
Metrika, forthcoming 7 May 2019, 13:49h

On Third Order Rotatability
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Abstract: Third order rotatability of experimental designs, moment matrices and information surfaces

is investigated, using a Kronecker power representation. This representation complicates the model

but greatly simplifies the theoretical development, and throws light on difficulties experienced in

some previous work. Third order rotatability is shown to be characterized by the finitely many

transformations consisting of permutations and a bi-axial 45 degree rotation, and the space of rotatable

third order symmetric matrices is shown to be 20, independent of the number of factors m. A

general Moore-Penrose inverse of a third order rotatable moment matrix is provided, leading to the

information surface, and the corresponding optimality results are discussed. After a brief literature

review, extensions to higher order models, the connections with tensor representations of classic matrix

groups, and the evaluation of a general dimension formula, are all explored.
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1 Introduction

In this paper we study third order rotatability of experimental designs, moment

matrices and information surfaces. The paper thus extends the second order

rotatability results of Draper, Gaffke, and Pukelsheim (1991), henceforth quoted as

DGP; see also Chapter 15 of Pukelsheim (1993). Third order rotatability is of less

practical relevance, but is very helpful in delineating the general underlying principles.

We again discuss the classical linear model of uncorrelated homoscedastic

observations for fitting a polynomial model, here taken to be of order three. For

instance, for three input factors t1, t2, t3 the true response surface η is given by a cubic

polynomial in t1, t2, t3,

η(t, θ) = θ0 + t1θ1 + t2θ2 + t3θ3

+ t21θ11 + t1t2θ12 + t1t3θ13 + t22θ22 + t2t3θ23 + t23θ33

+ t31θ111 + t21t2θ112 + t21t3θ113 + t1t
2
2θ122 + t1t2t3θ123

+ t1t
2
3θ133 + t32θ222 + t22t3θ223 + t2t

2
3θ233 + t33θ333. (1.1)

Generally we admit m ≥ 3 factors ti so that (1.1) becomes a third order polynomial

in t1, . . . , tm, with coefficient vector θ to be estimated.

We define the third order regression vector for an m factor input vector t =

(t1, . . . , tm)′ by

f(t) =


1

t

t⊗2

t⊗3

 ∈ RI k, k = 1 +m+m2 +m3. (1.2)

The Kronecker powers t⊗2 = t⊗t and t⊗3 = t⊗t⊗t repeat the individual mixed second

order terms twice, and the third order terms either six or three times depending on the

number of different subscripts, ijk or iij. Thus (1.1) is augmented by additional terms

θ21, θ31, θ32, etc. The very same point is familiar from treating dispersion matrices

as matrices, and not as arrays of a minimal number of functionally independent

terms. Also, the overparametrization points towards interesting connections with

tensor representations and produces a simple calculus.

For instance, if t is rotated into Rt where R is a matrix in the group Orth(m) of

orthogonal m×m matrices, then the vector f(t) undergoes the transformation QRf(t)
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where the k × k matrix QR is given by

QR =


1 0 0 0

0 R 0 0

0 0 R⊗2 0

0 0 0 R⊗3

 . (1.3)

As R varies over Orth(m) the matrices QR form a subgroup Q of Orth(k). We let

the group Q act by congruence, M 7→ QRMQ′
R, and study invariance of symmetric

matrices (Section 2) and of moment matrices (Section 3).

The Kronecker power representation in (1.2) makes the induced matrix QR in

(1.3) orthogonal. Hence the congruence transformationQRMQ′
R preserves eigenvalues,

quite similar to the Schläflian calculus of Box and Hunter (1957), Draper (1984), or

Arap Koske and Patil (1989). In contrast to (1.2), Kiefer and Galil (1977, page 30)

use a minimal system of squares and cross products for which the induced matrix (CQ

in their notation) need not be orthogonal. It is this lack of orthogonality that, in the

setting of Kiefer and Galil (1977, 1979), Heiligers and Schneider (1992), and Gaffke

and Heiligers (1992), makes it possible for non-rotatable moment matrices to be A-

or E-optimal. It is for the same reason that the rotatability measure of Khuri (1988,

1992) is not invariant under design rotation, as pointed out by Draper and Pukelsheim

(1990).

These difficulties do not appear with the Kronecker power representation (1.2).

Then a projection of an arbitrary moment matrix onto the rotatable moment matrices

improves any concave optimality criterion ϕ which depends on the moment matrix

only through its eigenvalues. Hence ϕ-optimality among rotatable moment matrices

implies ϕ-optimality among all moment matrices, and the above mentioned restriction

to rotatable designs ceases to be a true restriction. For second order models the ensuing

complete class theorem is given in Pukelsheim (1993, Theorem 15.19). For third order

models we establish an appropriate result in Section 4.

The paper is organized as follows. Our main result, in Section 2, is that third

order rotatability is characterized by the finitely many transformations consisting

of permutations and a bi-axial 45◦ rotation. We show that the space of rotatable

symmetric matrices has dimension 20, independent of m, and provide a basis for it.

In Section 3 we calculate the Moore–Penrose inverse of rotatable moment matrices.

Section 4 contains the corresponding optimality discussion. Section 5 reviews the

literature on third order rotatability. Section 6 concludes the paper with some general

remarks on extensions to higher order models, interrelations with tensor representations

of classical matrix groups, and a dimension formula.
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2 Third Order Rotatability of Symmetric Matrices

Before presenting Theorem 2.1 we make some preparatory comments. Part (iii) of

the theorem states that the space of invariant symmetric matrices has dimension 20,

irrespective of the value of m. The dimension formula for a general order d ≥ 4 is

outlined in Section 6. We use k = 1 +m+m2 +m3 from (1.2), with m ≥ 3.

The result parallels Theorem 6.1 of DGP. There, in part (ii), we used sign change

matrices, permutation matrices, the orthodiagonal reflection and, for m = 2, a 45◦

rotation. It transpires that the orthodiagonal reflection can be replaced by a bi-axial

45◦ rotation throughout; similarly the sign changes can be dispensed with since they

can be generated by permutations and any bi-axial 45◦ rotation. Part (ii) below is

presented in this more streamlined form.

For a concise parametrization of the invariant symmetric matrices in part (ii) we

define

eij = ei ⊗ ej ∈ RI m2

, eijk = ei ⊗ ej ⊗ ek ∈ RI m3

,

where ei is the i th Euclidean unit vector of RI m and i, j, k = 1, . . . ,m.

Theorem 2.1: Let M be a symmetric k × k matrix, not necessarily a moment matrix

of a design. Then the following three statements are equivalent:

(i) M is third order rotatable, that is, M = QRMQ′
R for all R ∈ Orth(m).

(ii) M is invariant under the finitely many matrices QR where R is any permutation

matrix or a bi-axial 45◦ rotation.

