Universität Augsburg

Interface Automata with Error States

Ferenc Bujtor and Walter Vogler

Institut FÜr Informatik
D-86135 Augsburg

Copyright © Ferenc Bujtor and Walter Vogler
Institut für Informatik
Universität Augsburg
D-86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg.DE

- all rights reserved -

Interface-Automata with Error States

Ferenc Bujtor and Walter Vogler
Institut für Informatik, Universität Augsburg, D-86135 Augsburg, Germany
bujtor@informatik.uni-augsburg.de vogler@informatik.uni-augsburg.de

Abstract

De Alfaro and Henzinger advocated interface automata to model and study behavioural types, which describe communication patterns of systems while abstracting e.g. from data. They come with a specific parallel composition: if, in some state, one component tries to make an output, which the other one cannot receive, the state is regarded as an error. Error states are removed along with some states leading to them. As refinement relation an alternating simulation is introduced. In this report, we study to what degree this refinement relation is justified by the desires to avoid error states and to support modular refinement. For this, we leave the error states in place and mark them as such instead of removing them in the composition. Our Error-I-O-Transition systems are slightly more general than Interface automata, which are restricted to input determinism. Our basic requirement is: an implementation must be error free, if the specification is. For two different notions of error freeness, we determine the coarsest precongruences contained in the respective basic refinement relations. We characterize these best refinement relations meeting our desirables with trace sets. Thus our precongruences are less discriminating than simulation-based ones. Along the way we point out an error in an early paper by de Alfaro and Henzinger.

1 Introduction

Interface automata as advocated by de Alfaro and Henzinger e.g. in [4] give an abstract description of the communication behaviour of a system specification or process in terms of input and output actions. Based on this behavioural type, one can study whether two systems are compatible if put in parallel, and one can define a refinement for specifications. Essential for such a setting is that the refinement relation is a precongruence for parallel composition; in particular, if we refine two compatible specifications, it must be guaranteed that the refined specifications are compatible again.

Two processes composed in parallel synchronize on their common actions. Since interaction is supposed to be binary, such a common action has to be an output of one process and an input of the other; after synchronization, the action is internalized, i.e. hidden from the environment. Outputs are under the control of the respective process, so the process will not wait for the other one when performing an output. Now the basic idea for compatibility is the following: if, in a state of a parallel composition, one of the two processes tries to synchronize
by performing an output that the other process should but cannot receive, this state is regarded as catastrophic; since the second process is not ready to receive the output, it might malfunction - such an error state has to be avoided. Observe that interface automata are not input enabled as required for the I,O-automata of [8]. Instead, a missing input in a state corresponds to the requirement that a prospective environment must not send this input to this state.

There are two essential design decisions in the approach of [4] that we will scrutinize in this paper. First, this approach follows an optimistic view: an error state in a parallel composition is no problem, if it cannot be reached in a helpful environment. This is reflected in the precise definition of parallel composition: first a more standard composition is determined; then all states are removed that can reach an error state just by locally controlled, i.e. output and internal actions (so-called output pruning). This way, also the last input before reaching an error state is forbidden since its target state is removed. Although this definition has some intuitive justification, its details appear somewhat out of the blue; e.g. the authors of [1] prefer a pessimistic view where every reachable error state is a problem. The second decision to take some alternating simulation as refinement relation also seems somewhat arbitrary. Actually, the same authors used a slightly different relation for a slightly larger class of automata in the earlier [3]; no real argument is given for the change.

In this paper, we will work out to what degree these design decisions can be justified from some more basic and, hopefully, more agreeable ideas. We consider processes modelled by labelled transition systems (LTSs) with disjoint input and output actions and an internal action τ, more or less like the interface automata of [4]. Since we try not to exclude any possibilities prematurely, our LTS have explicit error states; we call them Error-IO Transition Systems or EIO for short. We consider a standard definition of parallel composition where additionally error states occur as described above; a composed system also reaches an error state if one of the components reaches one.

An undisputable requirement for a refinement relation is that an error-free specification should only be refined by an error-free system. This can be understood as a basic refinement relation, which is parametric in the exact meaning of error-free: in the optimistic view, error-free means that no error state can be reached by locally controlled actions only; in the pessimistic view, a system would be error-free only if no error state is reachable at all. In this paper we study the optimistic and a hyper-optimistic meaning of error freeness, while considerations of the pessimistic variant have not been finished yet.

For modular reasoning, which is at the heart of the approach under study, the refinement relation must be a precongruence: if a component of a parallel composition is replaced by a refinement, the composition itself gets refined. Our basic relations fail to be precongruences. Therefore, in each case, we will characterize the precongruence that is fully abstract w.r.t. the respective basic relation and parallel composition, i.e. we will determine the coarsest precongruence for parallel composition that is contained in the basic relation. These precongruences are thus justified by very basic requirements.

It turns out that, in the optimistic case, the precongruence can be characterized as (componentwise) inclusion for a pair of trace sets. Such a pair of sets can best be obtained from a given EIO by performing output pruning on it. Phrased another way, with this precongruence each EIO is equivalent to one without error states - provided that the initial state is not pruned. Essentially, we can work with EIO without error states, i.e. with interface automata and with the parallel composition of [4]. Whenever output pruning removes the initial state of a composition, the components are called incompatible. Thus, as in [4], only compatible systems should be composed, and refining compatible specifications leads indeed to compatible systems.

While this justifies the first design decision in [4], our precongruence shows that alternating simulation is unnecessarily strict. In fact, our precongruence is not really new. A setting with input and outputs where unexpected inputs lead to errors has been studied long before [4] for speed-independent (thus asynchronous) circuits. In this context, essentially the same pair of trace sets has been suggested by Dill in [5]. The difference is that Dill does not start from an operational model as we do, but on a semantic level with pairs of trace sets; he requires these pairs to be input enabled. On this semantic level, he also uses output pruning; a normalized form of his pairs coincides with our pairs (which are in a sense input enabled, although missing inputs in the EIO are so essential). Dill uses transition systems for graphical representation, but (if we are not mistaken) with one exception all of these are deterministic; parallel composition is never performed on transition systems but on pairs of trace sets only.

There is a subtle point about output pruning. Interface automata in [4] are deterministic w.r.t. input actions. Since we do not require this here, our output pruning is a bit different from the one in [4]. In fact, the interface automata in [3] are not input deterministic, but output pruning used there is the same as the one in [4]. As a consequence, Theorem 1 of [3] claiming associativity for parallel composition is wrong. In the settings of [3, 4], associativity is tricky; in our setting with error states, it is dead easy.

It might seem that we have actually prescribed output pruning in our optimistic approach: we consider only locally reachable errors as relevant and output pruning removes exactly those states that can reach an error locally. To consider an alternative, we turn to a 'hyper-optimistic' approach next, where only internally reachable errors are relevant. With this more generous notion of error freeness we obtain a slightly stronger precongruence; but it is still based on output pruning, with the difference that some information about the removed outputs must be retained. This is also a feasible precongruence but, compared to our first one, it looks unnecessarily involved technically.

Currently we are working on the pessimistic approach.

2 Definitions and Notation

First we define our scenario. We use labelled transition systems (LTS) with disjoint input and output actions. The systems can also perform internal, unobserv-
able actions, denoted by τ; in interface automata, internal actions have different names, but semantically these never play a rôle. Additionally, the LTS has a separate set of error states; such states can be created in a parallel composition.

Definition 1 (Error-IO-Transition-System). An Error-IO-Transition-System ($E I O$) is defined as a tuple $S=\left(Q, I, O, \delta, q_{0}, E\right)$, where

- Q - a set of states
- I, O - disjoint sets of input and output actions
$-\delta \subseteq Q \times(I \cup O \cup\{\tau\}) \times Q-$ a transition relation
- $q_{0} \in Q$ - an initial state
- $E \subseteq Q$ - a set of error states

We define the actions of S by $\Sigma:=I \cup O$, and its signature by $\operatorname{Sig}(S)=(I, O)$.
As a shorthand we write Q_{1}, I_{1}, δ_{1} etc. for components of the EIOs S_{1} and Q_{2}, I_{2}, δ_{2} etc. for S_{2} and so on. We also use this notation for semantics like $E T_{1}$ for $E T\left(S_{1}\right)$ as defined later on. We also write $q \xrightarrow{a} p$ for $(q, a, p) \in \delta$ and $q \xrightarrow{a}$ for $\exists p:(q, a, p) \in \delta$. We extend this to sequences $w \in(\Sigma \cup\{\tau\})^{*}$, writing $q \xrightarrow{w} p$, $(q \xrightarrow{w})$ whenever $q \xrightarrow{a_{1}} \xrightarrow{a_{2}} \cdots \xrightarrow{a_{n}} p,\left(q \xrightarrow{a_{1}} \xrightarrow{a_{2}} \cdots \xrightarrow{a_{n}}\right)$ with $w=a_{1} \cdots a_{n}$.
Furthermore we define $\left.w\right|_{B}$ as the projection of an action sequence to a set of actions B. We define $q \stackrel{w}{\Rightarrow} p$ for $w \in \Sigma^{*}$ by $q \stackrel{w}{\Rightarrow} p$ if $\exists w^{\prime}:\left.w^{\prime}\right|_{\Sigma}=w \wedge q \xrightarrow{w^{\prime}} p$. A sequence $q_{0} \xrightarrow{a_{1}} q_{2} \xrightarrow{a_{2}} \cdots q_{n}$ is a run underlying $\left.a_{1} \ldots a_{n-1}\right|_{\Sigma}$.

In a parallel composition, all common actions are first synchronized without hiding, and then they are hidden. Two EIOs can only be composed, if their input and output actions fit together, i.e. the EIOs have neither common inputs nor common outputs.

Definition 2 (Parallel Composition). Two EIOs S_{1}, S_{2} are composable if $I_{1} \cap I_{2}=\emptyset=O_{1} \cap O_{2}$. The parallel composition without hiding is defined for two composable EIOs as $S_{1} \| S_{2}=\left(Q, I, O, \delta, q_{0}, E\right)$, where

$$
\begin{aligned}
& -Q=\left(Q_{1} \times Q_{2}\right) \\
& -I=\left(\left(I_{1} \backslash O_{2}\right) \cup\left(I_{2} \backslash O_{1}\right)\right) \\
& -O=\left(O_{1} \cup O_{2}\right) \\
& -q_{0}=\left(q_{01}, q_{02}\right)
\end{aligned}
$$

Furthermore, with $\operatorname{Synch}\left(S_{1}, S_{2}\right)=\left(I_{1} \cap O_{2}\right) \cup\left(I_{2} \cap O_{1}\right)$ being the set of synchronized actions, we define

$$
\begin{array}{rlr}
-\delta= & \left\{\left(\left(q_{1}, q_{2}\right), \alpha,\left(p_{1}, q_{2}\right)\right) \mid\left(q_{1}, \alpha, p_{1}\right) \in \delta_{1}, \alpha \in\left(\Sigma_{1} \cup\{\tau\}\right) \backslash \operatorname{Synch}\left(S_{1}, S_{2}\right)\right\} \cup \\
& \left\{\left(\left(q_{1}, q_{2}\right), \alpha,\left(q_{1}, p_{2}\right)\right) \mid\left(q_{2}, \alpha, p_{2}\right) \in \delta_{2}, \alpha \in\left(\Sigma_{2} \cup\{\tau\}\right) \backslash \operatorname{Synch}\left(S_{1}, S_{2}\right)\right\} \cup \\
& \left\{\left(\left(q_{1}, q_{2}\right), \alpha,\left(p_{1}, p_{2}\right)\right) \mid\left(q_{1}, \alpha, p_{1}\right) \in \delta_{1},\left(q_{2}, \alpha, p_{2}\right) \in \delta_{2}, \alpha \in \operatorname{Synch}\left(S_{1}, S_{2}\right)\right\} \\
-E= & \left(Q_{1} \times E_{2}\right) \cup\left(E_{1} \times Q_{2}\right) & \text { 'inherited errors' } \\
& \cup\left\{\left(q_{1}, q_{2}\right) \mid \exists a \in O_{1} \cap I_{2}: q_{1} \xrightarrow[\rightarrow]{a} \wedge q_{2} \nrightarrow\right\} \\
& \cup\left\{\left(q_{1}, q_{2}\right) \mid \exists a \in I_{1} \cap O_{2}: q_{1} \rightarrow \wedge q_{2} \rightarrow\right\} & \text { 'new errors' }
\end{array}
$$

The parallel composition (with hiding) $S_{1} \mid S_{2}$ differs only in the definition of its outputs and its transition function.

$$
\begin{aligned}
-O= & \left(\left(O_{1} \backslash I_{2}\right) \cup\left(O_{2} \backslash I_{1}\right)\right) \\
\delta= & \left\{\left(\left(q_{1}, q_{2}\right), \alpha,\left(p_{1}, q_{2}\right)\right) \mid\left(q_{1}, \alpha, p_{1}\right) \in \delta_{1}, \alpha \in\left(\Sigma_{1} \cup\{\tau\}\right) \backslash \operatorname{Synch}\left(S_{1}, S_{2}\right)\right\} \cup \\
& \left\{\left(\left(q_{1}, q_{2}\right), \alpha,\left(q_{1}, p_{2}\right)\right) \mid\left(q_{2}, \alpha, p_{2}\right) \in \delta_{2}, \alpha \in\left(\Sigma_{2} \cup\{\tau\}\right) \backslash \operatorname{Synch}\left(S_{1}, S_{2}\right)\right\} \cup \\
& \left\{\left(\left(q_{1}, q_{2}\right), \tau,\left(p_{1}, p_{2}\right)\right) \mid\left(q_{1}, \alpha, p_{1}\right) \in \delta_{1},\left(q_{2}, \alpha, p_{2}\right) \in \delta_{2}, \alpha \in \operatorname{Synch}\left(S_{1}, S_{2}\right)\right\}
\end{aligned}
$$

Again we introduce a shorthand S_{12} for $S_{1} \mid S_{2}$ and use it accordingly for its components and semantics.

