating and antiferromagnetic [1], however the origin of the
insulating gap remains unknown. Several possibilitics have been considered. One possibility is that the
insulating gap is of the type envisaged by Slater [2] where the gap is induced by the antiferromagnetic long
ranged order. Another possibility is that the gap is a manifestation of the Mott-Hubbard [3,4] band
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The experimentally determined phasc diagram of the high temperature superconducting Oxides, as a function of electron
and hole doping &.
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splitting due to the high Coulomb energy for introducing more than one hole on a Copper ion. This latter
picture has been modified [5] by incorporating the effect of the Oxygen p bands which lies between the
lower and upper Hubbard band. For a completely filled p band this leads to the charge transfer insulating
state. On doping the systems, by introducing extra electrons or holes in the Copper Oxygen planes,
experiments show that the Neel temperature is reduced and eventually the antiferromagnetic order
disappears [6]. The experimentally determined phase diagram is shown in figure 1. The system does remain
insulating for hole concentrations exceeding those for which the Neel temperature drops to zero, this might
be taken as evidence against the description of the stochiometric system as a Slater insulator. However,
the existence of short ranged antiferromagnetic order [7,8] and impurity induced disorder does complicate
the picture.

Photo-emission experiments show that on doping away from half filling new states appear at energies
where one could infer a gap to exist [9,10]. The fermi-level is pinned to these states and the intensity
associated with this narrow fermi-level peak keeps growing until the metallic state is reached. This could
be interpreted as impurity states within the insulating gap forming an impurity band and then becoming
metallic. However, the fermi-surface crossings of the bands observed in both angle resolved photo-emission
experiments [11-13] and high field de Haas-van Alphen measurements [14-15] do agree with calculated
electronic structures [16-18] of the ordered materials and any correspondence with the formation of a
fermi-surface of disordered impurity bands would be fortuitous. Thus, it seems as if these states at the
fermi-level are actually coherent quasi-particle states of the ordered system, so the simple picture of a
charge transfer insulator without any further many-body renormalizations is not appropriate. There does
exist strong coupling [19-21] and intermediate coupling theories [22] which predict strong quasi-particle
peaks at the fermi-level of the doped systems. In one theory the quasi-particle peak is formed from the
non-interacting density of states by depressing the intensity away from the fermi-level. This depression is
due to the rapidly increasing quasi-particle lifetimes with increasing excitation energy away from the fermi-
energy. The states removed from the bands appears in the form of incoherent upper and lower Hubbard
bands. As the strength of the Coulomb correlations increase, the variation of the quasi-particle lifetime
becomes stronger and the integrated strength of the quasi-particle peak is diminished. In the slave boson
theories [19-21], appropriate to strong coupling, the lower Hubbard band is removed to infinity, a narrow
quasi-particle peak remains at the fermi-level and an incoherent upper Hubbard band forms just above
the fermi-energy. Thus, a qualitative but not quantitative agreement exists between the intermediate and
strong coupling theories for sufficiently strong doping.

At the stochiometric composition, the slave boson theory shows two distinct types of behavior, either
metallic or insulating, depending upon the strength of the effective hybridization matrix element compared
to the bare charge transfer gap [20-21,23]. In this note, we shall examine the phase diagram of the Oxide
superconductors using a realistic parameterization [24] of the Copper and Oxygen bands close to the fermi-
level. We shall show that not only does the dispersion associated with the direct overlap between the p
orbitals on neighboring Oxygen ions have an important effect on the phase diagram, but also that the sign
is of crucial importance in deciding whether the stochiometric system should be a charge transfer insulator
or a metal, in the absence of the antiferromagnetic correlations. It is also noted that the effect of the direct
p to p overlap and the Coulomb interaction is such that the system avoids nesting of the d portions of the
fermi-surface. Using values of the tight binding parameters inferred from band structure calculations [24-
26] a phase diagram is obtained for the high temperature superconducting Oxides, as a function of hole
or clectron doping. With this parameterization this system is found to always be metallic, as the number
of holes in the d orbitals remains less than unity for all types of doping. The electronic correlations, as
manifested by the mass renormalization or integrated intensity of the quasi-particle peak in the density of
states, is calculated as a function of doping, and is found to only exhibit a weak variation that is asymmetric
between the cases of electron and hole doping.