(iii) There exist 20 scalars α, β, γ, δ1, δ2, δ3, η1, η2, η3, ϵ1, . . . , ϵ11 ∈ RI such that M has

the form

M =


α 0 γ

∑
i e

′
ii 0

0 β
∑

i eie
′
i 0 G(η)′

γ
∑

i eii 0 F (δ) 0

0 G(η) 0 S(ϵ)

 (2.1)

where

F (δ) = δ1
∑
i,j

eije
′
ij + δ2

∑
i,j

ejie
′
ij + δ3

∑
i,j

eiie
′
jj , (2.2)

G(η) = η1
∑
i,j

eijie
′
j + η2

∑
i,j

ejiie
′
j + η3

∑
i,j

eiije
′
j , (2.3)

S(ϵ) = ϵ1
∑
i,j,k

eijke
′
ijk + ϵ2

∑
i,j,k

eikje
′
ijk + ϵ3

∑
i,j,k

ejike
′
ijk + ϵ4

∑
i,j,k

ekjie
′
ijk
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+ ϵ5
∑
i,j,k

(ejkie
′
ijk + ekije

′
ijk)

+ ϵ6
∑
i,j,k

eijie
′
kjk + ϵ7

∑
i,j,k

ejiie
′
jkk + ϵ8

∑
i,j,k

eiije
′
kkj

+ ϵ9
∑
i,j,k

(eijie
′
jkk + ejiie

′
kjk) + ϵ10

∑
i,j,k

(eijie
′
kkj + eiije

′
kjk)

+ ϵ11
∑
i,j,k

(ejiie
′
kkj + eiije

′
jkk). (2.4)

Proof: Part (i) implies (ii), since (ii) comprises fewer transformations than (i). Part

(iii) implies (i) by direct verification. To illustrate the type of calculations involved let

P =
∑

i,j,k ekije
′
ijk be the second matrix that appears with ϵ5. For x, y, z ∈ RI m the

action of P is

P (x⊗ y ⊗ z) =
∑
i,j,k

xiyjzk ek ⊗ ei ⊗ ej = z ⊗ x⊗ y,

R⊗3P (x⊗ y ⊗ z) = Rz ⊗Rx⊗Ry = P (Rx⊗Ry ⊗Rz) = PR⊗3(x⊗ y ⊗ z).

It follows that R⊗3 and P commute. Hence P is invariant, R⊗3PR⊗3′ = P . This type

of argument covers the first six matrices in S(ϵ), attached to the subscripts 1, 2, 3, 4, 5, 5

of ϵ. A variation of the argument applies to the other nine terms. As a generic case

we consider the matrix Q =
∑

i,j,k eiije
′
kkj of ϵ8. For x, y, z ∈ RI m its action is

Q(x⊗ y ⊗ z) =
∑
i,j,k

xkykzj ei ⊗ ei ⊗ ej = x′y (vec Im)⊗ z,

R⊗3Q(x⊗ y ⊗ z) = x′y (vec Im)⊗Rz = Q(Rx⊗Ry ⊗Rz) = QR⊗3(x⊗ y ⊗ z),

where we have used R⊗2(vec Im) = vec(RR′) = vec Im from DGP, page 144. Again

R⊗3 and Q commute, that is, Q is invariant.

The major part of the proof shows that part (ii) implies (iii). LetM be a symmetric

matrix which satisfies (ii). By assumption, we are provided with all permutations and

a single bi-axial 45◦ rotation. Multiple combinations of these transformations yield all

other bi-axial 45◦ rotations, as well as all sign changes. Thus Theorem 6.1 of DGP

gives (2.1) except for G(η) and S(ϵ) which arise from the introduction of third order

terms.

In order to investigate in M the m3 ×m submatrix G =
∑

i,j,k,l gijk,l eijke
′
l, the

m4 numbers gijk,l are rearranged into the m2 × m2 matrix D =
∑

i,j,k,l gijk,l eije
′
kl
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which is not necessarily symmetric. It is evident that third order rotatability may be

expressed in either terms,

G = R⊗3GR′ ⇐⇒ D = R⊗2DR⊗2′. (2.5)

The latter entails D = F (η) since the arguments of DGP, page 145f, carry over despite

the apparent initial lack of symmetry of D in (2.5). This forces G to attain the form

G(η) of (2.3).

Finally we turn to the m3 ×m3 bottom right block S in M ,

S =
(∑
i,j,k

eijke
′
ijk

)
S
(∑
a,b,c

eabce
′
abc

)
=
∑
i,j,k

∑
a,b,c

sijk,abc eijke
′
abc. (2.6)

Invariance under any sign change matrix R = diag(ε1, . . . , εm), with εi = ±1, yields

an identity for the entries of S,

sijk,abc = e′ijkSeabc = e′ijkR
⊗3SR⊗3eabc = εiεjεkεaεbεc sijk,abc. (2.7)

Hence these entries vanish when the number of distinct subscripts is 6, or 5, or 4, or 3

with at least one odd multiplicity, or 2 with at least one odd multiplicity.

This leaves 3 distinct subscripts of multiplicity two each, or 2 distinct subscripts

of multiplicities two and four, or 1 subscript of multiplicity six. This and the symmetry

of S entail

S =
∑

i ̸=j ̸=k ̸=i

(
sijk,ijk eijke

′
ijk + sikj,ijk eikje

′
ijk + sjik,ijk ejike

′
ijk + skji,ijk ekjie

′
ijk

+ sjki,ijk (ejkie
′
ijk + eijke

′
jki)

+ siji,kjk eijie
′
kjk + sjii,jkk ejiie

′
jkk + siij,kkj eiije

′
kkj

+ siji,jkk (eijie
′
jkk + ejkke

′
iji) + siji,kkj (eijie

′
kkj + ekkje

′
iji)

+ sjii,kkj (ejiie
′
kkj + ekkje

′
jii)
)

+
∑
i ̸=j

(
sijj,ijj eijje

′
ijj + sjij,jij ejije

′
jij + sjji,jji ejjie

′
jji

+ siij,jjj (eiije
′
jjj + ejjje

′
iij) + sijj,jij (eijje

′
jij + ejije

′
ijj)

+ siji,jjj (eijie
′
jjj + ejjje

′
iji) + sijj,jji (eijje

′
jji + ejjie

′
ijj)

+ sjii,jjj (ejiie
′
jjj + ejjje

′
jii) + sjij,jji (ejije

′
jji + ejjie

′
jij)
)

+
∑
i

siii,iii eiiie
′
iii. (2.8)
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There remain 11m(m − 1)(m − 2) + 9m(m − 1) +m = 11m3 − 24m2 + 14m different

entries to be determined.

For a further reduction we take R to be any permutation matrix to obtain

sijk,abc = sπ(i)π(j)π(k),π(a)π(b)π(c), for every permutation π of 1, . . . ,m. Now, such

a permutation does not change the pattern of those of the six subscripts which were

previously equal. Hence the m(m− 1)(m− 2) coefficients sijk,ijk are equal, all sikj,ijk

are equal, and so on. We denote the first 11 coefficients by ϵ1, . . . , ϵ11, the next 9 by

η1, . . . , η9, and the last one by θ,

sijk,ijk = ϵ1, . . . , sijj,ijj = η1, . . . , siii,iii = θ. (2.9)

This reduces the number of distinct entries to 11 + 9 + 1 = 21, independent of m.

