
Avoidance of inconsistencies during the
virtual integration of vehicle software

(Based on the diploma thesis of Benjamin Honke)

Benjamin Honke

Institut für Software & Systems Engineering
Universität Augsburg

Report 2012-08 August 2012

Institut für Informatik
D-86135 Augsburg

Copyright © Benjamin Honke
Institut für Informatik
Universität Augsburg
D–86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg.DE
— all rights reserved —

Abstract

In today’s vehicles multiple programmable Electronic Control Units
(ECU) are used in order to realize functional requirements of automotive
manufacturers or Original Equipment Manufacturer (OEM). A vehicle of
the luxury class contains more than 80 of such ECUs, which are net-
worked with each other. Software development for these ECUs is being
distributed effectively across several enterprises and countries. During
the integration of developed software with hardware, inconsistencies do
emerge constantly - the software does not work at a first attempt. Cost-
intensive fault diagnostics and reworking result out of it. As way out,
increasingly methods are being developed, which anticipate integration
“virtually”, on model level. Virtual integration represents anticipation of
integration task on the left side, i.e. the development side, of the V-Cycle
development process. Thereby integration should already be realized, for
example, during the design phase on the model level. Thus interface com-
patibilities as well as a later performance within the embedded system
can be verified at an early stage of development. For this reason, this the-
sis analyzes newer modeling and simulation approaches in regard to their
application for automotive embedded systems in order to enable virtual
integration and to simplify real integration.