In the next section, we shall outline the model and the slave boson mean field theory. In the third section,
we shall solve the self-consistency equations for the phase diagram, as a function of electron and hole
doping. The resulting fermi-surface, the coherent part of the quasi-particle density of states are calculated.
The low temperature limit of the magnetic susceptibility, is given directly by the total quasi-particle density
of states at the fermi-level. In the final section we shall summarize our results.
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SLAVEBOSON MEANFIELD THEORY

Following the interpretation of Zaanen, Allen and Sawatzky [5] we consider the relevant low energy ionic
states of Copper to be Cu** and Cu?, corresponding to the 3d° and 3d!° configurations. For the
stoxchxometnc system we assume the Copper ions to be in a 3d’ configuration and the Oxygen ions to be
in a 2p® configuration. The 10-fold degeneracy of the 3d band is broken by crystal field splitting into a fully
occupied 6-fold degenerate tagband and a partially occupied 4-fold degenerate eg band. The latter is split
due to a Jahn-Teller dlstortlon [27] into a fully occupied d (3z2-r%) level and a singly occupied d (32 - y?)
orbital. The crystal field is assumed to lower the energy of the out of plane p (z) orbital and leave the p
(x) and p (y) orbitals degenerate. Therefore, we only consider the electronic states composed from the
Copper d (x* - y?) orbital and the p (x) and p (y) orbitals of the Oxygen ions. The total Hamiltonian for
the simplified system is written as

H = Hy + H;

@,
where Hj represents the one body terms and Hj represents the Coulomb interactions between the
electrons. Due to the exponential decay of the overlap of wave functions, we can simplify the Hamiltonian
by neglecting tight binding interactions other than with the closest neighbors. Also, we only include the
hybridization of the d orbitals with the p (x) orbital of the neighboring Oxygen ions that are collinear with
the x axis through the Copper ion. Likewise, for the Oxygen ions collinear with the y axis, only the overlap
with the p (y) orbitals need be taken into consideration. The overlap between the d (x* - y?) and the other

p (x) and p (y) orbitals on the neighboring Oxygen ions are zero, due to symmetry. We shall also consider
the direct overlap, t, of the p (x) and p (y) orbitals of neighboring Oxygen ions. The geometry and the
wave functions are depicted in figure 2. The overlap integrals, t’, of the p (x) with the p (x), and the p (y)
with the p (y) wave functions on neighboring Oxygen atoms are neglected. This approximation decouplcs
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A schematic picture of the real space structure of the two dimensional Copper Oxide planes. The form of the Copper
3d( - y2 ) and the Oxygen p (x) and p (y) orbitals are shown schematically.
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a p (x) and a p (y) orbital from interacting with the Copper ions, but the inclusion of a t’ term can be
shown to have an insignificant affect on our conclusions. The signs of the tight binding parameters can be
inferred from the phases of the wave functions [28}. After an appropriate gauge transformation of the wave
functions, the kinetic energy terms of the Hamiltonian can be written as,

Ho= Yim Ep(P*ximPrgm* P*ykmbyim)
+ z:l_t,m Egd*gmdgm
+ Xy {2v c0s(kxa/2) ( p* xmbim+ 4 m Prgm)
+ 2V cos(kya/2) ( p*y&mdk'm+ d+§,m Pykm) }