In order to express η1, . . . , η9 and θ as functions of ϵ1, . . . , ϵ11 we apply the 45◦

rotation R0 of the (t1, t2) plane,

R0 =
1√
2



1 −1 0 · · · 0

1 1 0 · · · 0

0 0
√
2 · · · 0

...
...

...
. . .

...

0 0 0 · · ·
√
2

 , (2.10)

and evaluate x′Sy = x′R⊗3
0 SR⊗3

0
′y. For η1 = sijj,ijj we take x = e311 and y = e311,

. . ., for η9 = sjij,jji we take x = e131 and y = e113; for θ we take x = y = e111:

η1 = ϵ1 + ϵ2 + ϵ7,

η4 = ϵ8 + ϵ10 + ϵ11,

η7 = ϵ4 + ϵ5 + ϵ11,

η2 = ϵ1 + ϵ4 + ϵ6,

η5 = ϵ3 + ϵ5 + ϵ9,

η8 = ϵ7 + ϵ9 + ϵ11,

η3 = ϵ1 + ϵ3 + ϵ8,

η6 = ϵ6 + ϵ9 + ϵ10,

η9 = ϵ2 + ϵ5 + ϵ10;

(2.11)

θ = ϵ1 + ϵ2 + ϵ3 + ϵ4 + 2ϵ5 + ϵ6 + ϵ7 + ϵ8 + 2ϵ9 + 2ϵ10 + 2ϵ11. (2.12)

Thus S in (2.8) involves the coefficients ϵ1, . . . , ϵ11 only. The three sums over

distinct subscripts reduce to a single sum over unrestricted subscripts. Applying the

unrestricted sum to the individual terms we find
∑

i,j,k eijke
′
jki =

∑
i,j,k ekije

′
ijk, etc.

This establishes the pattern S(ϵ) of (2.4).

The matrices accompanying ϵ1, . . . , ϵ11 in (2.4) can be shown to be linearly

independent. Hence in general S(ϵ) cannot be reduced to fewer terms. This is

in contrast to moment matrices which, due to their structure, permit a further

simplification, discussed next.
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3 Third Order Rotatability of Moment Matrices

A design τ on an experimental domain T ⊆ RI m is a probability measure with finite

support. The points t ∈ T which receive a positive weight under τ are the support

points of τ and designate the experimental conditions under which the response is to

be observed. The weight τ(t) gives the proportion of observations to be drawn under t.

For our rotatability discussion we choose, as the rotatable experimental domain, the

ball of radius
√
m,

T√m = {t ∈ RI m : ∥t∥ ≤
√
m},

so that the vertices of the unit cube {±1}m lie on the bounding sphere.

The third order moment matrix of a design τ on T√m is defined to be

M(τ) =

∫
T√

m

f(t)f(t)′ dτ, (3.1)

with regression function f given by (1.2). This is a symmetric and nonnegative definite

k× k matrix. Rotatability of M(τ) entails the pattern (2.1): all odd moments vanish,

and the even moments can be expressed through three moment parameters of τ defined

by

λ2(τ) =

∫
T√

m

t21 dτ, λ4(τ) =

∫
T√

m

t21t
2
2 dτ, λ6(τ) =

∫
T√

m

t21t
2
2t

2
3 dτ.

The following theorem describes the structure of M(τ) more precisely, again using

k = 1 +m+m2 +m3 from (1.2), with m ≥ 3.

Theorem 3.1: Let M be a symmetric k×k matrix. Then M is a third order rotatable

moment matrix on the experimental domain T√m if and only if there exist scalars

λ2, λ4 and λ6 fulfilling either (3.2), or (3.3), or (3.4):

λ2 = 0 = λ4 = λ6; (3.2)

λ2 = 1, λ4 =
m

m+ 2
, λ6 =

m2

(m+ 2)(m+ 4)
; (3.3)

λ2 ∈ (0, 1), (3.4a)

λ4 ∈
[ m

m+ 2
λ2
2,

m

m+ 2
λ2

]
, (3.4b)

λ6 ∈
[m+ 2

m+ 4

λ2
4

λ2
,
m+ 2

m+ 4

(
λ2
4

λ2
+

(λ4 − m
m+2λ

2
2)(

m
m+2λ2 − λ4)

λ2(1− λ2)

)]
; (3.4c)
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such that M takes the form

M =


1 0 λ2v

′
m 0

0 λ2Im 0 λ4G
′
m

λ2vm 0 λ4Fm 0

0 λ4Gm 0 λ6Sm

 (3.5)

where

vm =
∑
i

eii, (3.6)

Fm =
∑
i,j

eije
′
ij +

∑
i,j

ejie
′
ij +

∑
i,j

eiie
′
jj , (3.7)

Gm =
∑
i,j

eijie
′
j +

∑
i,j

ejiie
′
j +

∑
i,j

eiije
′
j , (3.8)

Sm =
∑
i,j,k

eijke
′
ijk +

∑
i,j,k

eikje
′
ijk +

∑
i,j,k

ejike
′
ijk +

∑
i,j,k

ekjie
′
ijk

+
∑
i,j,k

(ejkie
′
ijk + ekije

′
ijk)

+
∑
i,j,k

eijie
′
kjk +

∑
i,j,k

ejiie
′
jkk +

∑
i,j,k

eiije
′
kkj

+
∑
i,j,k

(eijie
′
jkk + ejiie

′
kjk) +

∑
i,j,k

(eijie
′
kkj + eiije

′
kjk)

+
∑
i,j,k

(ejiie
′
kkj + eiije

′
jkk). (3.9)

Proof: It is convenient to work with the uniform distribution ur on the sphere

{t ∈ RI m : ∥t∥ = r} of radius r. For the lack of a finite support this is not a design

as defined at the beginning of this section; however, any proper design which has the

same moments up to order 6 as has ur will do just as well. The moment parameters

of ur are known to be

λ2(ur) =
r2

m
, λ4(ur) =

r4

m(m+ 2)
, λ6(ur) =

r6

m(m+ 2)(m+ 4)
.

For the direct part of the proof, let M be a moment matrix that is attained by the

design τ . The rotatability pattern (2.1) entails (3.5), with λj = λj(τ) for j = 2, 4, 6.

We need to verify the ranges (3.2–4). If λ2(τ) = 0, then τ = u0 is the one-point design

in 0 and we get (3.2). If λ2(τ) = 1, then τ is supported by the sphere of radius
√
m

and, because of rotatability, it behaves like the uniform distribution u√
m, whence we

get (3.3).
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Otherwise (3.4a) applies. For t ∈ T√m we introduce the squared norm and scale

it to lie in the unit interval,

s(t) =
1

m
t′t ∈ [0, 1].