For our results and proofs, we also define | and || as parallel composition on traces with and without hiding respectively.
Definition 3 (Parallel Composition on Traces). Given two composable EIOs $S_{1}, S_{2}, w_{1} \in \Sigma_{1}^{*}, w_{2} \in \Sigma_{2}^{*}, W_{1} \subseteq \Sigma_{1}$ and $W_{2} \subseteq \Sigma_{2}$, we define
$-w_{1} \| w_{2}=\left\{w \in\left(\Sigma_{1} \cup \Sigma_{2}\right)^{*}|w|_{\Sigma_{1}}=\left.w_{1} \wedge w\right|_{\Sigma_{2}}=w_{2}\right\}$
$-w_{1} \mid w_{2}=\left\{\left.w\right|_{\Sigma_{12}} \mid w \in w_{1} \| w_{2}\right\}$
$-W_{1} \| W_{2}=\bigcup\left\{w_{1} \| w_{2} \quad \mid \quad w_{1} \in W_{1} \wedge w_{2} \in W_{2}\right\}$
$-W_{1} \mid W_{2}=\bigcup\left\{w_{1}\left|w_{2} \quad\right| \quad w_{1} \in W_{1} \wedge w_{2} \in W_{2}\right\}$
We will base our semantics on traces that can lead to error states. In this context, we will use a pruning function, which removes all output actions from the end of a trace. We also define a function for arbitrary continuation of traces; for trace sets, this generalizes to describing the continuation or suffix closure.

Definition 4 (Pruning and Continuation Functions). Given an EIO S, we define

- prune: $\Sigma^{*} \rightarrow \Sigma^{*}, w \mapsto u$, where $w=u v, u=\varepsilon \vee u \in \Sigma^{*} \cdot I$ and $v \in O^{*}$
- cont : $\Sigma^{*} \rightarrow \mathfrak{P}\left(\Sigma^{*}\right), w \mapsto\left\{w u \mid u \in \Sigma^{*}\right\}$
- cont $: \mathfrak{P}\left(\Sigma^{*}\right) \rightarrow \mathfrak{P}\left(\Sigma^{*}\right), L \mapsto\{\operatorname{cont}(w) \mid w \in L\}$

For composable EIOs S_{1} and S_{2}, consider a run of their parallel composition $S_{1} \| S_{2}$ that justifies statement $\left(q_{1}, q_{2}\right) \stackrel{w}{\Rightarrow}\left(p_{1}, p_{2}\right)$ for $w \in \Sigma^{*}$. It is well known and not difficult to see that such a run can be projected to runs of S_{1} and S_{2}, passing through all the first, second resp., components of the states of the composed run. These projected runs justify $q_{i} \stackrel{w_{i}}{\Rightarrow} p_{i}$ with $\left.w\right|_{\Sigma_{i}}=w_{i}, i=1,2$. Vice versa, any two runs of S_{1} and S_{2} justifying $q_{i} \stackrel{w_{i}}{\Rightarrow} p_{i}$ with $\left.w\right|_{\Sigma_{i}}=w_{i}, i=1,2$, are projections of a unique run of $S_{1} \| S_{2}$ justifying $\left(q_{1}, q_{2}\right) \stackrel{w}{\Rightarrow}\left(p_{1}, p_{2}\right)$. From this, the first claim of the next Lemma follows.

Each run of $S_{1} \| S_{2}$ corresponds to one of $S_{1} \mid S_{2}-$ simply replace some actions by τ. We also call the projected runs of the former the projections of the latter. ${ }^{1}$ In such a case, we also say that the $q_{i} \stackrel{w_{i}}{\Rightarrow} p_{i}, i=1,2$, are the projections of $\left(q_{1}, q_{2}\right) \stackrel{w^{\prime}}{\Rightarrow}\left(p_{1}, p_{2}\right)$ in $S_{1} \mid S_{2}$, where $w^{\prime} \in w_{1} \mid w_{2}$. These considerations justify the second claim of the next Lemma.

[^0]Lemma 5 (Basic Language of Composition) For two composable EIOs S_{1} and S_{2}, we have

1. $L\left(S_{1} \| S_{2}\right)=L\left(S_{1}\right) \| L\left(S_{2}\right)$
2. $L\left(S_{1} \mid S_{2}\right)=L\left(S_{1}\right) \mid L\left(S_{2}\right)$.

3 Local Errors

We are now ready to consider some basic relations for refinement of a specification. We will use variations of the notation ' $I m p l \sqsubseteq^{B} S p e c$ ' to denote that $I m p l$ in some basic sense is an implementation of, i.e. refines, the specification Spec. Throughout, we require $I m p l$ and $S p e c$ to have the same signature.

3.1 Precongruence for Local Errors

In this section, we will start with a variant based on 'local actions', which are all internal and output actions. We consider the following requirement: An implementation can only have an error state reachable by local actions if the specification does so as well. This is an optimistic view: It only considers processes to be dangerous, if they can run into an error on their own, i.e. using only local actions. Formally:

Definition 6 (Local Basic Relation). An error is locally reachable in an $\operatorname{EIO} S$, if $\exists w \in O^{*}: w \in S t T(S)$. We have $I m p l \sqsubseteq_{l o c}^{B} S p e c$, whenever an error is locally reachable in $I m p l$ only if an error is locally reachable in Spec.

We denote the fully abstract precongruence with respect to $\sqsubseteq_{l o c}^{B}$ and | by $\sqsubseteq_{l o c}^{c}$

In order to find the coarsest precongruence, we will need several trace sets for characterizing the new precongruences. An EIO can reach an error state with a strict error trace w; if in a parallel composition the environment provides the inputs and accepts the outputs in w, the composition will reach an error state as well. If an EIO can perform a trace w such that input a is not possible in the state reached, then $w a$ is a missing input trace; again, if an environment provides the inputs and accepts the outputs in $w a$, the composition will reach an error state when the environment produces a.

Definition 7 (Error Traces). We define the following trace sets for an EIO S :

- strict error traces: $\operatorname{StT}(S)=\left\{w \in \Sigma^{*} \mid q_{0} \stackrel{w}{\Rightarrow} q \in E\right\}$
- pruned error traces: $\operatorname{Pr} T(S)=\{$ prune $(w) \mid w \in S t T(S)\}$
- missing input traces: $\operatorname{MIT}(S)=\left\{w a \in \Sigma^{*} \mid q_{0} \stackrel{w}{\Rightarrow} q \wedge a \in I \wedge q \nrightarrow\right\}$
- basic language: $L(S)=\left\{w \in \Sigma^{*} \mid q_{0} \stackrel{w}{\Rightarrow}\right\}$

Now the coarsest precongruence can be characterized with the following local error semantics; the intuitions are as follows. Errors arise in a composition because a component performs a strict error trace or because it cannot accept some input after a trace; in the first case, the error is already unavoidable if the error state can be reached by local actions only. These ideas justify our interest in traces that lead to errors and the use of PrT and $M I T$ in the definition of $E T$ below. But as already explained above, the environment must take part in such problematic behaviour, hence we are also interested in the basic language of a system.

If along a trace an error can occur, it does not matter anymore whether the trace itself leads to an error state or whether it can be performed at all. Thus, we want to obliterate this information about the trace itself; for this purpose, we close the set of problematic traces under continuation, and we include this extended set in the language; this technique of flooding is well known e.g. in the context of failures semantics [2].

It will turn out that we can characterize $\sqsubseteq_{l o c}^{c}$ as componentwise set inclusion for pairs $(E T(S), E L(S))$; we introduce a sign for this relation.

Definition 8 (Local Error Semantics). Let S be an EIO.

- The set of error traces of S is $E T(S)=\operatorname{cont}(\operatorname{PrT}(S)) \cup \operatorname{cont}(M I T(S))$;
- the flooded language of S is $E L(S)=L(S) \cup E T(S)$.

For two EIOs Impl and Spec with the same signature, we write

$$
I m p l \sqsubseteq_{l o c} S p e c \text { if } E T(I m p l) \subseteq E T(S p e c) \text { and } E L(I m p l) \subseteq E L(S p e c)
$$

and we call Impl and Spec local-error equivalent if $I m p l \sqsubseteq_{l o c} S p e c$ and $S p e c \sqsubseteq_{l o c}$ Impl.

For the characterization result, it is crucial that the local error semantics is compositional.

Theorem 9 (Local Error Semantics for Composition) For two composable

 EIOs S_{1}, S_{2} and $S_{12}=S_{1} \mid S_{2}$ we have:1. $E T_{12}=\operatorname{cont}\left(\operatorname{prune}\left(\left(E T_{1} \mid E L_{2}\right) \cup\left(E L_{1} \mid E T_{2}\right)\right)\right)$
2. $E L_{12}=\left(E L_{1} \mid E L_{2}\right) \cup E T_{12}$

Proof. 1.a) ' \subseteq ':
Since both sides are closed under cont, it suffices to consider a prefix-minimal element w of $E T_{12}$. This means w is in $M I T_{12}$ or in $\operatorname{Pr} T_{12}$.

First we consider the case, that $w \in M I T_{12}$:
We know that $w=x a$ with $\left(q_{01}, q_{02}\right) \stackrel{x}{\Rightarrow}\left(q_{1}, q_{2}\right) \stackrel{q}{\Rightarrow}, a \in I_{12}$. Since $a \in I_{12}$, it holds that $a \in I_{1} \cup I_{2}$ and $a \notin O_{1} \cup O_{2}$. Let w.l.o.g. $a \in I_{1}$. Thus by projection we get $q_{01} \stackrel{x_{1}}{\Rightarrow} q_{1} \xrightarrow{q}$ and $q_{02} \stackrel{x_{2}}{\Rightarrow}$ (i.e. $x_{2} \in L_{2}$) with $x \in x_{1} \mid x_{2}$. Thus we know that $x_{1} a \in E T_{1}$ and $x_{2} \in L_{2} \subseteq E L_{2}$, and it follows that $w \in\left(x_{1} \mid x_{2}\right) \cdot\{a\} \subseteq$ $x_{1} a\left|x_{2} \subseteq E T_{1}\right| E L_{2}$, which is contained in the r.h.s. set.

Now we get to the second case: $w \in \operatorname{Pr} T_{12}$
In this case we know that there exists $u \in O_{12}^{*}$ such that $\left(q_{01}, q_{02}\right) \stackrel{w}{\Rightarrow}\left(q_{1}, q_{2}\right) \stackrel{u}{\Rightarrow}$ $\left(q_{1}^{\prime}, q_{2}^{\prime}\right)$ with $\left(q_{1}^{\prime}, q_{2}^{\prime}\right) \in E_{12}$ and $w=\operatorname{prune}(w u)$.