Contents

1. Introduction 10

1.1. Motivation . 10

1.2. Problems and Challenges . 11

1.3. Outline . 12

2. Background and Basics 14

2.1. AUTOSAR . 14

2.1.1. AUTOSAR Architecture . 15

2.1.2. Meta Model and Templates . 18

2.1.3. Methodology . 20

2.2. Architecture Description Languages . 21

2.2.1. ADL Concept . 21

2.2.2. EAST-ADL2 . 24

2.2.3. EAST-ADL2 vs. SEA-AADL and other approaches 29

2.3. Integration . 31

2.3.1. Integration in general . 31

2.3.2. Integration in an automotive environment 33

2.3.3. Special kinds of integration concerning models and views 38

2.3.4. AUTOSAR integration from a practical point of view 43

2.4. Inconsistency . 45

2.4.1. Reasons for inconsistencies: Basic Conditions of Development 46

2.4.2. Categories of Inconsistencies between Software Components 47

2.4.3. Consequences of inconsistencies for integration 49

2.5. Related Work . 51

2.5.1. CCI . 51

2.5.2. UnSCom . 52

2.5.3. Other integration platforms . 53

4

Contents

3. Discovering mistakes of integration in practice 55

3.1. A Survey to find out current problems . 55

3.1.1. Structure and goals of the survey . 56

3.1.2. Interpretation of the surveys’ answers . 57

3.2. Results of the whole survey and further course 69

3.2.1. Reasons for inconsistencies . 70

3.2.2. Concrete inconsistencies . 72

4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts 73

4.1. Analysis of the surveys’ results . 73

4.1.1. Why are models better than textual documents or executable code? 74

4.1.2. Basic Conditions & AUTOSAR . 78

4.1.3. Concrete Inconsistencies & AUTOSAR . 97

4.1.4. Basic Conditions & EAST-ADL2.0 . 116

4.1.5. Concrete Inconsistencies & EAST-ADL2.0 130

4.1.6. Conclusion . 136

4.2. Extension of AUTOSAR and EAST-ADL2 by Semantics 138

4.2.1. Separation UnSCom from AUTOSAR and EAST-ADL2 140

4.2.2. Demonstration and Concretion of AUTOSARs’ and EAST-ADL2s’ semantical

drawback . 144

4.2.3. Linguistic Meta Model and Benefits . 146

4.2.4. Application & Case Study . 155

5. Conclusion and Outlook 158

5.1. Summary . 158

5.2. Outlook . 160

A. Acronyms 162

B. Survey 164

C. Analysis of the survey 173

D. Summary: Analysis’ Results 182

E. Case Study: Memory Stack 184

E.1. Statement Collection: textual representation . 184

E.1.1. Information Objects . 185

5

Contents

E.1.2. Functions . 185

E.1.3. Process . 185

E.2. Statement Collection: graphical representation 185

F. Bibliography 190

6

List of Figures

1.1. Interconnected electronic control units in a modern vehicle [5] 10

2.1. AUTOSAR refined layered software architecture from [16] 16

2.2. Basic Autosar Approach from[16] . 17

2.3. AUTOSAR Templates: Overview from [10] . 18

2.4. Autosar Methodology: Overview from [16] . 20

2.5. EAST-ADL2 Abstraction Layers and Artifacts from [9] 25

2.6. The seven artifacts of EAST-ADL2 and their interactions: Overview from [37] 26

2.7. A V-model for automotive development from [7] 28

2.8. AUTOSAR Interfaces from [16] . 36

2.9. Model Integration (Schematical) . 40

2.10.EAST-ADL2.0 Example of a mapping between Design and Implementation Level, from

[9] . 41

2.11.Inconsistencies Overview . 50

4.1. AUTOSAR Components-Ports-Interfaces, from [12] 75

4.2. AUTOSAR Elements, from [12] . 79

4.3. AUTOSAR Software component implementation, from [12] 80

4.4. AUTOSAR Model Persistence Rules for XML , from [14] 86

4.5. AUTOSAR Top level structure, from [12] . 89

4.6. AUTOSAR components and composition, from [12] 90

4.7. Emergence and Detection of Failures vs. Costs, from [54] 91

4.8. AUTOSAR GenericStructure:CommonPatterns:AdminData, from [12] 93

4.9. Example AUTOSAR file structure, from [17] . 93

4.10.AUTOSAR Support to enhance the basic conditions 97

4.11.AUTOSAR Data Types Overview, from [12] . 98

4.12.AUTOSAR Primitive Data Type, from [12] . 99

4.13.AUTOSAR Connectors, from [12] . 100

7

List of Figures

4.14.AUTOSAR Memory Management Overview, from [23] 104

4.15.NVRAM Manager Client/Server Interface, from [24] 105

4.16.NVRAM Manager API function: NvM_WriteBlock, from [24] 106

4.17.Interface interaction of Layers, example “Memory Management”, from [18] 107

4.18.AUTOSAR Implementation of software components and basic software, from [12] . . 108

4.19.AUTOSAR InternalBehavior of software components, from [12] 109

4.20.Summary meta model excerpt related to modes, from [12] 110

4.21.Kinds of RTEEvents, from [12] . 111

4.22.AUTOSAR Resource Consumption: Overview, from [12] 112

4.23.NVM Sequence Diagram for WriteBlock operation, from [24] 113

4.24.NVM Behavior and Runnable Definition, from [24] 114

4.25.EAST-ADL2 System Model: Overview, from [9] 117

4.26.EAST-ADL2 Requirements Modeling: Overview, from [9] 118

4.27.Meta-model for the functional definitions of EAST-ADL2, from [9] 119

4.28.Ports and connectors in the EAST-ADL2, from [9] 120

4.29.EAST-ADL2.0 Support, from [8] . 124

4.30.EAST-ADL2.0 Relationship Modeling, from [8] . 126

4.31.EAST-ADL2 Support to enhance the basic conditions 129

4.32.EAST-ADL2.0 Behavior Constructs, from [8] . 132

4.33.EAST-ADL2.0 Timing Requirements, from [9] . 133

4.34.EAST-ADL2.0 Data Types, from [9] . 133

4.35.UnSCom Component Description: Overview . 140

4.36.Semantical Problem (schematic) . 144

4.37.New Concepts: Overview . 147

4.38.New Concepts: InformationObject . 149

4.39.New Concepts: Function . 151

4.40.New Concepts: Process . 152

4.41.Ordered Sequence . 153

4.42.Parallel Execution . 153

4.43.Inclusive Branch . 154

4.44.Exclusive Branch . 154

4.45.Transformation between multiple representation format, following [50] 155

D.1. Enhanced Basic Conditions by AUTOSAR and EAST-ADL2 182

8

List of Tables

2.1. Comparison of EAST-ADL2 and SAE-AADL, following [37] 30

4.1. Comparison between models, textual documents, and code 78

4.2. Inconsistencies avoided by AUTOSARs’ static semantics 103

4.3. Inconsistencies avoided by AUTOSARs’ dynamic semantics 115

4.4. Inconsistencies avoided by EAST-ADL2s’ dynamic semantics 135

4.5. Benefits from EAST-ADL2 and AUTOSAR . 139

D.1. Inconsistencies avoided by EAST-ADL2s’ and AUTOSAR static and dynamic semantics183

9

Chapter 1.