The moments of s under τ are readily found to be∫
s(t) dτ = λ2 = a,∫

s2(t) dτ =
m+ 2

m
λ4 = b,∫

s3(t) dτ =
(m+ 2)(m+ 4)

m2
λ6 = c,

(3.10)

say. Evaluation of the determinants of appropriately (see discussion of (3.20)) chosen

2× 2 moment matrices of functions of s yields bounds for b and c:

0 ≤ det

∫ (
1 s(t)

s(t) s2(t)

)
dτ = det

(
1 a

a b

)
= b− a2,

0 ≤
∫ (

s(t)− s2(t)
)
dτ = a− b,

0 ≤ det

∫ (
s(t) s2(t)

s2(t) s3(t)

)
dτ = det

(
a b

b c

)
= ac− b2,

0 ≤ det

∫ (
1− s(t) s(t)− s2(t)

s(t)− s2(t) s2(t)− s3(t)

)
dτ = det

(
1− a a− b

a− b b− c

)
= (1− a)b− (a− b)2 − (1− a)c.

(3.11)

That is, in the present case we obtain the following ranges for a, b, c,

a ∈ (0, 1), (3.12a)

b ∈ [a2, a] = [a2, a2 + (a− 0)(1− a)], (3.12b)

c ∈
[b2
a
,
b2

a
+

(b− a2)(a− b)

(a− 0)(1− a)

]
, (3.12c)

which translate back into (3.4a–c). This proves the direct part. Note that the upper

limit in (3.12b) depends on the position of a in the interval (3.12a), similarly the upper

limit in (3.12c) involves the positions of both a and b within their respective intervals.

For the converse part, the matrix M of (3.5) evidently enjoys the rotatability

pattern (2.1). We face the task of finding a design τ which has M for its moment

matrix. In case of (3.2) we choose τ = u0. In case of (3.3) we use τ = u√
m.

In case of (3.4) we conjecture that M is attained by the mixture of two spherical

uniform distributions,

τα,r,R = αuR
√
m + (1− α)ur

√
m, (3.13)
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with α ∈ [0, 1] and 0 ≤ r < R ≤ 1. Any design (3.13) is rotatable, with moment

parameters λj(τα,r,R) = αλj(uR
√
m) + (1 − α)λj(ur

√
m) for j = 2, 4, 6. We set these

equal to λj of (3.4a–c) to obtain the system of equations

αR2 + (1− α)r2 = a,

αR4 + (1− α)r4 = b,

αR6 + (1− α)r6 = c,

(3.14)

where a, b, c from (3.10) range through the intervals in (3.12). The system (3.14)

implies the identities

b− a2 = α(1− α)(R2 − r2)2,

c− ab = α(1− α)(R2 − r2)2(R2 + r2),

ac− b2 = α(1− α)(R2 − r2)2R2r2.

(3.15)

If b− a2 > 0 then R2 and r2 are the two zeros of the parabola

(x−R2)(x− r2) = x2 − (R2 + r2)x+R2r2 = x2 − c− ab

b− a2
x+

ac− b2

b− a2
. (3.16)

It follows that, if the system (3.14) is solvable in r2, R2 and α, then the solutions are

uniquely given by

R2 =
c− ab+ w

2(b− a2)
, r2 =

c− ab− w

2(b− a2)
, α =

a− r2

R2 − r2
, (3.17)

where w is the positive root of

w2 = (c− ab)2 − 4(b− a2)(ac− b2). (3.18)

It remains to verify our conjecture.

If b = a2 then the range for c in (3.12c) collapses and we get c = b2/a = a3. Hence

we realize M through a single uniform distribution ur
√
m with r2 = λ2 ∈ (0, 1).

If b > a2 then we use the lower bound ac ≥ b2 in (3.12c) to obtain c ≥ ab. With

w2 defined by (3.18) we find (c− ab)2 ≥ w2, and

w2 = 4(b− a2)3 + (2a3 − 3ab+ c)2 > 0. (3.19)

Hence R2 and r2 are indeed well defined by (3.17) and satisfy 0 ≤ r2 < R2 ≤ 1, the

inequality R2 ≤ 1 following from the upper bound in (3.12c). Moreover (3.19) yields

w > ±(2a3 − 3ab + c), and this converts into r2 < a < R2. Hence α, as defined by

(3.17), lies in the open interval (0, 1). Straightforward but tedious calculation verifies

the alternative representations

α =
b− r4

R4 − r4
=

c− r6

R6 − r6
.

Therefore R2, r2 and α from (3.17) solve (3.14), whence τα,r,R from (3.13) has M for

its moment matrix.
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With a, b, c from (3.10) conditions (3.2–4) hold if and only if both of the 2 × 2

matrices, which appear in (3.11),(
a b

b c

)
,

(
1− a a− b

a− b b− c

)
(3.20)

are nonnegative definite. That this is necessary and sufficient for (1, a, b, c) to be a

sequence of moments over the interval [0, 1] is Theorem IV.1.1 of Karlin and Studden

(1966). While the general moment theory thus provides the abstract existence of a

measure attaining the given moments, we have actually constructed such a measure

explicitly, for the third order model.

The construction of τα,r,R together with the other cases also proves the following.

Corollary 3.2: Every third order rotatable moment matrix can be realized by a single

spherical uniform distribution, or by a nondegenerate mixture of two spherical uniform

distributions. A nondegenerate mixture, that is τα,r,R from (3.13) with α ∈ (0, 1) and

0 < r < R ≤ 1, occurs if and only if the moments satisfy (m+ 4)λ2λ6 > (m+ 2)λ2
4.

This corollary improves upon Theorem 3.2.1 of Kiefer (1960), and Theorem X.7.4

of Karlin and Studden (1966), for third order models. Their results say that the D-

optimal moment matrix is rotatable; using the Kiefer–Wolfowitz Equivalence Theorem

they then deduce that the D-optimal design is a unique mixture of two spherical

uniform distributions. Our result applies the rotatability properties directly, and says

that every third order rotatable moment matrix, optimal or not, may be obtained from

a mixture of two spherical uniform distributions (in the nondegenerate case; a single

uniform distribution applies in the degenerate case). We return to the discussion of

optimality properties in Section 4.

Since the Kronecker powers in (1.2) include a redundant repetition of higher order

terms, any moment matrix M(τ) in (3.1) is necessarily rank deficient. Therefore we

replace regular matrix inversion by Moore–Penrose inversion. For a rotatable moment

matrix M from (3.5), we base the calculation of the Moore–Penrose inverse M+ on

the eigenvalue decomposition of M .

To this end we introduce the set S2 of permutations ρ(ij) of the two symbols i, j,

and the set S3 of the permutations σ(ijk) of the three symbols i, j, k,

S2 = {ij, ji}, S3 = {ijk, ikj, jik, kji, jki, kij}.
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These permutations visibly appear in the first two terms of the fourth order block Fm

in (3.7), and the first six terms of the sixth order block Sm in (3.9). We define two

auxiliary matrices,

Π4 =
1

2

∑
i,j

∑
ρ∈S2

eρ(ij)e
′
ij , Π6 =

1

6

∑
i,j,k

∑
σ∈S3

eσ(ijk)e
′
ijk. (3.21)

The matrices Π4 and Π6 are understood best by their actions as linear transformations

on RI m2

and RI m3

, just as the matrices P and Q in the proof of Theorem 3.1, or the

vec permutation matrix Im,m of (5.10) in DGP.