By projection we get $q_{01} \stackrel{w_{1}}{\Rightarrow} q_{1} \stackrel{u_{1}}{\Rightarrow} q_{1}^{\prime}$ and $q_{02} \stackrel{w_{2}}{\Rightarrow} q_{2} \stackrel{u_{2}}{\Rightarrow} q_{2}^{\prime}$ with $w \in w_{1} \mid w_{2}$ and $u \in u_{1} \mid u_{2}$. Since $\left(q_{1}^{\prime}, q_{2}^{\prime}\right) \in E_{12}$ it follows that either $\left(q_{1}^{\prime}, q_{2}^{\prime}\right)$ is an inherited error, due to $q_{1}^{\prime} \in E_{1}$ or $q_{2}^{\prime} \in E_{2}$ or it is a new error due to some $a \in O_{1} \cap I_{2}$ with $q_{1}^{\prime} \xrightarrow{a} \wedge q_{2}^{\prime} \xrightarrow{q}$ or some $a \in I_{1} \cap O_{2}$ with $q_{1}^{\prime} \xrightarrow{q} \wedge q_{2}^{\prime} \xrightarrow{a}$.

If it is an inherited error, then let $q_{1}^{\prime} \in E_{1}$ w.l.o.g. Thus we know that $w_{1} u_{1} \in$ $E T_{1}$. Because of $q_{02} \stackrel{w_{2} u_{2}}{\Rightarrow}$, we get $w_{2} u_{2} \in L_{2} \subseteq E L_{2}$. Hence $w u \in E T_{1} \mid E L_{2}$ and $w=\operatorname{prune}(w u)$ is in the r.h.s. set.

If $\left(q_{1}^{\prime}, q_{2}^{\prime}\right)$ is a new error, let w.l.o.g. $a \in I_{1} \cap O_{2}$ with $q_{1}^{\prime} \xrightarrow[\rightarrow]{q} \wedge q_{2}^{\prime} \xrightarrow{a}$. Thus we know that $w_{1} u_{1} a \in M I T_{1} \subseteq E T_{1}$ and $w_{2} u_{2} a \in L_{2} \subseteq E L_{2}$. By definition of \mid we know that $w_{1} u_{1} a\left|w_{2} u_{2} a=w_{1} u_{1}\right| w_{2} u_{2}$ and thus we are done as above.
1.b) ' $?$ ':

It should be noted that $S_{1} \| S_{2}$ an $S_{1} \mid S_{2}$ have the same states, error states and input actions. Consequently, using the prune-function on some trace of $S_{1} \| S_{2}$ yields $v=\varepsilon$ or v ending on some $b \in I_{12}=I_{S_{1} \mid S_{2}}$.

Again it suffices to consider a prefix-minimal element x. For such an x it holds that:
$x \in \operatorname{prune}\left(\left(E T_{1} \mid E L_{2}\right) \cup\left(E T_{2} \mid E L_{1}\right)\right)$
Since x is the result of the prune function, we consider $x y \in\left(E T_{1} \mid E L_{2}\right) \cup\left(E T_{2} \mid\right.$ $\left.E L_{1}\right)$ with $y \in O_{12}^{*}$. W.l.o.g we assume $x y \in E T_{1} \mid E L_{2}$, i.e. there is $w_{1} \in E T_{1}$ and $w_{2} \in E L_{2}$ with $x y \in w_{1} \mid w_{2}$. We also get $w \in w_{1} \| w_{2}$ such that $\left.w\right|_{\Sigma_{12}}=x y$.

Below, we will treat several cases, and in each case we will show that there is some $v \in \operatorname{Pr} T\left(S_{1} \| S_{2}\right) \cup \operatorname{MIT}\left(S_{1} \| S_{2}\right)$ which is a prefix of w and either ends on an input action of $S_{1} \mid S_{2}$ or is ε. In both cases $\left.v\right|_{\Sigma_{12}}$ is a prefix of x. In case of $\left.v\right|_{\Sigma_{12}}=\varepsilon$, the latter is obvious. Otherwise $\left.v\right|_{\Sigma_{12}}$ ends on some input action $b \in I_{12}$ and it has to be a prefix of $x y$ by construction of w. Since $y \in O_{12}^{*}$, this $\left.v\right|_{\Sigma_{12}}$ has to be a prefix of x. Therefore x has a prefix in $\operatorname{Pr} T\left(S_{1} \mid S_{2}\right) \cup M I T\left(S_{1} \mid S_{2}\right)$ and we are done.

Let v_{1} be the shortest prefix of w_{1} that is in $\operatorname{Pr} T_{1} \cup M I T_{1}$. If $w_{2} \in L_{2}$, let $v_{2}=w_{2}$; otherwise, let v_{2} be the shortest prefix of w_{2} that is in $\operatorname{Pr} T_{2} \cup M I T_{2}$. Every action of v_{1} and v_{2} has its corresponding action in w. We now assume that $v_{2}=w_{2} \in L_{2}$ or the last action of v_{1} is before or the same as the last action of v_{2}. Otherwise, $v_{2} \in \operatorname{Pr} T_{2} \cup M I T_{2}$ ends before v_{1} and this is analogous to the case where v_{1} ends before v_{2}. (Note that the case $v_{2}=w_{2} \in L_{2}$ is needed to cover the situation where w_{2} ends before v_{1}, but is not an error trace).

If $v_{1}=\varepsilon$, then choose $v_{2}^{\prime}=v^{\prime}=\varepsilon$.
If $v_{1} \neq \varepsilon$, then v_{1} by choice ends with some $a \in I_{1}$, i.e. $v_{1}=v_{1}^{\prime} a$. Let v^{\prime} be the prefix of w that ends with the last action of v_{1} and let $v_{2}^{\prime}=\left.v^{\prime}\right|_{\Sigma_{2}}$. If $v_{2} \in L_{2} \cup \operatorname{Pr} T_{2}$, then v_{2}^{\prime} is a prefix of v_{2}. If $v_{2} \in M I T_{2}$ then it ends with some $b \in I_{2}$, i.e. $b \neq a$; according to the above assumption, in this case v_{1} must end before v_{2} and v_{2}^{\prime} is a proper prefix of v_{2}.

In all cases (including the case $v_{1}=\varepsilon$), we get $\left({ }^{*}\right) q_{02} \stackrel{v_{2}^{\prime}}{\Rightarrow}$. Furthermore, $v_{2}^{\prime}=\left.v^{\prime}\right|_{\Sigma_{2}}$ is a prefix of v_{2}, and $v^{\prime} \in v_{1} \| v_{2}^{\prime}$ is a prefix of w. Now we have to consider two cases:

First we consider the case, that $v_{1} \in M I T_{1}$ (and $v_{1} \neq \varepsilon$ in this case):
In this case we have $q_{01} \stackrel{v_{1}^{\prime}}{\Rightarrow} q_{1} \xrightarrow{q}$ and we let $v^{\prime}=v^{\prime \prime} a$. We have to consider two subcases:
(i) If a is not a synchronizing action, i.e. $a \notin \Sigma_{2}$, then by $\left(^{*}\right) q_{02} \stackrel{v_{2}^{\prime}}{\Rightarrow} q_{2}$ with $v^{\prime \prime} \in v_{1}^{\prime} \| v_{2}^{\prime}$. Therefore $\left(q_{01}, q_{02}\right) \stackrel{v^{\prime \prime}}{\Rightarrow}\left(q_{1}, q_{2}\right) \xrightarrow{q}$ with $a \in I_{12}$. Thus we can choose $v:=v^{\prime \prime} a=v^{\prime} \in \operatorname{MIT}\left(S_{1} \| S_{2}\right)$.
(ii) If $a \in \Sigma_{2}$, then $a \in O_{2}$ and $v_{2}^{\prime}=v_{2}^{\prime \prime} a$. By $\left(^{*}\right) q_{02} \stackrel{v_{2}^{\prime \prime}}{\Rightarrow} q_{2} \xrightarrow{a}$ with $v^{\prime \prime} \in v_{1}^{\prime} \| v_{2}^{\prime \prime}$. Thus, $\left(q_{01}, q_{02}\right) \stackrel{v^{\prime \prime}}{\Rightarrow}\left(q_{1}, q_{2}\right)$ with $q_{1} \nrightarrow, a \in I_{1}, q_{2} \xrightarrow{a}$ and $a \in O_{2}$; hence $\left(q_{1}, q_{2}\right) \in E_{12}$. In this case we choose $v:=\operatorname{prune}\left(v^{\prime \prime}\right) \in \operatorname{Pr} T\left(S_{1} \| S_{2}\right)$.

The second case is $v_{1} \in \operatorname{Pr} T_{1}$ (where we might have $v_{1}=\varepsilon$).
In this case $\exists u_{1} \in O_{1}^{*}: q_{01} \stackrel{v_{1}}{\Rightarrow} q_{1} \stackrel{u_{1}}{\Rightarrow} q_{1}^{\prime}$ with $q_{1}^{\prime} \in E_{1}$.
Again $q_{02} \stackrel{v_{2}^{\prime}}{\Rightarrow} q_{2}$, this time with $\left(q_{01}, q_{02}\right) \stackrel{v^{\prime}}{\Rightarrow}\left(q_{1}, q_{2}\right)$. We have two subcases depending on 'how long' q_{2} can 'take part' in u_{1}.
(i) There is some $u_{2} \in\left(O_{1} \cap I_{2}\right)^{*}$ and some $c \in\left(O_{1} \cap I_{2}\right)$ such that $u_{2} c$ is a prefix of $\left.u_{1}\right|_{I_{2}}$ with $q_{2} \stackrel{u_{2}}{\Rightarrow} q_{2}^{\prime} q$.
Consider the prefix $u_{1}^{\prime} c$ of u_{1} with $\left.u_{1}^{\prime} c\right|_{I_{2}}=u_{2} c$. We know that $q_{1} \xrightarrow{u_{1}^{\prime}} q_{1}^{\prime \prime} \xrightarrow{c}$. Then $u_{1}^{\prime} \in u_{1}^{\prime} \| u_{2}$ and $\left(q_{1}, q_{2}\right) \stackrel{u_{1}^{\prime}}{\Rightarrow}\left(q_{1}^{\prime \prime}, q_{2}^{\prime}\right) \in E_{12}$, i.e. we get a new error. We can choose $v:=\operatorname{prune}\left(v^{\prime} u_{1}^{\prime}\right) \in \operatorname{Pr} T\left(S_{1} \| S_{2}\right)$, which is a prefix of v^{\prime}, since $u_{1}^{\prime} \in O_{1}^{*}$.
(ii) Otherwise we have $q_{2} \stackrel{u_{2}}{\Rightarrow} q_{2}^{\prime}$ with $u_{2}=\left.u_{1}\right|_{I_{2}}$. Then $u_{1} \in u_{1} \| u_{2}$ and $\left(q_{1}, q_{2}\right) \stackrel{u_{1}}{\Rightarrow}\left(q_{1}^{\prime}, q_{2}^{\prime}\right) \in E_{12}$. This is an error inherited from S_{1}. Therefore we can again choose $v:=\operatorname{prune}\left(v^{\prime} u_{1}\right) \in \operatorname{Pr} T\left(S_{1} \| S_{2}\right)$, which again is a prefix of v^{\prime}.
2. Observe that: $L_{i} \subseteq E L_{i}$ and $E T_{i} \subseteq E L_{i}$. For better readability, we start from the right hand side of the equation:

$$
\begin{aligned}
& \left(E L_{1} \mid E L_{2}\right) \cup E T_{12}= \\
& \left(\left(L_{1} \cup E T_{1}\right) \mid\left(L_{2} \cup E T_{2}\right)\right) \cup E T_{12}= \\
& \underbrace{\left(L_{1} \mid E T_{2}\right)}_{\subseteq E T_{12}(1)} \cup \underbrace{\left(E T_{1} \mid L_{2}\right)}_{\subseteq E T_{12}} \cup\left(L_{1} \mid L_{2}\right) \cup \underbrace{\left(E T_{1} \mid E T_{2}\right)}_{\subseteq E T_{12}} \cup E T_{12}= \\
& \left(L_{1} \mid L_{2}\right) \cup E T_{12} \stackrel{5.2}{=} L_{12} \cup E T_{12}=E L_{12}
\end{aligned}
$$

The above theorem implies that $\sqsubseteq_{l o c}$ is a precongruence. The main point is now to show that it is the coarsest one. To show this, we will construct a test environment U for each relevant trace w of $I m p l$ that reveals that w is also a suitable trace of Spec.