Introduction

1.1. Motivation

Figure 1.1.: Interconnected electronic control units in a modern vehicle [5]

In today’s vehicles multiple programmable Electronic Control Units (ECU) are used in order to realize

functional requirements of automotive manufacturers or Original Equipment Manufacturer (OEM). A

vehicle of the luxury class contains more than 80 of such ECUs, which are networked with each

other, as depicted in figure 1.1. Software development for these ECUs is being distributed effectively

across several enterprises and countries.

During the integration of developed software with hardware, inconsistencies do emerge constantly -

10

Chapter 1. Introduction

the software does not work at a first attempt. Cost-intensive fault diagnostics and reworking result

out of it. As way out, increasingly methods are being developed, which anticipate integration “virtu-

ally”, i.e. on model level.

Virtual integration represents anticipation of integration task on the left side, i.e. the development

side, of the V-Cycle development process. Thereby integration should already be realized, for ex-

ample, during the design phase on the model level. Thus interface compatibilities as well as a later

performance within the embedded system can be verified at an early stage of development. For

this reason, this thesis analyzes newer modeling and simulation approaches in regard to their ap-

plication for automotive embedded systems in order to enable virtual integration and to simplify real

integration.

1.2. Problems and Challenges

In order to avoid the risk of problems during the integration, the automotive industry has been de-

veloping an industry standard called AUTOSAR since 2003. Presently over 100 enterprises are

engaged in AUTOSAR, whose integral part is represented by a meta model, which defines an ex-

change format for software architecture models between OEMs and their suppliers. However, as

AUTOSAR only focuses on the technical level, a second project called ATESST has developed an

additional specification, which is able to extend AUTOSAR with additional levels and requirements.

In spite of these efforts concerning the development of standards and specifications, so-called in-

consistencies between system components can still hamper integration. Due to the wide-spread

landscape of various OEMs and even more suppliers and because AUTOSAR is not a generally

applied standard yet, many problems concerning the collaboration of different parties and the inte-

gration of system components themselves are complicating integration into an entire vehicle these

days. While basic conditions hamper the collaboration and integration of different parties generally,

inconsistencies between system components on one single ECU or between several ECUs avoid

either static or dynamic networking and make integration impossible.

Therefore the thesis must identify concrete current problems of development, which influence in-

tegration, before analyzing AUTOSAR and EAST-ADL2, how far they are able to avoid individual

inconsistencies and support the collaboration of different parties. This firstly means to find out prob-

lems which come along with:

11

Chapter 1. Introduction

• a missing general applied standard

• differing tools

• multiple development processes

• a development, which is distributed across multiple countries, companies and developers

And secondly it means to find out, what inconsistencies are avoiding:

• the static interconnection of system components

• the dynamic interaction of system components at runtime

Not until problems will be identified, the thesis has to analyze AUTOSAR and EAST-ADL2 to look for

advantages and enhancements, but also for disadvantages and remaining problems. To solve such

remaining problems, the meta models may be extended or a mechanism will be identified, in order

to reach avoidance of inconsistencies as far as it is possible. Therefore the thesis contributes to rec-

ognize or to avoid inconsistencies, while sketching some possibilities for enhancing the collaboration

of various parties, which are involved in automotive development, further more.

1.3. Outline

To reach the mentioned goals, this thesis is structured as follows:

First of all chapter 2 introduces AUTOSAR in its section 2.1 and EAST-ADL2 in 2.2. Afterwards sec-

tion 2.3 details integration in order to get a closer insight into virtual integration, before section 2.4

describes problems and inconsistencies, which hamper integration in general. Finally in this chapter,

section 2.5 shows some approaches, which are related to AUTOSAR and EAST-ADL2 in order to

simplify integration alternatively.

After that brief overview section 3 describes a survey, which was hold to concretize the abstract

problems of the current automotive development, which at this point, have been identified before.

The survey’s results are formated within section 3.2, in order to provide a basis for the further course

of this thesis.