Given vectors x, y, z ∈ RI m, we find that Π4(x⊗y) is the average of x⊗y and y⊗x,

while Π6(x⊗y⊗z) is the average of x⊗y⊗z, x⊗z⊗y, y⊗x⊗z, z⊗y⊗x, y⊗z⊗x, z⊗x⊗y.

In this sense Π4 and Π6 act as symmetrizers of 2- and 3-fold Kronecker products. The

fact that they are averaging operators makes them symmetric and idempotent matrices,

as is readily verified from the definition (3.21). Their general usefulness in calculating

higher order moments becomes also evident in formula (2.3) of Pukelsheim (1980).

The matrices Fm from (3.7) and Sm from (3.9) now take a succinct form,

Fm = 2Π4 + vmv′m, Sm = 6Π6 +GmG′
m. (3.22)

In view of v′mvm = m and G′
mGm = 3(m+ 2)Im, we define the projection matrices

F̃m = Π4 −
1

m
vmv′m, S̃m = Π6 −

1

3(m+ 2)
GmG′

m, (3.23)

with associated degrees of freedom

trace F̃m =
1

2
m(m+ 1)− 1, trace S̃m =

1

6
m(m+ 1)(m+ 2)−m. (3.24)

From F̃mvm = 0 and S̃mGm = 0 we get FmF̃m = 2F̃m and SmS̃m = 6S̃m.

Hence the moment matrix M of (3.5) has eigenvalues 2λ4 and 6λ6, with associated

projection matrices

P4 =


0 0 0 0

0 0 0 0

0 0 F̃m 0

0 0 0 0

 , P6 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 S̃m

 , (3.25)

and with multiplicities given by (3.24). Upon introducing

S =


1 0

0 0

0 vm

0 0

 , U =


0 0

Im 0

0 0

0 Gm

 ,

T =

(
1 λ2

λ2
m+2
m λ4

)
, V =

(
λ2 λ4

λ4
m+4
m+2λ6

)
⊗ Im,

(3.26)
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we obtain the representation

M = 2λ4P4 + STS′ + 6λ6P6 + UV U ′. (3.27)

It is now easy to discuss the rank and the Moore–Penrose inverse of M .

Theorem 3.3: The rank of a third order rotatable moment matrix M from (3.5) is

rankM =



1 for λ2 = 0;(
m+3
3

)
−m− 1 for λ4 = m

m+2λ
2
2 > 0;(

m+3
3

)
−m for

√
m+4
m+2λ2λ6 = λ4 > m

m+2λ
2
2 > 0;(

m+3
3

)
for
√

m+4
m+2λ2λ6 > λ4 > m

m+2λ
2
2 > 0.

(3.28)

The rank is maximal,
(
m+3
3

)
, if and only if the moments satisfy

m+ 4

m+ 2
λ2λ6 > λ2

4; (3.29)

and in this case the Moore–Penrose inverse is

M+ =
1

2λ4
P4+S(S′S)−1T−1(S′S)−1S′+

1

6λ6
P6+U(U ′U)−1V −1(U ′U)−1U ′, (3.30)

where P4, P6, S, T, U, V are given by (3.25+26).

Proof: Except for eigenvalues that vanish, the eigenvalues of STS′ and of S′ST are

the same, as are those of UV U ′ and U ′UV . The determinants are

detS′ST = det

(
1 λ2

mλ2 (m+ 2)λ4

)
= (m+ 2)

(
λ4 −

m

m+ 2
λ2
2

)
, (3.31)

detU ′UV = det

(
λ2 λ4

3(m+ 2)λ4 3(m+ 4)λ6

)
⊗ Im

= 3m
(
(m+ 4)λ2λ6 − (m+ 2)λ2

4

)m
. (3.32)

This implies (3.28). The formula (3.30) is verified directly using (3.27).

The four cases for the rank in (3.28) correspond to the number of spheres that the

design τα,r,R from (3.13) uses to realize M , namely 1/2 when 0 = r = R, or 1 when

0 < r = R, or 3/2 when 0 = r < R, or 2 when 0 < r < R.

A moment matrix M is often depicted by its associated information surface iM ,

defined by

t 7→ iM (t) =
(
f(t)′M+f(t)

)−1

(3.33)

for f(t) ∈ rangeM , and 0 otherwise. If the moment matrix is rotatable then the

information surface becomes a function of the squared norm t′t. Our representation

keeps the two portions that arise from the two interlacing blocks in (3.5) separate.
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Theorem 3.4: If the moments satisfy (3.29), then the rotatable moment matrix M

of (3.5) induces the rotatable information surface which depends on t ∈ RI m through

ρ2 = t′t according to

iM (t) =

(
(m+ 2)λ4 − 2λ2ρ

2 + 1
2 [(m+ 1)− (m− 1)λ2

2/λ4]ρ
4

(m+ 2)λ4 −mλ2
2

+
(m+ 4)λ6ρ

2 − 2λ4ρ
4 + 1

6 [(m+ 1)λ2 − (m− 1)λ2
4/λ6]ρ

6

(m+ 4)λ2λ6 − (m+ 2)λ2
4

)−1

.

(3.34)

Proof: The rank of M is maximal, by Theorem 3.3, whence iM (t) is given by (3.33).

Straightforward but lengthy evaluation of (3.30) yields (3.34).

The information surface (3.34) does not depend on the specific coordinate

representation chosen to evaluate it. We find it much easier to calculate it via the

Kronecker representation (1.2). For the representation in terms of two spherical

uniform distributions, (3.34) reduces to (2.12) of Galil and Kiefer (1979).

We now discuss under what circumstances designs with rotatable moment matrices

can be considered optimal.
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4 Design Optimality

A broad optimality concept, not tied to a single scalar criterion, is the Kiefer ordering

≫ of Pukelsheim (1993, page 354). This is a two stage ordering, capturing an increase

in symmetry relative to the congruence action of the underlying group Q, as well as

an improvement in the usual Loewner ordering of symmetric matrices.

Given an arbitrary third order moment matrix A, an increase in symmetry is

achieved by averaging it over the orbit under the action of the group Q,

A =

∫
Orth(m)

QRAQ
′
R dR.

The Haar probability measure dR on the orthogonal group Orth(m) is not easy

to handle. However, the average A coincides with the projection of A, onto the

4-dimensional subspace of symmetric matrices that have the pattern (3.5); see

Pukelsheim (1993, page 349). This opens up a way of calculating A.