Theorem 10 (Full Abstractness for Local Error Semantics) For two systems Impl and Spec with the same signature it holds that:
Impl $\sqsubseteq_{l o c}^{c} S p e c \Leftrightarrow I m p l \sqsubseteq_{l o c} S p e c$
Proof. As just noted, it follows easily from Theorem 9 that $\sqsubseteq_{l o c}$ is a precongruence. Furthermore, $\varepsilon \in E T(S)$ signifies that an error is locally reachable in S, since this can only result from $\varepsilon \in \operatorname{Pr} T(S)$. Hence, Impl $\sqsubseteq_{l o c} S p e c$ implies that $\varepsilon \in E T(S p e c)$ whenever $\varepsilon \in E T(I m p l)$, and thus also that $\operatorname{Impl} \sqsubseteq_{l o c}^{B} S p e c$.

It remains to show that Impl $\sqsubseteq_{l o c}^{c} S p e c \Rightarrow$ Impl $\sqsubseteq_{l o c}$ Spec. Since Impl and Spec have the same signature, we will write I for $I_{I m p l}=I_{S p e c}$ and O for $O_{\text {Impl }}=O_{\text {Spec }}$ throughout this proof.
We assume Impl $\sqsubseteq_{l o c}^{c} S p e c$, hence $\operatorname{Impl} \sqsubseteq_{l o c}^{B} S p e c$ and $\operatorname{Impl}\left|U \sqsubseteq_{l o c}^{B} S p e c\right| U$ for all EIOs U composable with Impl.
We have to show the following inclusions:

$$
\begin{aligned}
& -E T(\text { Impl }) \subseteq E T(S p e c) \\
& -E L(\text { Impl }) \subseteq E L(S p e c)
\end{aligned}
$$

For the first inclusion we consider a prefix minimal element $w \in E T$ (Impl). It suffices to show that w or any of its prefixes is in $E T$ (Spec).
If $w=\varepsilon$, then an error state is locally reachable in Impl, hence also in Spec, because of Impl $\sqsubseteq_{l o c}^{B}$ Spec. Therefore $\varepsilon \in \operatorname{Pr} T(S p e c)$.
So we assume that $w=x_{1} \cdots x_{n} x_{n+1} \in \Sigma^{+}$with $n \geq 0$ and $x_{n+1} \in I$. We consider the following process U (see Fig. 1):
$-Q_{U}=\left\{q_{0}, q_{1}, \ldots q_{n+1}\right\}$
$-I_{U}=O$
$-O_{U}=I$
$-q_{0 U}=q_{0}$
$-E_{U}=\emptyset$
$-\delta_{U}=\left\{\left(q_{i}, x_{i+1}, q_{i+1}\right) \mid 0 \leq i \leq n\right\} \cup\left\{\left(q_{i}, x, q_{n+1}\right) \mid x \in I_{U} \backslash\left\{x_{i+1}\right\}, 0 \leq i \leq\right.$ $n\} \cup\left\{\left(q_{n+1}, a, q_{n+1}\right) \mid a \in I_{U}\right\}$

For w we can distinguish two cases. Both will lead to $\varepsilon \in \operatorname{StT}(\operatorname{Impl} \mid U)$.
If $w \in M I T(\operatorname{Impl})$, then in Impl $\| U$ we have $\left(q_{0 I m p l}, q_{0}\right) \stackrel{x_{1} \cdots x_{n}}{\Rightarrow}\left(q^{\prime}, q_{n}\right)$ with $q^{\prime} \xrightarrow{x_{n+1}}$ and $q_{n} \xrightarrow{x_{n+1}}$. Therefore $\left(q^{\prime}, q_{n}\right) \in E_{\text {Impl|U }}$ and $\varepsilon \in S t T(\operatorname{Impl} \mid U)$.
If $w \in \operatorname{Pr} T(\operatorname{Impl})$, then in Impl $\| U$ we have $\left(q_{0 I m p l}, q_{0}\right) \stackrel{w}{\Rightarrow}\left(q^{\prime \prime}, q_{n+1}\right) \stackrel{u}{\Rightarrow}$ $\left(q^{\prime}, q_{n+1}\right)$ with some $u \in O^{*}$ and $q^{\prime} \in E_{\text {Impl }}$. The latter implies $\left(q^{\prime}, q_{n+1}\right) \in$ $E_{\text {Impl|U }}$, and again $\varepsilon \in S t T(I m p l \mid U)$.
Since we now know that $\varepsilon \in S t T(\operatorname{Impl} \mid U)$, we also know from $\operatorname{Impl} \mid U \sqsubseteq_{l o c}^{B}$ Spec $\mid U$ that there is a locally reachable error in $S p e c \mid U$ as well.
There are two kinds of error states Spec $\mid U$ can have: new or inherited. Since

Fig. 1. $\quad x ? \neq x_{i}$ indicates all $x \in I_{U} \backslash\left\{x_{i}\right\}, \quad x_{n+1}$! indicates $x_{n+1} \in O_{U}$
each state of U enables every $x \in O=I_{U}$, a locally reachable new error has to be one where U enables an output $a \in O_{U}$ which is not enabled in Spec. By construction q_{n+1} enables no outputs, therefore such a new error state has to be of the form $\left(q^{\prime}, q_{i}\right)$ with $i \leq n, q^{\prime} \xrightarrow{q_{i}+1}$ and $x_{i+1} \in O_{U}=I$. Thus, by projection $q_{0 S p e c} \stackrel{x_{1} \cdots x_{i}}{\Rightarrow} q^{\prime} \xrightarrow{x_{i}+1}$ and therefore $x_{1} \cdots x_{i+1} \in M I T($ Spec $) \subseteq E T($ Spec $)$ is a prefix of w and we are done.
If the locally reachable error is due to an inherited error state, then by projection U has performed some $x_{1} \cdots x_{i} u$ with $u \in I_{U}^{*}=O^{*}$ (possibly $i=0$) and hence so has Spec. With this, Spec has reached some state in $E_{S p e c}$. Therefore $\operatorname{prune}\left(x_{1} \cdots x_{i} u\right)=\operatorname{prune}\left(x_{1} \cdots x_{i}\right) \in S t T(S p e c)$. Again this is a prefix of w and in $E T$ (Spec) and we are done.

For the second inclusion it suffices to show $L($ Impl $) \backslash E T($ Impl $) \subseteq E L(S p e c)$, because of the first inclusion and the definition of $E L$.
For this we consider a $w \in L(I m p l) \backslash E T(I m p l)$ and show that it is in $E L(S p e c)$. If $w=\varepsilon$ we are done, since ε always is in $E L(S p e c)$. Therefore we consider $w=x_{1} \cdots x_{n}$ with $n \geq 1$ and construct an EIO U (illustrated in Fig. 2) with:
$-Q_{U}=\left\{q, q_{0}, q_{1}, \ldots q_{n}\right\}$
$-I_{U}=O$
$-O_{U}=I$
$-q_{0 U}=q_{0}$

- $E_{U}=\left\{q_{n}\right\}$
$-\delta_{U}=\left\{\left(q_{i}, x_{i+1}, q_{i+1}\right) \mid 0 \leq i<n\right\} \cup\left\{\left(q_{i}, x, q\right) \mid x \in I_{U} \backslash\left\{x_{i+1}\right\}, 0 \leq i \leq\right.$ $n\} \cup\left\{(q, x, q) \mid x \in I_{U}\right\}$

Because of $q_{0 \text { Impl }} \stackrel{w}{\Rightarrow} q$ we know that $I m p l \mid U$ has a locally reachable error. Thus, because of $\mathrm{Impl}\left|U \sqsubseteq_{l o c}^{c} S p e c\right| U$, Spec also has to have a locally reachable error state. Firstly this could be a new error because of some $x_{i} \in O_{U}$ and $q_{0 S p e c} \stackrel{x_{1} \cdots x_{i-1}}{\Rightarrow} q^{\prime} \xrightarrow{x_{i}}$. In this case $x_{1} \cdots x_{i} \in \operatorname{MIT}($ Spec $)$ and thus $w \in$ $E L(S p e c)$. Note, that outputs of U are only enabled along this trace. Therefore there are no other outputs of U, which could lead to a new error.
Secondly it could be a new error due to some $a \in O_{\text {Spec }}$, which U could not

Fig. 2. Here and in the following error states are marked with a box.
match. But the only state of U in which not all inputs are enabled is q_{n}, which already is an error state. If this state is reachable in $S p e c \mid U$, then the composed EIO has an inherited error and thus $w \in L(S p e c) \subseteq E L(S p e c)$
Thirdly it can be an error inherited from U. Since the only state in E_{U} is q_{n} and all actions are synchronized, this is only possible if $q_{0 S p e c} \stackrel{x_{1} 1{ }^{x_{n}}}{\Rightarrow}$. In this case $w \in L(S p e c)$ and we are done.
Finally, the error could have been inherited from Spec. In this case $q_{0 S p e c} \stackrel{x_{1} \cdots{ }_{x}{ }_{i} u}{\Rightarrow}$ $q^{\prime} \in E_{\text {Spec }}$, for some $i \geq 0$ and $u \in O^{*}$. This means that $x_{1} \cdots x_{i} u \in S t T$ (Spec) and thus prune $\left(x_{1} \cdots x_{i} u\right)=\operatorname{prune}\left(x_{1} \cdots x_{i}\right) \in \operatorname{Pr} T($ Spec $) \subseteq E L($ Spec $)$. Hence again $w \in E L(S p e c)$ and we are done.

3.2 Comparison to Interface Automata

Up to local-error equivalence, we can essentially work with EIOs without error states. Such EIOs are exactly the interface automata of [4], if they additionally are input-deterministic: if $q \xrightarrow{a} q^{\prime}$ and $q \xrightarrow{a} q^{\prime \prime}$ for some $a \in I$, then $q^{\prime}=q^{\prime \prime}$. The only difference is that with EIOs without error states we do not have EIOs anymore that, from the local point of view, are an error initially.

Theorem 11 (Removing Error States) Let S be an EIO, and let prune(S) be obtained from S by removing the illegal states in illegal $(S)=\{q \in Q \mid$ an error state is reachable from q by local actions\}, the respective transitions and all transitions $q \xrightarrow{a} q^{\prime}$ where $a \in I$ and there is some $q \xrightarrow{a} q^{\prime \prime}$ with $q^{\prime \prime} \in \operatorname{illegal}(S)$. If $q_{0} \notin \operatorname{illegal}(S)$, prune (S) is an EIO and local-error equivalent to S.

Output pruning in [4] only removes the illegal states and the respective transitions. The additional removal of transitions $q \xrightarrow{a} q^{\prime}$ as described in the theorem is obviously redundant in case of input determinism.

Proof. We assume $q_{0} \notin \operatorname{illegal}(S)$; then the claim about $\operatorname{prune}(S)$ being an EIO is obvious.

For $S \sqsubseteq_{\text {loc }} \operatorname{prune}(S)$, consider some $w \in \operatorname{Pr} T(S)$ and a suitable underlying run $q_{0} \xrightarrow{a_{1}} q_{1} \xrightarrow{a_{2}} \cdots q_{n}$. Observe that q_{n} is an illegal state and missing in $\operatorname{prune}(S)$. So let q_{i} be the first state on the run such that $q_{i} \xrightarrow{a_{i+1}} q_{i+1}$ is missing
in $\operatorname{prune}(S)$. This means that q_{i} is not illegal, a_{i+1} is an input, and some q with $q_{i} \xrightarrow{a_{i+1}} q$ is illegal. This implies that some prefix of w is in $\operatorname{MIT}(\operatorname{prune}(S))$, and $w \in E T($ prune $(S))$.

For $w a \in M I T(S)$, we argue similarly. Either some suitable run underlying w is still in $\operatorname{prune}(S)$ and $w a \in \operatorname{MIT}(\operatorname{prune}(S))$, or some transition of the run is missing in $\operatorname{prune}(S)$ and $w a$ has a prefix in $\operatorname{MIT}($ prune (S)). Thus, $E T(S) \subseteq$ ET(prune (S)).

Analogously for $w \in L(S)$, either some run underlying w is still in prune (S) and $w \in L(\operatorname{prune}(S))$, or some transition of the run is missing and w has a prefix in $M I T($ prune $(S))$. Thus, $E L(S) \subseteq E L($ prune $(S))$.

For $E T($ prune $(S)) \subseteq E T(S)$, we just have to consider $w a \in \operatorname{MIT}($ prune $(S))$, where $a \in I$. Consider a suitable run $q_{0} \ldots q$ underlying w in prune (S). Either, q has no a-transition in S and $w a \in M I T(S)$, or $q \xrightarrow{a} q^{\prime}$ for some illegal q^{\prime} and $w a \in \operatorname{Pr} T(S)$. Thus, $E T($ prune $(S)) \subseteq E T(S)$.