- E;,m 4 t cos(kya/2) cos(kya/2) ( P+y,_lg,mpx,§,m+ P+x,§,mpy,§,m) 22)
where N; is the number of unit cells in the lattice, a is the linear dimension of the unit cell, and d* kv
pt vk mand p*x&m, respectively, create an electron with spin m, in the Bloch state labeled by wave vector
k in the bands composed of the d (x*- y%), p (y) and p (x) orbitals, The spin index m, is assumed to take
on N distinct values. The first term represents the binding energy of the degenerate Oxygen p (x) and p
(y) orbitals, and the second term represents the binding energy of the Copper 3d orbital. The third and
fourth term represents the hybridization of the d orbital with the p (y) and p (x) orbitals on the
neighboring Oxygen ions. The last term represents the direct hopping of electrons between the p (x) and
p (y) orbitals on neighboring ions, and its inclusion distinguishes this work from earlier analysis [19-21,23]}.
The Coulomb interaction between the holes on the same Copper ion is written as,

Hp = Ei,m,m’ Uga/2 dimdim 4% i dim
(2.3).
The corresponding interaction Uppbetween holes in the orbitals of the same Oxygen ion is calculated to
be smaller and has been shown [24] not to appreciably affect the electronic structure, and therefore we
shall neglect the latter interaction. Also, the effect coulomb interaction Upgbetween the p electrons and
d holes is estimated to be the smallest parameter in the Hamiltonian.

The infinite Uggslave boson theory projects out the states where more than one hole appears on the same
lattice site. This projection is accomplished by introducing a local boson field b;, at each lattice site, which
satisfies the constraint

Yo dimd*imt b = 1
24),
for each i. Since the boson occupation number has eigenvalues consisting of the non-negative integers,
enforcing the constraint has the effect of restricting the number of holes in the d orbital to be zero or
unity. The constraint is imposed by introducing the Fourier representation of a Dirac delta function. On
evaluating this integral, within the saddle point approximation, this has the effect of renormalizing the d
level energy E4 according to the prescription,

Eq = Eq- X
2.5).
The projection out of configurations with more than one hole eliminates the Coulomb interaction terms
in Hj, The transformation of the physical d electron operators into quasi-particle operators has the effect
that the hybridization terms in equation (2.2) are modified to,

Ns.uzzk_,m{ 2V cos(kea/2) ( P+x,§,md§~g,m bg + b+g d+§-g,mpx,_lg,m )
+ 2V cos(kya/2) (p*ygmdggmbg + b*q 4" cgmPygm) }

22),
where the appearance of the slave boson operator ensures that holes are not transferred into d orbitals
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already containing one hole. Since the constraint commutes with the Hamiltonian and number operator,
the constraint needs only to be imposed just once. It should be noted that, due to the projection, the
physical d electron operators are composed of the product of the d quasi-particle operators and the boson
operators.

A static part is explicitly separated out from the Fourier Transform of the boson field via the replacement,

b+g= B+g+ NSI/2 B.g 8g.0

(2.6).
The static part By is to be chosen such that the boson field satisfies the equations of motion. The mean
field approximation consists of neglecting the fluctuating parts of the boson field. The parameters of the
Hamiltonian can be rescaled in a manner such that the mean ficld approximation is expected to be exact
in the limit of infinite degeneracy, N. In particular, the boson ficld, the hybridization and the partial
occupation of the d level can be rescaled so that the boson propagators are of the order of 1/N and
therefore vanish in the infinite N limit.

At the mean field level, the A; are independent of i and the boson amplitude By satisfies the equation

ABg=-1/Ng 2y 2V (coskya/2 < d*gmPrim > + coskya/2 < d*jm Pyim > ) .

and the average number of d holes is given by

1 =1 1Ny Xy < dim d*gm > ba B'yB,
(2.8).
Since, the projection has removed all the terms other than those quadratic in the fermion operators, and
the mean field approximation has replaced the boson field by a complex number, the equations of motion
for the quasi-particle electronic Green’s functions truncate. The Green’s function for the d quasi-particles
has the form,

G* (ko) = i A%K)/(ho - Ei(K)
29),
where E;(k) are the dispersion relations for the three hybridized bands and A%,(k)are the d weights. The
dispersion relations for the three branches of the hybridized band are given by the expressions