If the projection A is represented as in (3.5) and has coefficient λ2 ∈ (0, 1), a

maximization of λ6 within its range (3.4c) gives a Loewner improvement which is best

for given values λ2 and λ4. Attainment of the upper bound

λM
6 =

m+ 2

m+ 4

(λ4 − m
m+2λ

2
2) +

m+2
m λ4(

m
m+2λ2 − λ4)

1− λ2
(4.1)

forces attainment of the upper bound in (3.12c), and a squared radius R2 = 1 in

(3.17). Accordingly we set R = 1 in (3.13–17), and introduce the two-parameter

family of boundary nucleus designs

τα,r = αu√
m + (1− α)ur

√
m, α ∈ [0, 1], r ∈ [0, 1]. (4.2)

They allocate weight α on the boundary sphere of the experimental domain T√m, while

placing the remaining weight 1−α on a concentric inner sphere nucleus of radius r
√
m.

The different cases for the rank distinction (3.28) thus correspond to α = 0 and

r = 0 ( 12 sphere), or α = 0 and r > 0 (1 sphere), or α ∈ (0, 1) and r = 0 ( 32 spheres),

or α ∈ (0, 1) and r ∈ (0, 1) (2 spheres).

The boundary nucleus designs form a complete class in the Kiefer ordering, as

follows.
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Theorem 4.1: Given any design τ on the experimental domain T√m, there always

exist some boundary weight α ∈ [0, 1] and some nucleus radius r ∈ [0, 1] such that the

boundary nucleus design τα,r improves upon τ in the Kiefer ordering, M(τα,r) ≫ M(τ).

Proof: For the 4-dimensional space of symmetric matrices which contains the rotatable

moment matrices (3.5), we use the orthogonal basis

W0 =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 , W2 =


0 0 v′m 0

0 Im 0 0

vm 0 0 0

0 0 0 0

 ,

W4 =


0 0 0 0

0 0 0 G′
m

0 0 Fm 0

0 Gm 0 0

 , W6 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 Sm

 .

(4.3)

Let A be the moment matrix of τ . We calculate its projection onto the symmetric

matrices of pattern (3.5) through A =
∑

i=0,2,4,6 λiWi, with coefficients given by

λi =
traceAWi

traceW 2
i

. (4.4)

We have traceW 2
0 = 1, traceW 2

2 = 3m, traceW 2
4 = 9m(m + 2), traceW 2

6 = 15m(m +

2)(m+ 4).

In (4.4) we always get λ0 = 1. In case λ4 = m
m+2λ

2
2, the matrix A is the moment

matrix of the degenerate boundary nucleus design τ0,r with radius r =
√
λ2 ∈ [0, 1].

The case λ4 > m
m+2λ

2
2 necessitates λ2 ∈ (0, 1). With λM

6 from (4.1), we introduce

M = W0 + λ2W2 + λ4W4 + λM
6 W6. This is a Loewner improvement over A, M ≥ A.

Furthermore M is attained by a boundary nucleus design τα,r, as shown in the proof

of Theorem 3.1. The nucleus radius r is found using a, b, c from (3.10) which, in the

present case, satisfy b − a2 > 0. Hence in (3.15), the first equation entails α ̸= 0, 1

and r2 ̸= 1, while the last equation yields r2 = (ac − b2)/(b − a2). Together with the

boundary weight α from (3.17) we obtain

r2 =
m+ 2

m

m+4
m+2λ2λ

M
6 − λ2

4

λ4 − m
m+2λ

2
2

∈ [0, 1), α =
λ2 − r2

1− r2
∈ (0, 1).

It is an immediate consequence that the boundary nucleus designs contain an

overall ϕ-optimal design, under every scalar criterion ϕ which is isotonic relative to the

Kiefer ordering. A sufficient set of conditions is the following.
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Corollary 4.2: Let the criterion ϕ : NND(k) 7→ RI be Loewner isotonic, concave, and

Q-invariant. Then there is a boundary nucleus design τα,r that is ϕ-optimal, in the

set of all designs on the experimental domain T√m. If, in addition, the criterion ϕ is

strictly concave then every ϕ-optimal design must be a boundary nucleus design.

Q-invariance means ϕ(M) = ϕ(QRMQ′
R), for all matricesQR in (1.3). SinceQ is a

subgroup of the orthogonal group Orth(k), orthogonal invariance implies Q-invariance.

An orthogonally invariant criterion depends on M only through the eigenvalues of M .

The most important criteria of this sort are the matrix means ϕp with p ∈ [−∞, 1], see

Pukelsheim (1993, page 140). With p = 0,−1,−∞ they comprise the classical D-, A-,

and E-criteria. For rotatable moment matrices M , we have studied the eigenvalues in

the previous section. We shall use these results to investigate ϕp-optimal designs more

closely, in a companion paper.

Here we use Corollary 4.2 to show that the boundary nucleus designs generate

precisely those moment matrices that are admissible in the set of all moment matrices.

The admissibility discussion for the usual minimal set of regression functions is more

complicated, see Section 2 of Heiligers and Schneider (1992). A moment matrix M

is called admissible when every competing moment matrix A with A ≥ M is actually

equal to M , see Pukelsheim (1993, page 247).

Theorem 4.3: In the third order model with regression function f given by (1.2), the

moment matrix of a boundary nucleus design is admissible.

Proof: The moment matrix M of a boundary nucleus design has pattern (3.5), with

λ6 = λM
6 from (4.1). Let A be an arbitrary moment matrix satisfying A ≥ M .

From QRAQ
′
R ≥ QRMQ′

R = M , for all R ∈ Orth(m), we see that the projection

A =
∫
QRAQ

′
R dR of A onto the rotatable moment matrices fulfills A ≥ M . Theorem

3.1 provides scalars µ2, µ4, µ6 such that

A =


1 0 µ2v

′
m 0

0 µ2Im 0 µ4G
′
m

µ2vm 0 µ4Fm 0

0 µ4Gm 0 µ6Sm

 . (4.5)

Premultiplication of A−M by (1, 0, δv′m, 0) and postmultiplication by the transposed

vector gives

0 ≤ 2δ(µ2 − λ2)m+ δ2(µ4 − λ4)m(m+ 2), for all δ ∈ RI .
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This necessitates µ2 = λ2. Next, premultiplication of A − M by (0, Im, 0, δG′
m) and

postmultiplication by its transpose yields

0 ≤
(
δ(µ4 − λ4) + δ2(µ6 − λ6)

[
6 + 3(m+ 2)

])
3(m+ 2) Im, for all δ ∈ RI .

This forces µ4 = λ4. Finally µ6 ≥ λ6 = λM
6 entails µ6 = λ6. This proves M = A.

Together with A ≥ M we see that the difference A − A is nonnegative definite. On

the other hand we have trace(A−A) = traceA−
∫
Orth(m)

traceQ′
RQRAdR = 0. Now

A = A = M , which shows that M is admissible.