12

Chapter 1. Introduction

The problems which will already be identified then have to be analyzed and solutions for them will be

shown within chapter 4.1. Therefore section 4.1.1 will show benefits of model based development

in comparison with conventional development styles in order to warrant the usage of AUTOSAR and

EAST-ADL2 generally. The following sections from section 4.1.2 to section 4.1.5 describe how far

AUTOSAR and EAST-ADL2 are able to avoid identified problems concerning the collaboration of

parties and concrete inconsistencies between system components. After describing all possibilities

of AUTOSAR and EAST-ADL2, section 4.2 carries one necessary point, which is neglected by them

at present, to sketch additional language elements for detailing the semantics of AUTOSAR and

EAST-ADL2 models.

13

Chapter 2.

Background and Basics

To support the development and integration of automotive systems, chapter 2 introduces some inno-

vative concepts. Section 2.1 introduces AUTOSAR dealing with development and the specification

of automotive system architectures, closely related with implementation level. To complement AU-

TOSAR with missing or additional artifacts and more information beside this technical level, section

2.2 presents the concept of an Architecture Description Language (ADL), while introducing a special

ADL called EAST-ADL2. AUTOSAR as well as EAST-ADL2 are model-based solutions, whereby

models represent components building the system. One of the goals of AUTOSAR and EAST-ADL2

is to support the integration of models similar to the integration of implemented components. Be-

fore section 2.3 puts the notion of integration in concrete form. Afterwards, some general problems

hampering the integration of components on model or implementation level are discussed. While

the problems are detailed in section 2.4, the later chapters of this thesis will analyze how far AU-

TOSAR and EAST-ADL2 are able to avoid them on design or model level already. Finally, section 2.5

introduces some existing and related concepts enabling integration.

2.1. AUTOSAR

Automotive software development is characterized by a widespread landscape of different OEMs

and suppliers. A global distributed development of components as well as a missing standard for

development leads to individual solutions of different suppliers. But individually created solutions are

mostly not able to interact with other components or they are not able to be integrated into the entire

automotive system in a first attempt. Furthermore, the exchange or the upgrading of components

are difficult.

14

Chapter 2. Background and Basics

Having these problems in mind, an initiative called AUTOSAR was founded in 2003. AUTOSAR

stands for Automotive Open System Architecture and establishes a standard modular software in-

frastructure for application and basic software. This enables exchanging parts of the system’s soft-

ware and describing an embedded automotive system on a technical level close to implementation

[52]. The standard allows to describe all properties of the software and the hardware of an embedded

automotive systems by a common format. AUTOSAR enables modularity, scalability, transferability

and re-usability of software among projects, variants, suppliers, customers, etc. Generally, the main

objectives of AUTOSAR are:

• To manage increasing E/E (electric/electronic) complexity associated with growth in functional

scope

• To improve flexibility for product modification, upgrade and update

• To improve scalability of solutions within and across product lines

• To improve quality and reliability of E/E systems

• To enable detection of errors in early design phases

To reach these objectives and in order to control complexity at the same time, AUTOSAR defines

several self-contained description documents. These documents precisely describe certain parts of

the architecture and affect all relevant properties of an entire component based system. Dependen-

cies between these descriptions as well as a form of guide line for building these documents are

described by the AUTOSAR Methodology [13]. The descriptions themselves, i.e. how they have to

be specified, are defined by AUTOSAR by means of a meta model [12]. The AUTOSAR Architecture,

the Methodology, and the Meta Model are discussed more closely below.

2.1.1. AUTOSAR Architecture

Figure 2.1 depicts the software architecture specified by AUTOSAR. It is a layered and component

based architecture as well. Above the concrete hardware of microcontrollers or ECUs AUTOSAR

specifies three Abstraction Layers: Basic Software Layer, AUTOSAR Runtime Environment and Ap-

plication Layer.

The Basic Software Layer, which is situated below the AUTOSAR Runtime Environment, abstracts

the hardware and provides services to AUTOSAR Software Components by standardized and ECU

specific software components. In order to enable exchangeability of services and for customization

15

Chapter 2. Background and Basics

Figure 2.1.: AUTOSAR refined layered software architecture from [16]

of different supplier specific ECUs, the Basic Software Layer is further detailed into three abstraction

layers (Service layer, ECU Abstraction Layer, Microcontroller Abstraction Layer), plus the possibility

to implement Complex Device Driver which cannot be mapped into a single layer. Figure 2.1 shows

that there are different abstraction layer stacks, whereas each stack stands for an individual function,

like memory, communication, I/O or device driver functionality.