Ey(k) = 2 q"/%cos /3 + 2 Ep + Eq)/3

Ex(k) = 2 q/2cos(¢ + 21 )/3 + 2 Ep + Eq)/3

and
E3(k) = 2 q"/2cos( ¢ - 21 )/3 + R Ep + Eg')/3

(2.10a),

in which q is given by

q = 1/9(Eq -Ep)?+ 1/3[4V *(cos’kea/2+ cos’kya/2) + 16t2cos?ka/2c0s%k,a/2]

(2.10b),

and ¢ is given by the solution of the equation

q*?cos¢ =r

(2.10¢),

where

r = 1/3%(Eq"-Ep)*+ 1/6(Eq -Ep)[4V (cos’k,a/2+ cos?kya/2) - 32  cos’kya/2 coskya/2]
- 16 V"%t cos?k,a/2 coszkya/Z

(2.10d).

In these expressions, the effective value of the hybridization V has been renormalized to V' = V By, which

PCS 54/10—F
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represents the reduction in the probability of a hole hoping into the d shell of a Copper ion due to the
probability that it is already occupied by a hole. This effect is similar to the reduction of the band widths
or the enhancements of the effective masses found by Brinkman-Rice [29] in their treatment of the
localization transition in the Hubbard model. The renormalization of the d level energy to Eq4 from Egis
due to the kinetic energy associated with the virtual hopping of the holes. The d weights of the hybridized
bands are given by the expressions,

A¥ )= 1/3 { 1+

[(Eq"-Ep)?/3% 16t%cosk,a/2 cos’kya/2 + qlsing/3 + 2 g/2(E4"-Ey)/3 sin2e/3 }
q sin ¢

11),
and the weights for the other two branches of the dispersion relation are obtained by replacing ¢ by ¢
+ 2, respectively, in the above expression.

The self-consistency equations simplify to

-AB'gBy= N/N, Ly Cilk) f(Ei(K))

(2.12),

and
N-1+B'gBy = N/N, X0, A%(K)f(E(K))
in which the C;(k) are give by the expressions obtained from @)
Gk =
{ [4V % (cos?kea/2+ coszkya/Z)(Ed'-Ep) /3- 32V %t cos?ka/2 coszkya/Z] sing/3
+ 4V¥(cos?kea/2+ cos?kya/2) q/%sin 26/3 } /(3 qsing )
by making the replacement ¢ to ¢ * 2x. The chemical potential # is found from @19,
SN-1+6 = N/N Xy f(E(K)
+ N/Ng Xy { (Ep +4t coskya/2 coskya/2) + (Ey-4t coskya/2 coskya/2) } oxs

where a positive § represents the amount of electron doping away from half filling, and a negative &
corresponds to hole doping. The last two terms represent the number of electrons in the p (x) and p (y)
bands that are decoupled from the d (x*- y) orbital. For sufficiently small magnitudes of the doping, the
chemical potential ¢ is pinned to the uppermost hybridized band.

ANALYSIS

The self-consistency equation (2.12) also allows for the trivial solution By = 0 , where the constraint
implies that the number of electrons in the d (2 - y?) orbitals, per site is unity. In this state the d quasi-
particle weight is zero, and the d level is dispersionless as it is uncoupled to the p bands because the
effective hybridization matrix element V' is zero.

For electron doping, this trivial solution representing a state with localized d electrons can not occur as
the minimum value of By corresponds to the minimum number of d holes, which in turn implies the
maximum occupation of the p orbitals. Since for hole doping, § > 0, the p bands are completely filled at
maximum occupation, the introduction of extra electrons into the d band necessitates a value of Bg such
that By > & > 0. Thus the localized or incoherent state is restricted to the case of hole doped systems &
< 0, and as we shall show occurs at high temperatures when the bare charge transfer energy Eq - Ej is
sufficiently large.
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The self-consistency equations can be shown to always have non-trivial solutions, at zero temperature.
Thus, for hole doping, there exists the possibility of a second order transition between the coherent
metallic phase and the incoherent phase as the temperature is increased.