For $w \in L(\operatorname{prune}(S))$, each run underlying w is still in S and $w \in L($ prune $(S))$. Thus, $E L(S) \subseteq E L(S)$.

Thus, we could work with EIOs without error states; whenever we put such EIOs in parallel, we have to normalize the result, i.e. we take $\operatorname{prune}\left(S_{1} \mid S_{2}\right)$ as parallel composition. We only have to make sure that this is well-defined: we call EIOs S_{1} and S_{2} compatible, if the initial state of $S_{1} \mid S_{2}$ is not illegal; with this, we only apply the new parallel composition to compatible S_{1} and S_{2}. Furthermore, we have:

Proposition 12 If Spec and Spec ${ }^{\prime}$ are compatible EIOs and Impl $\sqsubseteq_{l o c}$ Spec, then also Impl and Spec' are compatible.

Proof. If Impl and Spec' are not compatible, then $\varepsilon \in E T\left(\right.$ Impl \mid Spec ${ }^{\prime}$). Now $E T\left(\right.$ Impl \mid Spec' $\left.^{\prime}\right) \subseteq E T($ Impl $\mid S p e c)$ by Theorem 9 , hence also Impl and Spec are not compatible.

Thus, also on the level of transition systems, output pruning as introduced in [4] is justified according to our approach. But the refinement relation based on alternating simulation is somewhat arbitrarily too strict, as we will show below. To our best knowledge, alternating simulation as refinement relation has first been considered for modal transition systems [6]; see [7] for a comparison to the setting of interface automata.

Since the refinement relation of [4] is a precongruence, one might believe that, due to our coarsest precongruence result, this refinement should directly imply $\sqsubseteq_{l o c}$ This is not really so obvious: we have considered parallel components that are not interface automata, and this could have forced us to be too strict w.r.t alternating simulation. But actually, this is not the case, as we show now.

Definition 13. For EIOs S_{1} and S_{2} with the same signature, an alternating simulation relation is some $\mathcal{R} \subseteq Q_{1} \times Q_{2}$ with $\left(q_{01}, q_{02}\right) \in \mathcal{R}$ such that for all ($\left.q_{1}, q_{2}\right) \in \mathcal{R}$ we have:

1. If $q_{2} \xrightarrow{a} q_{2}^{\prime}$ and $a \in I_{1}$, then $q_{1} \xrightarrow{a} q_{1}^{\prime}$ and $\left(q_{1}^{\prime}, q_{2}^{\prime}\right) \in \mathcal{R}$.
2. If $q_{1} \xrightarrow{a} q_{1}^{\prime}$ and $a \in O_{1}$, then $q_{2} \Rightarrow \stackrel{a}{\rightarrow} q_{2}^{\prime}$ and $\left(q_{1}^{\prime}, q_{2}^{\prime}\right) \in \mathcal{R}$.
3. If $q_{1} \xrightarrow{\tau} q_{1}^{\prime}$, then $q_{2} \Rightarrow q_{2}^{\prime}$ and $\left(q_{1}^{\prime}, q_{2}^{\prime}\right) \in \mathcal{R}$.

Thus, such an \mathcal{R} requires that the implementation S_{1} can match a prescribed input immediately, while an output or τ is allowed for S_{1} if the specification can match them by using arbitrarily many internal steps.

Proposition 14 If there exists some alternating simulation relation \mathcal{R} for interface automata S_{1} and S_{2}, then $S_{1} \sqsubseteq_{l o c} S_{2}$.

Proof. Since interface automata do not have error states, we just have to consider $w a \in \operatorname{MIT}\left(S_{1}\right)$ with $a \in I$ for $E T\left(S_{1}\right) \subseteq E T\left(S_{2}\right)$. Take a suitable run in S_{1} underlying w, and build up a matching run in S_{2} as follows. To start with, the initial states are related according to \mathcal{R}. Each output or internal transition in S_{1} can be matched according to 13.2 or 13.3 , reaching related states again. If the runs have reached $\left(q_{1}, q_{2}\right) \in \mathcal{R}$ so far and the next transition is $q_{1} \xrightarrow{a} q_{1}^{\prime}$ with $a \in I_{1}$, then either q_{2} does not have an a-transition and a prefix of w is in $\operatorname{MIT}\left(S_{2}\right)$, or $q_{2} \xrightarrow{a} q_{2}^{\prime}$ and $\left(q_{1}^{\prime}, q_{2}^{\prime}\right) \in \mathcal{R}$ due to input determinism. If the run in S_{1} ends and we have reached $\left(q_{1}, q_{2}\right) \in \mathcal{R}$, then q_{2} cannot have an a-transition due to 13.1 and $w a \in \operatorname{MIT}\left(S_{2}\right)$.

The treatment of $w \in L\left(S_{1}\right)$ is analogous, except that we do not have to consider a missing action after w at the end.

Now we come to the example announced above. The interface automata in Fig. 3 show two interface automata, which are local-error equivalent - in particular, they have no inputs: there are no error traces and the basic languages are the same. But there exists no alternating refinement relation from the first to the second, since whichever way the second interface automaton matches o, it will forbid one of o_{1} or o_{2} afterwards.

Fig. 3.

Finally, we show associativity for parallel composition. As mentioned in the introduction, Theorem 1 of [3] claiming this associativity is wrong due to an error
in the definition of pruning; and such a proof is a bit tricky when composition involves pruning. The problem also demonstrates the danger when one develops an unorthodox definition justified with informal intuitive arguments only. In the present paper, pruning is proven correct in Theorem 11, and this proof would fail with some incorrect definition of pruning.

In our setting with error states, associativity is easy, because the two systems are easily seen to be isomorphic. Hence, the following result would also hold for any sensible equivalence on EIOs.

Theorem 15 Let S_{1}, S_{2} and S_{3} EIOs. Then $S_{1} \mid\left(S_{2} \mid S_{3}\right)$ and $\left(S_{1} \mid S_{2}\right) \mid S_{3}$ are local-error equivalent.

Proof. Both EIOs are isomorphic to an EIO with state set $Q_{1} \times Q_{2} \times Q_{3}$, initial state $\left(q_{01}, q_{02}, q_{03}\right)$, signature as that of $S_{1} \mid\left(S_{2} \mid S_{3}\right)$ and the following transitions and error states.

Transitions:
$-\left(q_{1}, q_{2}, q_{3}\right) \xrightarrow{\alpha}\left(q_{1}^{\prime}, q_{2}, q_{3}\right)$ if $q_{1} \xrightarrow{\alpha} q_{1}^{\prime}$ and $\alpha \in\left(\Sigma_{1} \cup\{\tau\}\right) \backslash\left(\Sigma_{2} \cup \Sigma_{3}\right)$ and similarly for transitions derived from S_{2} and S_{3} instead of S_{1} and
$-\left(q_{1}, q_{2}, q_{3}\right) \xrightarrow{\tau}\left(q_{1}^{\prime}, q_{2}^{\prime}, q_{3}\right)$ if $q_{1} \xrightarrow{a} q_{1}^{\prime}$ and $q_{2} \xrightarrow{a} q_{2}^{\prime}$ for some $a \in \Sigma_{1} \cap \Sigma_{2}$ and similarly for transitions derived from other pairs instead of S_{1} and S_{2}.
Error states: $\left(q_{1}, q_{2}, q_{3}\right)$ is an error state

- if $q_{1} \in E_{1}$ and similarly for E_{2} or E_{3} instead of E_{1} or
- if $q_{1} \xrightarrow{a} q_{1}^{\prime}$ and $\neg q_{2} \xrightarrow{a}$ for some $a \in O_{1} \cap I_{2}$ or similarly for one of the other five pairs instead of $\left(S_{1}, S_{2}\right)$.

Observe that, in the latter item, $\left(q_{2}, q_{3}\right)$ possibly is not an error state and $\left.\left(q_{1},\left(q_{2}, q_{3}\right)\right)\right)$ is a new one, while $\left(q_{1}, q_{2}\right)$ is an error state and $\left(\left(q_{1}, q_{2}\right), q_{3}\right)$ is an inherited one.

4 Internal Errors

Now we consider errors reached by internal actions only. This view is even more optimistic than our first one, since errors reachable by output actions are no longer considered dangerous. Nevertheless our result will show, that the resulting semantics is not much different from the local error semantics. We will annotate each error trace with a set of output actions; if a system with this trace synchronizes with another one on these output actions, an error state can be reached with this trace.

Our base relation is now defined as:
Definition 16 (Internal Basic Relation). An error is internally reachable in S, if $\varepsilon \in S t T(S)$. We have $\operatorname{Impl} \sqsubseteq_{i n t}^{B} S p e c$, whenever an error is internally reachable in Impl only if an error is internally reachable in Spec.

Again we denote the fully abstract precongruence with respect to $\sqsubseteq_{i n t}^{B}$ and | by $\sqsubseteq_{i n t}^{c}$.

As mentioned above, we add a set of outputs to each error trace thereby getting an error pair. The intuition is that, once the actions of a pruned trace have been taken, the system in a composition might be prevented from reaching an error internally because of an output action that has been pruned, but has not been synchronized on.

Irgendwie ne Wiederholung - ueberarbeiten
Definition 17 (out function). Given an EIO S, we define out : $\Sigma^{*} \rightarrow \mathfrak{P}(O)$ such that X consists of all output actions in w.

Definition 18 (Error Pair). An error pair over a signature (I, O) is a pair $(w, X) \in\left((I \cup O)^{*} \times \mathfrak{P}(O)\right)$ with out $(w) \subseteq X$.

Given two composable EIOs S_{1}, S_{2}, we define for an error pair (w, X) over $\left(I_{1}, O_{1}\right)$ and $v \in \Sigma_{2}^{*}$:
$(w, X) \| v=\{(z, Y) \mid z \in w \| v, Y=X \cup \operatorname{out}(v)\}$
$(w, X) \mid v=\left\{\left(\left.z\right|_{\Sigma_{12}}, Y \cap \Sigma_{12}\right) \mid(z, Y) \in(w, X) \| v\right\}$
It is easy to see that these sets consist of error pairs over the signatures of $S_{1} \| S_{2}$ and of $S_{12}=S_{1} \mid S_{2}$ resp. On error pairs over some (I, O), we define the following prefix relation and the following functions:
$(w, X) \sqsubseteq(v, Y)$ if $w \sqsubseteq v$ and $X \subseteq Y$
$\operatorname{prune}(w, X):=(\operatorname{prune}(w), X)$ (an error pair again)
$\operatorname{cont}(w, X):=\{(v, Y) \mid(w, X) \sqsubseteq(v, Y)\}$ (consisting of error pairs)
Definition 19 (Sets of Error Pairs). We define the following sets of error pairs for an EIO S :

- strict error pairs: $\operatorname{StP}(S)=\{(w, X) \mid w \in S t T(S)$,out $(w)=X\}$
- pruned error pairs: $\operatorname{Pr} P(S)=\{\operatorname{prune}(w, X) \mid(w, X) \in \operatorname{StP}(S)\}$
- missing input pairs: $\operatorname{MIP}(S)=\{(w, X) \mid w \in \operatorname{MIT}(S)$,out $(w)=X\}$

It is easy to see that these sets indeed consist of error pairs over (I, O), and that they are an enhanced version of similar sets defined in the previous section. It will turn out that we can characterize $\sqsubseteq_{i n t}^{c}$ as componentwise set inclusion for pairs $(E P(S), E P L(S))$, where the latter is the basic language of S flooded with a set of traces derived from $E P(S)$; we introduce a sign for this relation.

Definition 20 (Internal Error Semantics). Let S be an EIO.

- The set of error pairs of S is $E P(S)=\operatorname{cont}(\operatorname{PrP}(S)) \cup \operatorname{cont}(M I P(S))$;
- the set of error pair traces of S is $E P T(S)=\{w \mid(w$, out $(w)) \in E P(S)\}$;
- the flooded language of S, called error pair language, is $E P L(S)=L(S) \cup$ $E P T(S)$.

For two EIOs Impl and Spec with the same signature, we write
Impl $\sqsubseteq_{i n t} S p e c$ if $E P(I m p l) \subseteq E P(S p e c)$ and $E P L(I m p l) \subseteq E P L(S p e c)$
and we call Impl and Spec internal-error equivalent if Impl $\sqsubseteq_{\text {int }}$ Spec and Spec $\sqsubseteq_{i n t}$ Impl.