The next level of AUTOSAR architecture is the RTE layer. This layer is realized by two formings:

As Runtime Environment(RTE) and as Virtual Functional Bus(VFB). The RTE realizes the VFB on a

concrete ECU and is explicitly generated for each ECU, like depicted in figure 2.2, which shows the

relation between VFB and RTE aligned with the basic AUTOSAR approach.

In order to fulfill the goal of relocatability, AUTOSAR Software Components are implemented inde-

pendently from the underlying hardware. This independence is achieved by providing the VFB. The

VFB provides a virtual hardware, mapping independent system integration, and abstraction of the

AUTOSAR Software Components interconnections. Hence, communication between different soft-

ware components and between software components and their environment (e.g. hardware driver,

operating system, services of the basic software layer, etc.) can be specified independently of any

underlying hardware (e.g. BUS systems or microontrollers). This is also shown in Figure 2.2.

Thereby communication is possible through the concept of standardized AUTOSAR interfaces, which

16

Chapter 2. Background and Basics

Figure 2.2.: Basic Autosar Approach from[16]

encapsulate each component. The interfaces enable the integration of AUTOSAR Software Compo-

nents in that way that parts of the integration process of automotive software can be done at much

earlier design phases compared to today’s development processes [16].

Upside the RTE the Application Layer contains application software components. Application soft-

ware components use the services of the Basic Software Layer and communicate with other compo-

nents over the RTE or VFB exclusively.

17

Chapter 2. Background and Basics

Figure 2.3.: AUTOSAR Templates: Overview from [10]

2.1.2. Meta Model and Templates

In order to represent the information describing the aforementioned architecture and its components

via a standardized and machine readable format, AUTOSAR defines a meta model [12] in terms of

a Model Driven Engineering (MDE). MDE is the systematic use of models as primary engineering

artifacts throughout the engineering lifecycle. This enables advantages of a model-driven approach

like model transformation and automated code generation in the automotive software development.

Furthermore, this approach specifies a Domain Specific Language (DSL) which satisfies special re-

quirements of an automotive system. For this purpose, AUTOSAR defines an abstract syntax by the

means of its meta model which defines all describable AUTOSAR concepts necessary for specifica-

tion of such automotive systems. This meta model is described using the UML, whereas a special

UML Profile ([10]) was created, which can be applied to almost any UML tool in order to use AU-

TOSAR syntax.

18

Chapter 2. Background and Basics

Furthermore the meta model and its language elements is subdivided into packages like depicted

in figure 2.3. These packages are called AUTOSAR Templates and basically there are three main

description templates to describe information concerning software components, ECU resources, or

the entire system. These Templates are detailed in the following.

AUTOSAR Templates

The AUTOSAR Templates specify the syntax to describe parts of the AUTOSAR architecture. Figure

2.3 depicts an overview of the Templates and relationships among them. The template, which holds

all parts together is the System Template [25]. As the name implies, it describes properties of the

entire system. Generally, a filled template defines the relationship between the pure Software View

on the System and a Physical System Architecture with networked Electrical Control Units (ECU)

instances. By means of the system template, five major elements can be defined: Topology, Soft-

ware, Communication, Mapping and Mapping Constraints. The Topology part of the system template

describes the physical System Topology of a vehicle modeled in AUTOSAR. This is formed by a num-

ber of so called ECUInstances which are interconnected to each other in order to form ensembles of

ECUs.

Furthermore, the system template contains a software composition element containing all applica-

tion software which are specified to run on a particular ECU. Each of these application software

components is defined more closely inside of the Software Component Template [15]. In order to

distribute the software over ECUs, the system template defines a so called SystemMapping which

maps application software components to certain ECUs. Beyond the software to ECU mappings the

SystemMapping also maps the data exchange between software component signals as well as the

way a signal should take between software components. However, the SystemMapping also con-

tains further relevant mappings and elements to describe the communication using signals, frames

and PDUs which are explained more closely in the SystemTemplate Specification of AUTOSAR.

A further important template to describe an AUTOSAR system is the ECURessourceTemplate [19].

It provides the syntax for describing and checking the consistency of characteristics and features of

automotive ECUs. This template is used to specify the hardware of ECUs in detail. Hardware Ports,

Memory, Processing Unit, Peripherals and other Electronics of an ECU are described by the means

19

Chapter 2. Background and Basics

of the ECU Ressource Template which also depends on the SystemTemplate.