The critical temperature T, above which the boson ficld condensate evaporates and the d states localize
is given by the solution of

Eq- Eq = V22N, 20 {

(coskya/2 + coskya/2)?[ N f(Ey, - 4t cosk,a/2 coskya/2) - N + 1]
(Eq - Ep + 4t coskya/2 coskya/2)

+ (coskya/2 - coskﬁ/Z)z[ N f(E, + 4t cosk,a/2 coskya/2)- N + 1] }
(Eq - E, - 4t cos k,a/2 coskya/2)

where the renormalized d energy level E4 is related to the chemical potential, x(T), via
Eg = u(T) - kpT log,(N-1)
(3.2).

For hole doping any second order instability of the low temperature coherent phase can be inferred from
consideration of the temperature dependence of the above equation. For a finite value of the hole doping -
|6] and as the temperature decreases to zero, the chemical potential 4(T) will decrease and eventually
become degenerate with the p bands, first varying according to

@D,

W(T) = Ep + kpTloge[ 4N/-5 | + kpT loge[pn=of(20)!/(n!)*} (t/ksT)?"]

when kgT > > t, and then would fall within the band

(33),

w(0) = Ep+ 4 |t| (1+ éx/dN )

(34),
at zero temperature, if the phase transition does not previously occur. As the chemical potential is pinned
to the d level at low temperatures, the d level also becomes degenerate with the p bands. When this
degeneracy occurs, for some values of k the denominator in (2.16) vanishes and the summation diverges
logarithmically at low temperatures. Since the summation is restricted to be positive, this implies a
minimum of the right hand side of equation (3.1) as a function of T. Therefore one finds that there is a
minimum value for the bare charge transfer energy Eq - E, above which the incoherent phase may occur,
at temperatures T > T,. For Eq- E; below this minimum value, the coherent state does not have a second
order transition to the incoherent state.

The first conclusion central to this report can be found by direct consideration of equation (3.1). From
inspection of the above equation, one sees that for small values of the doping, where the k values
associated with the band crossings are close to zero, the sign of t plays an important role. In particular,
for positive values of t the denominator of the second term vanishes for k values close to the point where
the factor (cos(kya/2)-cos(kya /2))%s minimized, whereas if t is negative the denominator of the first term
in the summation is minimized for k values close to the point at which the factor (cos(k,a/2) + cos(k,.a/Z))2
is also a maximum. This has the effect that the critical temperature T, is drastically smaller for negative
values of t than for positive values of t. An equation for the transition temperature can be derived, in the
presence of the p (x) - p (x) and p (y) - p (y) hopping terms t’, which has a similar structure to that
derived above, except instead of two it has four terms corresponding to the splitting of the branches in the
p bands, calculated with V = 0. Not only is t’ smaller [24] than t, but also the t’ terms neither split the
degeneracy of the un-hybridized p bands [24-26] at k = 0, nor change the overall p band width, thus, the
above reasoning remains unchanged by the inclusion of ¢’

The physical reason for the crucial dependence of the above equation on the matrix element factors is
simply that the d level hybridizes with the combination,
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cosk,a/2 | px > + coskya/2| py >

of the p orbitals, which for small k values corresponds to the combination of orbitals

@3.5),

| px> + | py>
(3.6),

that diagonalizes the p (x) - p (y) hopping terms, t. Since for positive values of t this is the bonding p
orbital, which is energetically far removed from the d level, the hybridization process is relatively
inefficient. For the opposite case, of negative t, the above combination represents the anti-bonding p
orbital at the top of the p band, and due to the closer proximity with the d band the hybridization process
is simply much more efficient.