Conversely, a rotatable moment matrix that is admissible among all rotatable

moment matrices is attained by a boundary nucleus design. These admissibility results

and the arguments to establish them parallel those of Lemma 1 of Heiligers (1991)

and Lemma 2 of Heiligers and Schneider (1992), for the case of a minimal system of

components.
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5 Third Order Rotatability of Experimental Designs

As with second order rotatable designs, third order rotatable designs can always be

formed by combining symmetric sets of design points on concentric spheres. Many

such combinations are feasible, and the symmetric sets themselves can be arrived at in

various ways. It is often hard to select a design with a suitably small number of points

due to the several moment conditions that must be satisfied simultaneously. Specific

discussions are given by Adhikary and Panda (1984, 1985, 1986), Arap Koske and Patel

(1989), Bagchi (1986), Draper (1960a,b; 1961), Gardiner, Grandage and Hader (1959),

Herzberg (1964, 1967), Huda (1981, 1982a,b; 1983, 1984, 1985, 1987a,b; 1988, 1989,

1991), Mukerjee and Huda (1985), Narasimham and Rao (1980), Nigam (1967), Panda

(1982), Panda and Das Roy (1990b), Thaker and Das (1961), and Tyagi (1964).

Published practical applications are harder to find. It is unusual in practical work

to fit a third order surface. More often, the response data are transformed in order to

avoid such a fit, and to reduce the fitted model to second order. Practical applications

are described by Baker and Bargmann (1985), and Derringer (1969).
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6 Higher Order Rotatability

Theoretical interest in higher order rotatability has led to a number of papers. For

fourth order rotatability, see Arap Koske (1987, 1989), Arap Koske and Patel (1986,

1987, 1989), Draper and Herzberg (1985), Huda (1991), Huda and Mukerjee (1989),

Huda and Shafiq (1987), Mukerjee (1987), Mukerjee and Huda (1990), Panda and Das

Roy (1990a), Patel and Arap Koske (1985), Shafiq and Huda (1989). For fifth order

rotatability, see Njui and Patel (1988).

For the extension of our results to rotatability of arbitrary order, a key result is

part (iii) of Theorem 3.1, in that it extracts the pure matrix algebra aspects of the

problem. This result has close relationships to tensor product representations of the

orthogonal group, see Brauer (1937), Wales (1987). It is instructive to contemplate

these interrelations in some greater detail.

The group representation R 7→ R⊗d is called the d th order tensor representation,

and takes values in the vectorspace RI md×md

of realmd×md matrices. Its commutating

algebra is defined by

B(m)
d = {B ∈ RI md×md

: R⊗dB = BR⊗d for all R ∈ Orth(m)}

= {B ∈ RI md×md

: R⊗dBR⊗d′ = B for all R ∈ Orth(m)},
(6.1)

assembling those square matrices B which commute with R⊗d, that is, which are

invariant under the action by conjugacy. Brauer (1937) was the first to investigate this

algebra more closely, and he proved that its dimension bd is given by the odd factorials,

bd = (2d− 1) bd−1

= (2d− 1) · (2d− 3) · . . . · 5 · 3 · 1.
(6.2)

This follows from a familiar combinatorial argument: The terms in the sum of (2.4)

generally take the form ∑
i1,...,id,j1,...,jd

ei1,...,ide
′
j1,...,jd

, (6.3)

subject to the restriction that the 2d subscripts i1, . . . , id, j1, . . . , jd form what is called

a matching, that is, each of the numbers 1, . . . , d appears exactly twice, see Section

5 of Brauer (1937). Hence given any number, say d, there are 2d − 1 positions for

its partner, times bd−1 matchings of the remaining numbers 1, . . . , d − 1. This proves

(6.2). For d = 0, 1, 2, 3, 4 we get bd = 1, 1, 3, 15, 105.

In our statistical problem all matrices are symmetric, whence the nonsymmetric

matrices in B(m)
d are redundant. We intersect B(m)

d with the space of symmetric
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matrices, and define

S(m)
d = {S ∈ RI md×md

: S = S′, R⊗dS = SR⊗d for all R ∈ Orth(m)}

= {S ∈ RI md×md

: S = S′, R⊗dSR⊗d′ = S for all R ∈ Orth(m)}.
(6.4)

We claim that its dimension sd obeys the recurrence relation

sd = sd−1 + (2d− 2)sd−2 +
bd − sd−1 − (2d− 2)sd−2

2
, (6.5)

with starting values s0 = s1 = 1. To see this, we call a matching symmetric when

the associated matrix in (6.3) is symmetric. From the set of all matchings we extract

the symmetric ones, in two steps. First we pair off i1 and j1, leaving sd−1 ways to

complete the whole matching symmetrically. Second we pair off i1 with any one of

the 2d− 2 symbols i2, . . . , id, j2, . . . , jd; this determines a countercrosswise pairing for

j1 to preserve symmetry, and then leaves sd−2 possible completions. Thirdly, there

remain bd−sd−1− (2d−2)sd−2 matchings for which the matrix (6.3) is not symmetric.

Each of these must come together with its “transposed” counterpart, so that the two

associated matrices become symmetric as a sum. (For instance, in (2.4) the four

double sums originate in this way.) This proves (6.5). For d = 0, 1, 2, 3, 4 we have

sd = 1, 1, 3, 11, 67.

The emphasis on the symmetric commutator algebra S(m)
d is one point where the

statistical problem appears to deviate from the group representation literature. A

second point is that the rotatable symmetric matrices in (2.1) also involve all lower

order representations. That is, we actually deal with the Cartesian product of all

tensor representations up to order d,

R 7→ (1, R,R⊗2, . . . , R⊗d).

This has subtle consequences. To fix ideas we consider d = 4. The matrix

corresponding to (2.1) then involves an m4 ×m2 off-diagonal block T (θ), say. When

this block is rearranged as a square m3 ×m3 matrix, it need not be symmetric. Hence

T (θ) contributes, not s3 = 11, but b3 = 15 degrees of freedom. The following matrix

displays the number of parameters that are called for by each block of a fourth order

rotatable symmetric matrix, 
1 0 1 0 3

1 0 3 0

3 0 15

11 0

67

 . (6.6)
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More generally, let pd be the dimension of the subspace of d th order rotatable matrices,

in the space of symmetric (1+m+m2+m3+m4)× (1+m+m2+m3+m4) matrices.

For d = 0, 1, 2, 3, 4 we then have pd = 1, 2, 6, 20, 105.

The rapid increase in dimensionality is much dampened when it comes to

rotatability of moment matrices. Even the Moore–Penrose inverses do not exhaust all

pd degrees of freedom. For instance, the third order rotatable Moore–Penrose inverse

of (3.30) can be represented using, not p3 = 20, but just 8 scalars α, β, γ, δ1, δ2, η, ϵ1, ϵ2,
α 0 γv′m 0

0 βIm 0 ηG′
m

γvm 0 δ1Π4 + δ2vmv′m 0

0 ηGm 0 ϵ1Π6 + ϵ2GmG′
m

 . (6.7)

The reason is that the matrices with this pattern form a quadratic subspace of

symmetric matrices, compare page 132 of DGP, or Lemma 13.10 of Pukelsheim (1993).