The following lemma collects a number of useful observations for the next proof.

Lemma 21 Given two composable EIOs $S_{1}, S_{2}, w_{1} \in \Sigma_{1}^{*}$ and $w_{2} \in \Sigma_{2}^{*}$, we have

1. $w \in w_{1} \mid w_{2} \Rightarrow \operatorname{out}(w)=\operatorname{out}\left(w_{1}\right) \backslash I_{2} \cup \operatorname{out}\left(w_{2}\right) \backslash I_{1}$
2. $w \in w_{1}\left|w_{2} \Rightarrow(w, \operatorname{out}(w)) \in\left(w_{1}, \operatorname{out}\left(w_{1}\right)\right)\right| w_{2}$
3. $w \in w_{1}\left|w_{2} \Rightarrow w a \in w_{1} a\right| w_{2}$ if $a \in \Sigma_{1} \backslash \Sigma_{2}$

Given an EIO S, an error pair (w, X) over (I, O) and a set M of error pairs, we have
4. $\operatorname{prune}(w, X) \sqsubseteq(w, X)$
5. $(w, X) \in M \Rightarrow(w, X) \in \operatorname{cont}(\operatorname{prune}(M))$
6. $\operatorname{StP}(S) \subseteq E P(S)$

Proof. In particular, Item 6 follows from 5, which in turn follows from 4.
For the characterization result, it is again crucial that the internal error semantics is compositional. Since we will give part of the proof on the level of $\|$, we note the following relationship.

Lemma 22 Given two composable EIOs S_{1}, S_{2}, we have for $S_{12}=S_{1} \mid S_{2}$

1. $\operatorname{Pr} P\left(S_{12}\right)=\left\{\left(\left.w\right|_{\Sigma_{12}}, X \cap \Sigma_{12}\right) \mid(w, X) \in \operatorname{Pr} P\left(S_{1} \| S_{2}\right)\right\}$
2. $\operatorname{MIP}\left(S_{12}\right)=\left\{\left(\left.w\right|_{\Sigma_{12}}, X \cap \Sigma_{12}\right) \mid(w, X) \in \operatorname{MIP}\left(S_{1} \| S_{2}\right)\right\}$

Theorem 23 (Internal Error Semantics for Composition) For two composable EIOs S_{1}, S_{2} and $S_{12}=S_{1} \mid S_{2}$ we have:

1. $E P_{12}=\operatorname{cont}\left(\right.$ prune $\left.\left(\left(E P_{1} \mid E P L_{2}\right) \cup\left(E P L_{1} \mid E P_{2}\right)\right)\right)$
2. $E P L_{12}=\left(E P L_{1} \mid E P L_{2}\right) \cup E P T_{12}$

Proof. 1.a) ' \subseteq ':
Since both sides are closed under cont, it suffices to consider a prefix-minimal element (w, X) of $E P_{12}$. This means (w, X) is in $M I P_{12}$ or in $\operatorname{Pr} P_{12}$.

First, we consider the case $(w, X) \in M I P_{12}$.
We know that $X=\operatorname{out}(w), w=x a, a \in\left(I_{1} \cup I_{2}\right) \backslash\left(O_{1} \cup O_{2}\right)$ with $\left(q_{01}, q_{02}\right) \stackrel{x}{\Rightarrow}$ $\left(q_{1}, q_{2}\right) \xrightarrow{q}$ in $S_{1} \mid S_{2}$. Let w.l.o.g. $a \in I_{1}$. Thus by projection we get $q_{01} \stackrel{x_{1}}{\Rightarrow} q_{1} \stackrel{q}{\rightarrow}$ and $q_{02} \stackrel{x_{2}}{\Rightarrow}$ with $x \in x_{1} \mid x_{2}$. Thus we know that $x_{1} a \in M I T_{1}$ and thus $\left(x_{1} a, \operatorname{out}\left(x_{1} a\right)\right) \in M I P_{1} \subseteq E P_{1}$. We also know that $x_{2} \in L_{2} \subseteq E P L_{2}$, and it follows that $(w, X) \in\left(\left(x_{1} a\right.\right.$, out $\left.\left.\left(x_{1} a\right)\right) \mid x_{2}\right) \subseteq E P_{1} \mid E P L_{2}$ by Lemma 22.2. This set is contained in the r.h.s. of 23.1 by 22.5 .

Now we consider $(w, X) \in \operatorname{Pr} P_{12}$.
In this case we know that there exists $u \in O_{12}^{*}$ such that $\left(q_{01}, q_{02}\right) \stackrel{w}{\Rightarrow}\left(q_{1}, q_{2}\right) \stackrel{u}{\Rightarrow}$ $\left(q_{1}^{\prime}, q_{2}^{\prime}\right)$ in $S_{1} \mid S_{2}$ with $\left(q_{1}^{\prime}, q_{2}^{\prime}\right) \in E_{12}$ and $\operatorname{out}(w u)=X \wedge w=\operatorname{prune}(w u)$.

By projection we get $q_{01} \stackrel{w_{1}}{\Rightarrow} q_{1} \stackrel{u_{1}}{\Rightarrow} q_{1}^{\prime}$ and $q_{02} \stackrel{w_{2}}{\Rightarrow} q_{2} \stackrel{u_{2}}{\Rightarrow} q_{2}^{\prime}$ with $w \in w_{1} \mid w_{2}$ and $u \in u_{1} \mid u_{2}$. Since $\left(q_{1}^{\prime}, q_{2}^{\prime}\right) \in E_{12}$ it follows that either $\left(q_{1}^{\prime}, q_{2}^{\prime}\right)$ is an inherited error, due to $q_{1}^{\prime} \in E_{1}$ or $q_{2}^{\prime} \in E_{2}$, or it is a new error due to some $a \in O_{1} \cap I_{2}$ with $q_{1}^{\prime} \xrightarrow{a} \wedge q_{2}^{\prime} \underset{\rightarrow}{q}$ or some $a \in I_{1} \cap O_{2}$ with $q_{1}^{\prime} \stackrel{q}{\rightarrow} \wedge q_{2}^{\prime} \xrightarrow{a}$.

For the case that ($q_{1}^{\prime}, q_{2}^{\prime}$) is an inherited error, let $q_{1}^{\prime} \in E_{1}$ w.l.o.g. Thus we know that $w_{1} u_{1} \in S t T_{1},\left(w_{1} u_{1}\right.$, out $\left.\left(w_{1} u_{1}\right)\right) \in S t P_{1} \subseteq E P_{1}$ by Lemma 22.6 and $w_{2} u_{2} \in E P L_{2}$. By Lemma 22.2 we get $(w u, X) \in\left(w_{1} u_{1}\right.$, out $\left.\left(w_{1} u_{1}\right)\right) \mid$ $w_{2} u_{2} \subseteq E P_{1} \mid E P L_{2}$. Therefore prune $(w u, X)=(w, X) \in \operatorname{prune}\left(E P_{1} \mid E P L_{2}\right)$, which is in the r.h.s. set.

Alternatively, in case that ($q_{1}^{\prime}, q_{2}^{\prime}$) is a new error, let w.l.o.g. $a \in I_{1} \cap O_{2}$ with $q_{1}^{\prime} \stackrel{q}{\rightarrow} \wedge q_{2}^{\prime} \xrightarrow{a}$.
Thus we know that $w_{1} u_{1} a \in M I T_{1},\left(w_{1} u_{1} a\right.$, out $\left.\left(w_{1} u_{1} a\right)\right) \in M I P_{1} \subseteq E P_{1}$ and $w_{2} u_{2} a \in L_{2} \subseteq E P L_{2}$. By definition of |, we get $w u \in w_{1} u_{1}\left|w_{2} u_{2}=w_{1} u_{1} a\right|$ $w_{2} u_{2} a$ and $(w u, X) \in E P_{1} \mid E P L_{2}$ by Lemma 22.2. As above prune $(w u, X)=$ $(w, X) \in \operatorname{prune}\left(E P_{1} \mid E P L_{2}\right)$ which is in the r.h.s. set.

1.b) ' \supseteq ':

Again it suffices to consider a prefix-minimal element (x, X) of the r.h.s., i.e. $(x, X) \in \operatorname{prune}\left(\left(E P_{1} \mid E P L_{2}\right) \cup\left(E P L_{1} \mid E P_{2}\right)\right)$ with $x \in\{\varepsilon\} \cup \Sigma_{12}^{*} \cdot I_{12}$. Since x is the result of the prune function, we consider $(x y, X) \in\left(E P_{1} \mid E P L_{2}\right) \cup$ $\left(E P L_{1} \mid E P_{2}\right)$ with $y \in O_{12}^{*}$. W.l.o.g we assume $(x y, X) \in E P_{1} \mid E P L_{2}$, i.e. there is $\left(w_{1}, X_{1}\right) \in E P_{1}$ and $w_{2} \in E P L_{2}$ with $(x y, X) \in\left(w_{1}, X_{1}\right) \mid w_{2}$. Furthermore, there is some $(w, Y) \in\left(w_{1}, X_{1}\right) \| w_{2}$ such that $\left(\left.w\right|_{\Sigma_{12}}, Y \cap \Sigma_{12}\right)=(x y, X)$; note that $Y=X_{1} \cup \operatorname{out}\left(w_{2}\right)$ by definition and thus $\operatorname{out}(w)=\operatorname{out}\left(w_{1}\right) \cup \operatorname{out}\left(w_{2}\right) \subseteq Y$.

We will show that there is a $(v, V) \in \operatorname{Pr} P\left(S_{1} \| S_{2}\right) \cup M I P\left(S_{1} \| S_{2}\right)$ with $(v, V) \sqsubseteq(w, Y)$ such that v ends on some $b \in I_{12}$ or is ε. In both cases, we have $\left(\left.v\right|_{\Sigma_{12}}, V \cap \Sigma_{12}\right) \sqsubseteq(x, X)$: We have already argued in the corresponding part of the proof for Theorem 9 that $\left.v\right|_{\Sigma_{12}} \sqsubseteq x$; furthermore, $V \cap \Sigma_{12} \subseteq Y \cap \Sigma_{12}=X$. Therefore (x, X) has a prefix in $\operatorname{Pr} P\left(S_{1} \mid S_{2}\right) \cup M I P\left(S_{1} \mid S_{2}\right)$ and we are done.

Let $\left(v_{1}, V_{1}\right)$ be a minimal prefix of $\left(w_{1}, X_{1}\right)$ in $\operatorname{Pr} P_{1} \cup M I P_{1}$. If $w_{2} \in L_{2}$, let $v_{2}=w_{2}$; otherwise, let $\left(v_{2}, V_{2}\right)$ be a minimal prefix of (w_{2},out $\left.\left(w_{2}\right)\right)$ in $\operatorname{Pr} P_{2} \cup M I P_{2}$. We now assume that $v_{2}=w_{2} \in L_{2}$ or v_{1} ends in w before, or with the same action as, v_{2}; cf. the proof of Theorem 9. Otherwise, v_{2} ends before v_{1}, and this is analogous to the case where v_{1} ends before v_{2} : For this case, the proof below needs in particular $\left(v_{1}, V_{1}\right) \in \operatorname{Pr} P_{1} \cup M I P_{1}$ and $V_{1} \subseteq Y$, and if $v_{2} \neq w_{2}$ ends before v_{1} then we have symmetrically $\left(v_{2}, V_{2}\right) \in \operatorname{Pr} P_{2} \cup M I P_{2}$ and $V_{2} \subseteq Y$ due to $V_{2} \subseteq \operatorname{out}\left(w_{2}\right)$.

If $v_{1}=\varepsilon$, then choose $v_{2}^{\prime}=v^{\prime}=\varepsilon$.
If $v_{1} \neq \varepsilon$, then by choice v_{1} ends with some $a \in I_{1}$ by definition of $\operatorname{Pr} P$ and $M I P$, i.e. $v_{1}=v_{1}^{\prime} a$. Let v^{\prime} be the prefix of w that ends with the last action of v_{1} and let $v_{2}^{\prime}=\left.v^{\prime}\right|_{\Sigma_{2}}$.
If $v_{2}=w_{2} \in L_{2}$ or $\left(v_{2}, V_{2}\right) \in \operatorname{Pr} P_{2}$, then v_{2}^{\prime} is a prefix of v_{2}. If $\left(v_{2}, V_{2}\right) \in$ $M I P_{2}$, then v_{2} ends with some $b \in I_{2}$, i.e. $b \neq a$; thus, according to the above assumption, in this case v_{1} must end before v_{2} and v_{2}^{\prime} is a proper prefix of v_{2}.