At the stochiometric composition, where § = 0 - , the dependence of the effective charge transfer energy
Eq - Ej, on temperature implied by (3.2) and (3.3) shows that the critical temperature T, is restricted to
occur in the zero temperature limit. Since the upper band is of predominantly d character, equation (3.1)
may no longer be satisfied if the bare charge transfer energy Eq - Ep - 4[t| is sufficiently smaller than
V2. That is, by decreasing the relative strength of the bare charge transfer energy, the states at the fermi-
energy can delocalize at low temperatures. The phase boundary for this delocalization transition also
strongly depends upon the sign of the p to p hopping matrix element. Since earlier studies of the phase
diagram either ignored the p band width altogether [19,23] or introduced it phenomenologically by
broadening a dispersionless p level [20,21], the above effect has not been discussed. Again, the above effect
can be seen by examining the zero temperature limit of equation (2.16), after the summations over k have
been performed. For k = (Eq - Ep)/4lt| > 1, the equation takes the form

Eq-Ep= (Eq - Ep) + 4 Vi/at [1/2 - K(K) + (Eq - Ep)/4t{ K(K) - E(K) } ] 6

where K(k) and E(k) are the first and second elliptic integrals [30}, and the summations are divergent for
k < 1. It should be noted that first two terms within the square brackets represents terms odd in t, and
that for positive values of t the logarithmic divergences of K(k), which occur when the renormalized d level
is energetically degenerate with the top of the p band, exactly cancel. The left hand side of the equation
possesses a minimum, as a function of (Eg - Ep)/4|t| , which implies that the corresponding value of the
bare charge transfer energy Eq - Ep is at the boundary between the localized and itinerant phases. This
phase boundary line has the asymptotic large |V/4t] form,

(Ea- Ep)e = 4|V| - (41)/2 + [(40)° + (4£)]/(16V)

(3.8),
whereas for small values of |V/4t|, the phase boundary is given by the expression
(Eq-Ep)c= 4 t] +2(1-2/x) V¥/|t| t>0
(Eq-Ep)e= 4 It| + 4 V¥/a|t] log[ 2/2 |4t/V|* ] -2 V¥/|t] t<0
3.9).

Using the positive sign for t, the values of (Eq- E;)/4t = 1.077 and | V| /4t = 0.615, extracted from tight
binding fits to L.D.A. electronic structure calculations [24-26], one concludes that for § = 0 the high
temperature superconducting Oxides ought to be in the coherent phase. In part, this is due to the effect
of the p band width in shifting the bare charge transfer energy from Eg - Ep by an amount 4|t|, which
is relatively large [24]). However, the effect of the term Upgthat has been neglected in this analysis will tend
to stabilize the incoherent phase [31]. A considerable amount of variation may occur between different
methods of extracting a set of tight binding parameters from band structures as well as isolating the
correlations inherent in L.D.A., but the critical value of the bare charge transfer energy that we find, (Eq-
Ep)c/4t = 2.1, is above most of the values to be found in the literature. This conclusion is similar to the
results of reference [23], where it was found that the critical ratio of the bare charge transfer energy to
V was 6.25 which is rather large compared with the actual values appropriate to LayCuO4compounds. The
phase diagram, for § = 0, is shown in figure 3.
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The T = 0 phase diagram for zero doping, § = 0, the localized phase occurs for large values of the bare charge transfer

gap (Bg- Ep- 4t)/4t and the itincrant phase occurs for the smaller values. As the relative strength of the hybridization V/t is
increased the critical value of the bare charge transfer energy increases. The asymptotic variation of the critical boundary given by
equation (3.8), is also shown as a dashed line for comparison. The estimated position of the high temperature Oxide
superconductors is marked with an x.
Further information concerning the nature of the phase boundary, can be found by examining the limit
§ + 0 + of the electron doped phase, § > 0. As previously mentioned, this phase is restricted to be
metallic, with the effective hybridization matrix element V" is greater than 6172V, Examination of the T
= 0 self-consistency equations shows, as expected, that there is always a non-trivial solution for arbitrary
& and bare charge transfer energies. In the limit § + 0 +, and for large |Ey - Ep| the solution has a
small value for V' and the effective charge transfer energy E4 - Ej is of the order of Eq - E,,. Since for
hole doping the effective charge transfer energy, obtained by solving the T = 0 limit of the constraint
equation (2.13), is limited to values less than 4t|( 1 + §/4N ) one concludes, in agreement with the
work of Doniach and Melo [21], that for large bare transfer charge energies there is a discontinuity in B4,
hence #(0), when going from infinitesimally small positive to negative §. This discontinuity is indicative
that the stochiometric system is a charge transfer insulator, when the parameters lay in the region above
the phase boundary shown in figure 3. Thus, one is lead to the speculation that the CuO planes ought to
be metallic in stochiometric LayCuQy, and the observed in insulating behavior is due to the existence of
three dimensional antiferromagnetic ordering which opens up a gap at the fermi-surface [2].