The dimension of this subspace is reduced by symmetrizing the d-fold Kronecker

products as in (3.21). Let qd be the dimension of the smallest quadratic subspace

of symmetric matrices that contains the d th order rotatable moment matrices. For

d = 0, 1, 2, 3 our results show that qd = 1, 2, 5, 8.
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Draper NR (1984) Schläflian rotatability. J Roy Statist Soc B46:406–411

Draper NR, Herzberg AM (1985) Fourth order rotatability. Comm Statist B14:515–528

Draper NR, Pukelsheim F (1990) Another look at rotatability. Technometrics 32:195–202

Draper NR, Gaffke N, Pukelsheim F (1991) First and second order rotatability of experimental designs,

moment matrices, and information surfaces. Metrika 38:129–161



On Third Order Rotatability 25

Farrell RH, Kiefer J, Walbran A (1967) Optimum multivariate designs. Proceedings of the Fifth

Berkeley Symposium on Mathematical Statistics and Probability 1:113–138 (Also in: Jack

Carl Kiefer Collected Papers III: Design of Experiments. Springer, New York 1985, pp 247–

272)

Gaffke N, Heiligers B (1992) Computing optimal approximate invariant designs for cubic regression

on multidimensional balls and cubes. Report No. 365, Institut für Mathematik, Universität

Augsburg.

Galil Z, Kiefer JC (1977) Comparison of rotatable designs for regression on balls I (quadratic). J

Statist Plann Inference 1:27–40 (Also in: Jack Carl Kiefer Collected Papers III: Design of

Experiments. Springer, New York 1985, pp 391–404)

Galil Z, Kiefer JC (1979) Extrapolation designs and Φp-optimum designs for autoregression on the q-

ball. J Statist Plann Inference 3:27–38 (Also in: Jack Carl Kiefer Collected Papers III: Design

of Experiments. Springer, New York 1985, pp 467–478)

Gardiner DA, Grandage AHE, Hader RJ (1959) Third order rotatable designs for exploring response

surfaces. Ann Math Statist 30:1082–1096

Heiligers B (1991) Admissibility of experimental designs in linear regression with constant term. J

Statist Plann Inference 28:107–123

Heiligers B, Schneider K (1992) Invariant admissible and optimal designs in cubic regression on the

ν-ball. J Statist Plann Inference 31:113–125

Herzberg AM (1964) Two third order rotatable designs in four dimensions. Ann Math Statist 35:445–

446

Herzberg AM (1967) Cylindrically rotatable designs of types 1, 2, and 3. Ann Math Statist 38:167–176

Huda S (1981) Cylindrically rotatable designs of type 3: further considerations. Biometrical J 24:469–

475

Huda S (1982a) Some third order rotatable designs in three dimensions. Ann Inst Statist Math 34:365–

371

Huda S (1982b) Some third order rotatable designs. Biometrical J 24:257–263

Huda S (1983) Two third-order rotatable designs in four dimensions. J Statist Plann Inference 8:241–

243

Huda S (1984) On D-efficiency of some third-order rotatable designs. J Indian Soc Agricultural Statist

36:51–67

Huda S (1985) Some 212-point third-order rotatable designs in six dimensions. J Statist Res 19:63–64

Huda S (1987a) The construction of third-order rotatable designs in k dimensions from those in lower

dimensions. Pakistan J Statist 3A:11–16

Huda S (1987b) Mixed-cylindrically rotatable designs. Pakistan J Statist 3A:63–67

Huda S (1988) A note on the analysis of third-order cylindrically rotatable designs of type 3. Pakistan

J Statist 4A:139–146



26 N.R. Draper and F. Pukelsheim

Huda S (1989) The m-grouped cylindrically rotatable designs of types (1, 0,m − 1), (0, 1,m −
1), (1, 1,m− 2) and (0, 0,m). Pakistan J Statist 5A:109–117

Huda S (1991) On some Ds-optimal designs in spherical regions. Comm Statist A20:2965–2985

Huda S, Mukerjee R (1989) D-optimal measures for fourth-order rotatable designs. Statistics 20:353–

356

Huda S, Shafiq M (1987) On Ds-efficiency of D-optimal fourth-order rotatable designs. Pakistan J

Statist 3B:33–37

Karlin S, Studden WJ (1966) Tchebycheff Systems: With Applications in Analysis and Statistics.

Wiley-Interscience, New York

Khuri AI (1988) A measure of rotatability for response-surface designs. Technometrics 30:95–104

Khuri AI (1992) Diagnostic results concerning a measure of rotatability. J Roy Statist Soc B54:253–267

Kiefer JC (1960) Optimum experimental designs V with applications to systematic and rotatable

designs. Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and

Probability 1:381–405 (Also in: Jack Carl Kiefer Collected Papers III: Design of Experiments.

Springer, New York 1985, pp 103–127)

Mukerjee R (1987) On fourth-order rotatable designs. Comm Statist A16:1697–1702

Mukerjee R, Huda S (1985) Minimax second- and third-order designs to estimate the slope of a

response surface. Biometrika 72:173–178

Mukerjee R, Huda S (1990) Fourth-order rotatable designs: A-optimal measures. Statist Prob Lett

10:111–117

Narasimham VL, Rao KN (1980) A modified method for the construction of third order rotatable

designs through a pair of balanced incomplete block designs. Proc Second Annual Conf ISTPA,

Bombay December 1980.

Nigam AK (1967) On third order rotatable designs with smaller number of levels. J Indian Soc

Agricultural Statist 19:36–41

Njui F, Patel MS (1988) Fifth order rotatability. Comm Statist A17:833–848

Panda R (1982) Contributions to Response Surface Designs. PhD Thesis, Calcutta University

Panda R, Das Roy A (1990a) Analysis of fourth order rotatability in k-dimensions. Calcutta Statist

Assoc Bull 39:195–200

Panda R, Das Roy A (1990b) Group divisible third order rotatable designs in non-orthogonal blocks.

J Indian Soc Agricultural Statist 42:189–200

Patel MS, Arap Koske JK (1985) Conditions for fourth order rotatability in k dimensions. Comm

Statist A14:1343–1351

Pukelsheim F (1980) Multilinear estimation of skewness and kurtosis in linear models. Metrika 27:103–

113

Pukelsheim F (1993) Optimal Design of Experiments. Wiley, New York



On Third Order Rotatability 27

Shafiq M, Huda S (1989) On application of association matrices in the analysis of fourth-order rotatable

designs. Pakistan J Statist 5A:131–142

Thaker PJ, Das MN (1961) Sequential third order rotatable designs for up to eleven factors. J Indian

Soc Agricultural Statist 13:218–231

Tyagi BN (1964) On construction of second and third order rotatable designs through pair-wise

balanced and doubly balanced designs. Calcutta Statist Assoc Bull 13:150–162

Wales D (1987) Eigenvalues connected to the radical of Brauer’s centralizer algebras. The Arcata

Conference on Representations of Finite Groups (P Fong, Ed). Proceedings of Symposia in

Pure Mathematics 47,2:547–552