Either way (also for $v_{1}=\varepsilon$) the following claims hold:
$-q_{02} \stackrel{v_{2}^{\prime}}{\Rightarrow}\left({ }^{*}\right)$
$-v_{2}^{\prime}=\left.v^{\prime}\right|_{\Sigma_{2}} \sqsubseteq v_{2}$
$-v^{\prime} \in v_{1} \| v_{2}^{\prime}$ is prefix of w and thus out $\left(v^{\prime}\right) \subseteq \operatorname{out}(w) \subseteq Y$
Now we have to consider two cases:

In the first case, $\left(v_{1}, V_{1}\right) \in M I P_{1}-$ and therefore $v_{1} \neq \varepsilon$ and $V_{1}=\operatorname{out}\left(v_{1}\right)$. In this case we have $q_{01} \stackrel{v_{1}^{\prime}}{\Rightarrow} q_{1} \xrightarrow{q}$ and we let $v^{\prime}=v^{\prime \prime} a$. We have to consider two subcases:
(i) If a is not a synchronizing action, i.e. $a \notin \Sigma_{2}$, then by $\left(^{*}\right) q_{02} \stackrel{v_{2}^{\prime}}{\Rightarrow} q_{2}$ with $v^{\prime \prime} \in v_{1}^{\prime} \| v_{2}^{\prime}$. Therefore $\left(q_{01}, q_{02}\right) \stackrel{v^{\prime \prime}}{\Rightarrow}\left(q_{1}, q_{2}\right) \xrightarrow{q}$ with $a \in I_{12}$. Thus we can choose $(v, V)=\left(v^{\prime \prime} a\right.$, out $\left.\left(v^{\prime}\right)\right) \in \operatorname{MIP}\left(S_{1} \| S_{2}\right)$, since $v^{\prime \prime} a=v^{\prime}$ is a prefix of w and $\operatorname{out}\left(v^{\prime}\right) \subseteq Y$.
(ii) If $a \in \Sigma_{2}$, then $a \in O_{2}$ and $v_{2}^{\prime}=v_{2}^{\prime \prime} a$. By $\left(^{*}\right) q_{02} \stackrel{v_{2}^{\prime \prime}}{\Rightarrow} q_{2} \xrightarrow{a}$ with $v^{\prime \prime} \in v_{1}^{\prime} \| v_{2}^{\prime \prime}$. Thus, $\left(q_{01}, q_{02}\right) \stackrel{v^{\prime \prime}}{\Rightarrow}\left(q_{1}, q_{2}\right)$ with $q_{1} \nrightarrow \rightarrow, a \in I_{1}, q_{2} \xrightarrow{a}$ and $a \in O_{2}$; hence $\left(q_{1}, q_{2}\right) \in E_{12}$. In this case we choose $(v, V):=\left(\operatorname{prune}\left(v^{\prime \prime}\right)\right.$, out $\left.\left(v^{\prime \prime}\right)\right) \in$ $\operatorname{Pr} P\left(S_{1} \| S_{2}\right)$ and hence $v \sqsubseteq v^{\prime \prime} \sqsubseteq v^{\prime} \sqsubseteq w$ and $\operatorname{out}\left(v^{\prime \prime}\right) \subseteq Y$.

The second case is $\left(v_{1}, V_{1}\right) \in \operatorname{Pr} P_{1}$.
In this case $\exists u_{1} \in V_{1}^{*} \subseteq O_{1}^{*}: q_{01} \stackrel{v_{1}}{\Rightarrow} q_{1} \stackrel{u_{1}}{\Rightarrow} q_{1}^{\prime}$ with $q_{1}^{\prime} \in E_{1}$; furthermore, $\operatorname{out}\left(v_{1} u_{1}\right)=V_{1} \subseteq X_{1} \subseteq Y$.
Again we have $q_{02} \stackrel{v_{2}^{\prime}}{\Rightarrow} q_{2}$, and hence $\left(q_{01}, q_{02}\right) \stackrel{v^{\prime}}{\Rightarrow}\left(q_{1}, q_{2}\right)$.
We have two subcases.
(i) q_{2} cannot accept the sequence of inputs of S_{2} contained in u_{1}, i.e. there is some $u_{2} \in\left(O_{1} \cap I_{2}\right)^{*}$ and some $c \in\left(O_{1} \cap I_{2}\right)$ such that $u_{2} c$ is a prefix of $\left.u_{1}\right|_{I_{2}}$ with $q_{2} \stackrel{u_{2}}{\Rightarrow} q_{2}^{\prime} \underset{7}{7}$.
Consider the prefix $u_{1}^{\prime} c$ of u_{1} with $\left.u_{1}^{\prime} c\right|_{I_{2}}=u_{2} c$. We know that $q_{1} \stackrel{u_{1}^{\prime}}{\Rightarrow} q_{1}^{\prime \prime} \xrightarrow{c}$. Then $u_{1}^{\prime} \in u_{1}^{\prime} \| u_{2}$ and $\left(q_{1}, q_{2}\right) \stackrel{u_{1}^{\prime}}{\Rightarrow}\left(q_{1}^{\prime \prime}, q_{2}^{\prime}\right) \in E_{12}$, i.e. we get a new error.
We can choose $(v, V):=\left(\operatorname{prune}\left(v^{\prime} u_{1}^{\prime}\right)\right.$, out $\left.\left(v^{\prime} u_{1}^{\prime}\right)\right) \in \operatorname{Pr} P\left(S_{1} \| S_{2}\right)$. Then $v \sqsubseteq v^{\prime} \sqsubseteq w$ and $\operatorname{out}\left(v^{\prime} u_{1}^{\prime}\right) \subseteq \operatorname{out}(w) \cup V_{1} \subseteq Y$ and we are done.
(ii) Otherwise we have $q_{2} \stackrel{u_{2}}{\Rightarrow} q_{2}^{\prime}$ with $u_{2}=\left.u_{1}\right|_{I_{2}}$. Then $u_{1} \in u_{1} \| u_{2}$ and $\left(q_{1}, q_{2}\right) \stackrel{u_{1}}{\Rightarrow}\left(q_{1}^{\prime}, q_{2}^{\prime}\right) \in E_{12}$. This is an error inherited from S_{1}, since $q_{1} \in E_{1}$. Similarly, we choose $(v, V):=\left(\operatorname{prune}\left(v^{\prime} u_{1}\right)\right.$, out $\left.\left(v^{\prime} u_{1}\right)\right) \in \operatorname{PrP}\left(S_{1} \| S_{2}\right)$, which again is a prefix of (w, Y).
2) First we check that (*) $E P T_{1} \mid E P L_{2} \subseteq E P T_{12}\left(E P T_{2} \mid E P L_{1} \subseteq E P T_{12}\right.$ is analogous):
Consider $w \in E P T_{1} \mid E P L_{2}$. By projection $w \in w_{1} \mid w_{2} \wedge w_{1} \in E P T_{1} \wedge w_{2} \in$ $E P L_{2}$. Therefore $\left(w_{1}, \operatorname{out}\left(w_{1}\right)\right) \in E P_{1}$. Because of this and Lemma 23.2 we get that $(w, \operatorname{out}(w)) \in\left(w_{1}\right.$, out $\left.\left(w_{1}\right)\right)\left|w_{2} \subseteq E P_{1}\right| E P L_{2} \subseteq E P_{12}$. Thus $w \in E P T_{12}$
by definition of $E P T$.
Now we prove the second item from left to right (for better readability). For the indicated inclusions, we need $\left(^{*}\right)$ and $L_{1} \subseteq E P L_{1}, L_{2} \subseteq E P L_{2}$ and $E P T_{1} \subseteq$ $E P L_{1}$.

$$
\begin{aligned}
& \left(E P L_{1} \mid E P L_{2}\right) \cup E P T_{12} \\
& =\left(\left(L_{1} \cup E P T_{1}\right) \mid\left(L_{2} \cup E P T_{2}\right)\right) \cup E P T_{12} \\
& =\left(L_{1} \mid L_{2}\right) \cup \underbrace{\left(L_{1} \mid E P T_{2}\right)}_{\subseteq E P T_{12}} \cup \underbrace{\left(E P T_{1} \mid L_{2}\right)}_{\subseteq E P T_{12}} \cup \underbrace{\left(E P T_{1} \mid E P T_{2}\right)}_{\subseteq E P T_{12}} \cup E P T_{12} \\
& =\left(L_{1} \mid L_{2}\right) \cup E P T_{12}=L_{12} \cup E P T_{12}=E P L_{12}
\end{aligned}
$$

The above theorem implies that $\sqsubseteq_{i n t}$ is a precongruence. Again the main point is now to show that it is the coarsest one. To show this, we will construct a test environment U for each relevant trace or error pair of $I m p l$ that reveals that it is also a suitable trace or error pair of Spec. We cannot use the same environment we used for Theorem 10, as can be seen in this counterexample: $I($ Impl $)=I($ Spec $)=O(U)=\{a\}$ and $O($ Impl $)=O($ Spec $)=I(U)=\{b\}$.

Fig. 4.
$(a ?, \emptyset) \in E P($ Impl $)$, but even though $\operatorname{Impl} \mid U$ and Spec $\mid U$ both have an error reachable by internal actions alone, $(a ?, \emptyset) \notin$ Spec.

Theorem 24 (Full Abstractness for Internal Error Semantics) For two systems Impl and Spec with the same signature it holds that: Impl $\sqsubseteq_{i n t}^{c} S p e c \Leftrightarrow I m p l \sqsubseteq_{i n t} S p e c$

Proof. As just noted, it follows easily from Theorem 23 that $\sqsubseteq_{i n t}$ is a precongruence. Furthermore, $(\varepsilon, \emptyset) \in E P(S)$ signifies that an error is internally reachable in S, since this can only result from $(\varepsilon, \emptyset) \in \operatorname{Pr} P(S)$, which can only be if $\varepsilon \in S t T(S)$. Hence, Impl $\sqsubseteq_{i n t} S p e c$ implies that $(\varepsilon, \emptyset) \in E P(S p e c)$ whenever $(\varepsilon, \emptyset) \in E P(I m p l)$, and thus also that $I m p l \sqsubseteq_{i n t}^{B} S p e c$.

It remains to show that $\operatorname{Impl} \sqsubseteq_{i n t}^{c} S p e c \Rightarrow$ Impl $\sqsubseteq_{i n t}$ Spec. Since Impl and Spec have the same signature, we will write I for $I_{\text {Impl }}=I_{\text {Spec }}$ and O for $O_{\text {Impl }}=O_{\text {Spec }}$ throughout this proof.
We assume Impl $\sqsubseteq_{i n t}^{c} S p e c$, hence $\operatorname{Impl} \sqsubseteq_{i n t}^{B} S p e c$ and $I m p l\left|U \sqsubseteq_{i n t}^{B} S p e c\right| U$ for all EIOs U composable with Impl.
We have to show the following inclusions:

$$
\begin{aligned}
& -E P(\text { Impl }) \subseteq E P(S p e c) \\
& -E P L(\text { Impl }) \subseteq E P L(\text { Spec })
\end{aligned}
$$

For the first inclusion we consider a prefix-minimal element $(w, X) \in E P($ Impl $)$. It suffices to show that (w, X) or any of its prefixes is in $E P(S p e c)$.
We first consider the case $w \neq \varepsilon$. So for $w=x_{1} \cdots x_{n} x_{n+1} \in \Sigma^{+}$with $n \geq 0$ and $x_{n+1} \in I$ we define the following process U (see Fig. 5):
$-Q_{U}=\left\{q_{0}, q_{1}, \ldots q_{n+1}\right\}$
$-I_{U}=X$
$-O_{U}=I$

- $q_{0 U}=q_{0}$
$-E_{U}=\emptyset$
$-\delta_{U}=\left\{\left(q_{i}, x_{i+1}, q_{i+1}\right) \mid 0 \leq i \leq n\right\} \cup\left\{\left(q_{i}, a, q_{n+1}\right) \mid a \in I_{U} \backslash\left\{x_{i+1}\right\}, 0 \leq i \leq\right.$ $n\} \cup\left\{\left(q_{n+1}, a, q_{n+1}\right) \mid a \in I_{U}\right\}$

Fig. 5.

Note that $a, x_{i} \in(I \cup X)^{*}$ holds for all a and x_{i} and thus, by construction, they are hidden in the parallel composition.