An asymmetry in the variation of the electronic correlations, manifested by Bgor V', with electron or hole
doping can be inferred from the complete absence of the high temperature state for the electron doped
systems, and we concomitant lower limit of V° > §/2 V. This leads one to conclude that the low
temperature slave boson condensate amplitude or the inverse of the mass enhancement remains relatively
larger in the electron doped systems, when compared to the hole doped counterparts with large values of
(Ed4 - Ep)/V. This asymmetry is less apparent when the value of (Eq - Ep) is decreased so that the system
is further from the transition between the metallic and the charge transfer insulator states. The absence
of a significant variation in the slave boson amplitude does not necessarily imply a slow variation of
physical quantities such as coefficient of the linear T term in the low temperature specific heat [32], since
the quasi-particle density of states does exhibit two dimensional Van Hove singularities which might fall
close to the fermi-level for some values of doping. The total quasi-particle density of states at the fermi-
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level is shown in figure 4 where it is seen to only have a relatively slow variation with doping. This can be
directly compared to the low temperature limit of the experimentally determined magnetic susceptibility
[34], which also shows only a relatively slow variation. The results for the susceptibility in this work are
found to lie intermediate between the susceptibility inferred from electronic structure calculations [17] and
the experimental data [34]. Naively, one might have expected that as the doping is changed from electron

Magnetic Susceptibility
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Figure 4. 6

The variation of the calculated magnetic susceptibility with doping é. The susceptibility is given in terms of States per
unit t. With t = 0.6S eV, one finds a susceptibility for § = - 0.1 with magnitude of roughly 3 States /eV, which can be directly
compared with the experimentally [34] determined range of values of 4 to 5 States/eV.

to hole type the fermi-surface of the upper band would sweep through the case of perfect nesting, and the
density of states may have swept through the associated Van Hove singularity. The total quasi-particle
density of states is shown in figure 5, for § = 0, where it can be seen that there exist three structures near
the fermi-energy, a Van Hove singularity at E,, a band edge at

= (B4 +Ep-4t)/2+ [{(Eq -Ep+4t)/2}2+8V'/2
(3.10),

and the highest energy Van Hove singularity is found at
E = (By +Ep)/2+ [{(Eq-Ep)/2}+4V7/2
(3.11).

Only two of these peaks are below the fermi-energy. This is in contrast to the results of paramagnetic band
structure calculations [17], which produce similar structures in the density of states, but where the highest
Van Hove singularity lies roughly 0.1 eV below the fermi energy. This discrepancy is due to the effect of
the electronic correlations which produces a variation in the renormalization of Eq4 ,such as to produce
a sheet of non-hybridizing p bands at the fermi-surface in addition to the sheet due to the hybridized d -
p bands. The non-hybridizing p states contribute a sheet to the fermi-surface given by the solution of

g = 4 |t| cosksa/2 coskya/2
(3.12),

and the hybridized p and d sheet is given by the solution
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Density of States

p(e) (States per unit t)

0 1 A 1 I 1
-1 0 1 2 3 4 5

e ( in units of t)

The encrgy dependence of the quasi-particle density of states. The units are those of quasi-particles states per unit t, and
energy is given in units of t. The zero of energy is defined to be Ep, and the fermi-energy is given by g = 3.05 t. Three structures
are seen to lic in the vicinity of the fermi-encrgy, corresponding to the turning points at (7,7), (7,0) and (0,0). Due to the gauge
transformation performed on the creation and destruction operators, (0,0) corresponds to the X point and (%,7) is the T point
in the standard convention.

cos’ka/2 = _(u-Ep) [(s-Eg)(u - Ep)-4Vicoka/2]
4[ V2@ -Ep) + {t(s - Eq)-2V °} 4t cos’kya/2]

Figure 5.

(3.13).
These sheets of the fermi-surface touch at ky = ky = 2 cos -1(u/4t), for positive values of t as seen in figure
6. The degcneracy of the sheets at this point is due to the non-hybridizing nature of the upper band along
the lines k, = * ky, and will be lifted by the inclusion of the ¢’ terms that were neglected in the above
analysis. The effcct of the combined variation of both the fermi-energy x and Eq4 with § is such that the
hybridized d - p portion of the fermi-surface avoids perfect nesting of the fermi-surface. This is
accomplished since, for positive t the upper p-d band does not hybridize along the lines k, = * ky,
therefore the system may lower its energy by emptying some of the upper band states along other
directions and recovering the bonding energy due to the hybridization. Hence, this explains the relatively
smooth variation of the measured high temperature values of the magnetic susceptibility and linear T
coefficient in the specific heat with doping.

CONCLUSIONS

The phase diagram of the isolated CuO; planes of the high T, Oxide superconductors has been calculated
in the mean field approximation, using the slave boson technique. The mean field approximation is
expected to be exact for the case of infinite degeneracy or vanishing 1/N. This approximation has been
thoroughly investigated in the context of the single impurity Anderson Model, where it is found that an
expansion in powers of 1/N yields good agreement with the exact Bethe Ansatz results [35]. Despite this
agreement, doubt has been cast on the reliability of the mean field approximation [36] in describing
systems with a finite value of N. A study of an exactly soluble atomic system [36] has been performed, for
which there is a phase transition as a function of N. Although the restrictive conditions imposed on the
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The sheets of the fermi-surface given by equations (3.12) and (3.13), found with sclf consistently determined parameters
obtained for the stochiometric system. Two pockets of holes are found centered at (0,0). The fermi-surface shows that the states
associated with points (,0), (0,) are unoccupied allowing the system to take some advantage of the energy lowering due to the
opening up of the hybridization gap.

exactly soluble model do not hold for the Hamiltonian (2.1), some caution should be exercised in judging
the reliability of extrapolating results which are exact in the limit N + =, to the physical values of N.

In the mean field approximation the direct p to p hopping has the effect of moving the boundary between
the coherent and incoherent phases to larger charge transfer energies. Since the band width due to direct
p - p hopping processes is estimated to be much larger than the hybridization V, this represents a
significant factor in determining phase boundaries. The sign of the p-p hopping matrix element, relative
to the p-d hybridization matrix elements, also has a strong effect on the positioning of the phase
boundaries. For the values obtained by tight binding parameterizations of band structure calculations, one
finds that at low temperatures the systems are in the coherent portion of the phase diagram for positive
and negative values of the doping. However, inclusion of the nearest neighbor Coulomb interaction Upg
should increase the tendency for the formation of the incoherent state, and the charge transfer insulating
state could be stabilized at the stochiometric composition. The low temperature insulating behavior
observed experimentally in the stochiometric systems could be attributed to the opening up of a Slater gap
at the fermi-surface, due to the existence of three dimensional magnetic ordering. Thermodynamic
properties found above the ordering temperature, such as the linear T term of the specific heat or Q =
0 magnetic susceptibility show smooth variations with doping [34), indicative of the absence of either strong
variations in many-body correlations or the close proximity of the two dimensional Van Hove singularities
in the density of states with the fermi-energy.
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