First we show, that $(\varepsilon, \emptyset) \in E P(\operatorname{Impl} \mid U)$, i.e. that $\operatorname{Impl} \mid U$ has an internally reachable error. Because of $(w, X) \in E P(I m p l)$ we can distinguish two cases, both resulting in $(\varepsilon, \emptyset) \in E P(\operatorname{Impl} \mid U)$:
If $(w, X) \in M I P(I m p l)$ then we have $\left(q_{0 I m p l}, q_{0}\right) \stackrel{x_{1} \cdots x_{n}}{\Rightarrow}\left(q^{\prime}, q_{n}\right)$ in Impl $\| U$ and thus $\left(q_{0 I m p l}, q_{0}\right) \stackrel{\varepsilon}{\Rightarrow}\left(q^{\prime}, q_{n}\right)$ in Impl $\mid U$. We also have $q^{\prime} \xrightarrow{x_{n+1}}$ and $q_{n} \xrightarrow{x_{n+1}}$. Therefore $\left(q^{\prime}, q_{n}\right) \in E_{\text {Impl|U }}$ and $(\varepsilon, \emptyset) \in S t P(\operatorname{Impl} \mid U)$.
If $(w, X) \in \operatorname{Pr} P($ Impl $)$, then we have in Impl: $q_{0 \text { Impl }} \stackrel{w}{\Rightarrow} q^{\prime \prime} \stackrel{u}{\Rightarrow} q^{\prime} \in E_{\text {Impl }}$ with $u \in X^{*}$ by definition of $E P$. Thus in Impl $\| U$ we get: $\left(q_{0 \text { Impl }}, q_{0}\right) \stackrel{w}{\Rightarrow}$
$\left(q^{\prime \prime}, q_{n+1}\right) \stackrel{u}{\Rightarrow}\left(q^{\prime}, q_{n+1}\right) \in E_{\text {Impl } \| U}$. Since all actions of w and u are in $I \cup X \subseteq$ $\operatorname{Synch}($ Impl,$U)$ we get: $\left(q_{0 \text { Impl }}, q_{0}\right) \stackrel{\varepsilon}{\Rightarrow}\left(q^{\prime \prime}, q_{n+1}\right) \stackrel{\tau^{|u|} \mid}{\Rightarrow}\left(q^{\prime}, q_{n+1}\right) \in E_{\text {Impl|U }}$ in Impl | U. Thus we get $(\varepsilon, \emptyset) \in S t P(\operatorname{Impl} \mid U)$.
Thus Impl $\mid U$ has an internal error and because of Impl $\left|U \sqsubseteq_{i n t}^{B} S p e c\right| U$, Spec $\mid U$ must also have one, i.e. $(\varepsilon, \emptyset) \in E P(S p e c \mid U)$. This error must be due to an error state, which is either new or inherited.
Since each state of U enables every $x \in X=I_{U}$ and all synchronized outputs of Spec are in X, an internally reachable new error has to be one where U enables an output $x \in O_{U}$ which is currently not enabled in Spec. By construction q_{n+1} enables no outputs, therefore such a new error state has to be of the form $\left(q^{\prime}, q_{i}\right)$ with $i \leq n, q^{\prime} \xrightarrow{x_{i+1}}$ and $x_{i+1} \in O_{U}=I$. Thus, by projection $q_{0 S p e c} \stackrel{x_{1} \cdots x_{i}}{\Rightarrow} q^{\prime} \xrightarrow{x_{i}+1}$ and therefore $\left(x_{1} \cdots x_{i+1}\right.$, out $\left(x_{1} \cdots x_{i+1}\right) \in \operatorname{MIP}($ Spec $)$. Since $\left(x_{1} \cdots x_{i+1}\right.$, out $\left(x_{1} \cdots x_{i+1}\right) \sqsubseteq(w, X)$ we get $(w, X) \in M I P($ Spec $) \subseteq$ $E P(S p e c)$ and are done.
If the internally reachable error is due to an inherited error state, then by projection U has performed some $x_{1} \cdots x_{i} u$ with $u \in I_{U}^{*}=X^{*}$ and hence so has Spec. With this, Spec has reached some state in $E_{S p e c}$. Therefore $\operatorname{prune}\left(\left(x_{1} \cdots x_{i} u, \operatorname{out}\left(x_{1} \cdots x_{i} u\right)\right)\right)=\left(\operatorname{prune}\left(x_{1} \cdots x_{i} u\right)\right.$, out $\left.\left(x_{1} \cdots x_{i} u\right)\right)=$ (prune $\left(x_{1} \cdots x_{i}\right)$,out $\left.\left(x_{1} \cdots x_{i} u\right)\right) \in S t P(S p e c)$. Again this is a prefix of (w, X) which is therefore in $E P(S p e c)$ and we are done.

For $w=\varepsilon$, i.e. $(w, X)=(\varepsilon, X)$ we choose U as follows:
$-Q_{U}=\left\{q_{0}\right\}$
$-I_{U}=X$
$-O_{U}=I$

- $q_{0 U}=q_{0}$
$-E_{U}=\emptyset$
$-\delta_{U}=\left\{\left(q_{0}, x, q_{0}\right) \mid x \in I_{U}\right\}$
Again we first show, that $(\varepsilon, \emptyset) \in E P(\operatorname{Impl} \mid U)$. We know that $(\varepsilon, X) \notin$ $M I P(I m p l)$, since ε does not end in an input action. Therefore $(\varepsilon, X) \in$
$\operatorname{Pr} P($ Impl $)$. Thus we have $q_{0 I m p l} \stackrel{u}{\Rightarrow} q^{\prime} \in E_{\text {Impl }}$ with $u \in X^{*}$ as above. Analogously we get: $\left(q_{0 I m p l}, q_{0}\right)\left(q^{\prime \prime}, q_{0}\right) \stackrel{\varepsilon}{\Rightarrow}\left(q^{\prime}, q_{n+1}\right) \in E_{\text {Impl|U }}$ in Impl $\mid U$, and $(\varepsilon, \emptyset) \in S t P(I m p l \mid U)$.

Since $I m p l \mid U$ has an internal error, Spec $\mid U$ must also have one. Since the state of U enables every $x \in X=I_{U}$ and all synchronized outputs of Spec are in X, and since U has no outputs whatsoever, this error canonly be due to an inherited error state.

Thus by projection, U and Spec can perform some $u \in I_{U}^{*}=X^{*}$, with Spec reching an error state. Therefore prune $((u, \operatorname{out}(u)))=($ prune (u), out $(u))=$ $(\varepsilon$, out $(u)) \in S t P(S p e c)$. Again this is a prefix of (w, X) which is therefore in $E P(S p e c)$ and we are done.

For the second inclusion it suffices to show that $L(\operatorname{Impl}) \backslash E P T(\operatorname{Impl}) \subseteq$ $E P L(S p e c)$, since $E P T($ Impl $) \subseteq E P T(S p e c)$ follows from the first inclusion.

For this we consider a $w \in L($ Impl $) \backslash E P T($ Impl $)$ with $w=x_{1} \cdots x_{n}$. For $n=0$ we are done, since $\varepsilon \in L$ (Spec) always holds. Note that $q_{0 \text { Impl }} \stackrel{w}{\Rightarrow} q^{\prime}$ and $\nexists w^{\prime} \sqsubseteq$ $w: q_{0 I m p l} \stackrel{w^{\prime}}{\Rightarrow} q^{\prime \prime} \in E_{\text {Impl }}$.

Now consider U with:
$-Q_{U}=\left\{q, q_{0}, q_{1}, \ldots q_{n}\right\}$
$-I_{U}=\operatorname{out}(w)$
$-O_{U}=I_{\text {Impl }}$
$-q_{0 U}=q_{0}$

- $E_{U}=\left\{q_{n}\right\}$
$-\delta_{U}=\left\{\left(q_{i}, x_{i+1}, q_{i+1}\right) \mid 0 \leq i<n\right\} \cup\left\{\left(q_{i}, x, q\right) \mid x \in I_{U} \backslash\left\{x_{i+1}\right\}, 0 \leq i \leq\right.$ $n\} \cup\left\{(q, x, q) \mid x \in I_{U}\right\}$

Fig. 6.

Because of $q_{0 \text { Impl }} \stackrel{w}{\Rightarrow} q$ we know that $I m p l \mid U$ has an internally reachable error. Thus, because of $\operatorname{Impl}\left|U \sqsubseteq_{i n t}^{c} S p e c\right| U$, Spec also has to have a internally reachable error state. Firstly this could be a new error because of some $x_{i} \in O_{U}$ and $q_{0 S p e c} \stackrel{x_{1} \cdots x_{i-1}}{\Rightarrow} q^{\prime} \xrightarrow{y_{i}}$. In this case $x_{1} \cdots x_{i} \in M I T($ Spec $)$ and therefore $\left(x_{1} \cdots x_{i}\right.$, out $\left.\left(x_{1} \cdots x_{i}\right)\right) \in M I P(S p e c)$. Since $\left(x_{1} \cdots x_{i}\right.$,out $\left.\left(x_{1} \cdots x_{i}\right)\right) \sqsubseteq$ $(w, \operatorname{out}(w))$, we get $(w, \operatorname{out}(w)) \in E P(S p e c)$ and thus $w \in E P T(S p e c) \subseteq$ $E P L(S p e c)$. Note, that outputs of U are only enabled along this trace. Therefore there are no other outputs of U, which could lead to a new error.
Secondly it could be a new error due to some $a \in I_{U}$, which U could not match. But the only state of U in which not all inputs are enabled is q_{n}, which already is an error state. Therefore this would be an inherited error, which is described next.
Thirdly it can be an error inherited from U. Since the only state in E_{U} is q_{n}, this is only possible if $q_{0 S p e c} \stackrel{x_{1} \dddot{x_{n}}}{\Rightarrow}$. In this case $w \in L(S p e c)$ and we are done. Finally, the error could have been inherited from Spec. In this case we have $q_{0 S p e c} \stackrel{x_{1} \cdots x_{i} u}{\Rightarrow} q^{\prime} \in E_{S p e c}$, for some $i \geq 0$ and $u \in \operatorname{out}(w)^{*}$ (no other outputs of Spec are synchronized and consequently hidden). This means that $\left(x_{1} \cdots x_{i} u\right.$, $\left.\operatorname{out}\left(x_{1} \cdots x_{i} u\right)\right) \in \operatorname{StP}(S p e c)$ and therefore $\operatorname{prune}\left(\left(x_{1} \cdots x_{i} u\right.\right.$,out $\left.\left.\left(x_{1} \cdots x_{i} u\right)\right)\right)=$ (prune $\left(x_{1} \cdots x_{i}\right)$,out $\left.\left(x_{1} \cdots x_{i} u\right)\right) \in \operatorname{PrP}($ Spec $) \subseteq E P($ Spec $)$. Because of $u \in$
$\operatorname{out}(w)^{*}$ we get $\operatorname{out}\left(x_{1} \cdots x_{i} u\right) \subseteq \operatorname{out}(w)$. Together with $x_{1} \cdots x_{i} \sqsubseteq w$ we get $(w, \operatorname{out}(w)) \in E P(S p e c)$ and therefore $w \in E P T(S p e c) \subseteq E P L(w)$.

References

[1] Sebastian S. Bauer, Philip Mayer, Andreas Schroeder, and Rolf Hennicker. On weak modal compatibility, refinement, and the mio workbench. In Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2010, LNCS 6015, pages 175-189. Springer, 2010.
[2] Stephen D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating sequential processes. J. ACM, 31(3):560-599, 1984.
[3] Luca de Alfaro and Thomas A. Henzinger. Interface automata. In ESEC / SIGSOFT FSE 2001, pages 109-120, 2001.
[4] Luca de Alfaro and Thomas A. Henzinger. Interface-based design. In M. et al. Broy, editor, Engineering Theories of Software Intensive Systems, volume 195 of NATO Science Series, pages 1-148. Springer, 2005.
[5] D. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-Independent circuits. MIT Press, Cambridge, 1989.
[6] Kim Guldstrand Larsen. Modal specifications. In J. Sifakis, editor, Automatic Verification Methods for Finite State Systems, LNCS 407, pages 232-246. Springer, 1990.
[7] Kim Guldstrand Larsen, Ulrik Nyman, and Andrzej Wasowski. Modal i/o automata for interface and product line theories. In R. de Nicola, editor, $E S O P$, LNCS 4421, pages 64-79. Springer, 2007.
[8] N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

[^0]: ${ }^{1}$ This is a slight abuse of language, since these projections have additional actions and are not really unique; the possible differences do not matter.