All these templates together build the core of the meta model, but there are much more templates de-

scribing information of an AUTOSAR system in more detail. They are called GenericStructure , Com-

monStructure, ECUDescriptionTemplate [11], BswModuleTemplate and ECUCParameterDefTem-

plate. The dependencies among these documents or templates are prescribed by the AUTOSAR

Methodology [13], which is described in the following.

2.1.3. Methodology

Figure 2.4.: Autosar Methodology: Overview from [16]

The AUTOSAR methodology [13] does not describe a concrete proceeding or development process.

It defines a recommended workflow, which specifies when certain information has to be available for

further processing. This workflow describes independently of roles, responsibilities or detailed time

specifications, which information depend on each other and which information are a precondition

for other documents. In this context AUTOSAR uses the term work-product for such an information

object. Additionally, the methodology describes which work-products have to be brought together in

order to generate new, more detailed work-products out of several input work-products by specified

activities. These steps can partly be automated. The processing of several work-products goes

through different activities until, at last, all necessary information, which describe the entire system,

are arranged by the mean of multiple descriptions. This means that the methodology describes de-

pendencies between different information for building an entire system and steps for generating new

work-products inside a workflow. I.e. when information (some work products) are completely avail-

able as input, new output can be generated. This workflow runs through the whole developments

phase, from system design to Executable ECU Code.

20

Chapter 2. Background and Basics

Figure 2.4 depicts a simplified view of the AUTOSAR methodology. The blue documents labeled

with XML represent work-products. These work-products are specified by means of the AUTOSAR

Template components. Using a schema generator, a XML interchange format can automatically

be generated from the meta model or rather from the model itself. For this reason, AUTOSAR

specifies so-called Model persistence Rules for XML [14] so that all models can be exchanged by

the established standard XML. Further work products may be object code, header files or others. On

the other side, the arrows between work-products define process steps for transforming or gathering

of necessary information. Details on the AUTOSAR methodology, i.e. further process steps, work-

products, and dependencies, may be found in the AUTOSAR Methodology specification [13].

2.2. Architecture Description Languages

AUTOSAR is a detailed language to describe embedded systems. However, as mentioned above,

AUTOSAR explicitly focuses on a technical description close to implementation of such systems.

This focus disables AUTOSAR to support an overall development process well and to share infor-

mation with other stakeholders. It is not possible to contemplate a system from another view than

the technical. However, such views may support development stages such as analysis or design,

and they describe, for example, common or non-functional requirements. Furthermore, AUTOSAR

insufficiently addresses behavior or error modeling, validation and verification of models. To extend

AUTOSAR with additional or necessary abstraction levels or description elements, it is possible to

factor an ADL into AUTOSAR. Generally, the availability of an enhanced and standardized ADL and

a methodology for using it will facilitate communication, analysis and synthesis of automotive em-

bedded systems.

In the following the concept of an ADL and the specific ADL EAST-ADL2 is introduced.

2.2.1. ADL Concept

ADL stands for Architecture Description Language and, in general, it is a language to describe soft-

ware architectures. We define software architectures as follows:

“Software architecture is a level of design that involves the description of elements from

21

Chapter 2. Background and Basics

which systems are built, interactions among those elements, patterns that guide their com-

position, and constraints on these patterns.” [45]

So an ADL has to detail software architectures concerning (sub-) systems and interconnections

among them. On the one hand it has to describe the system structure. On the other hand it deals

with components’s behavior and their interaction inside of a system. However, an ADL gathers not

only information for documentation but also for tool supported further processing of such information

(e.g. model analyzes, simulations, code generations, model transformations,..)

There are a lot of approaches called ADL, like Aesop [33], ArTek [57], C2 [44], Darwin [42], LILEANNA

[58], MetaH [60], Rapide [41], SADL [46], UniCon [56], Weaves [35], and Wright [6], SysML [4],

EAST-ADL [7], and SAE AADL [3]. However, there is no clear standardized definition. Therefore, the

aforementioned ADLs differ on several points, which are discussed below.

Artifacts of an Architecture Description Language

First of all, ADLs differ in what they model and how detailed these models are. There is an agreement

that an ADL describes components, connectors, and the configuration (Topology) of a system.

Furthermore, to be usable and applicable, it must provide tool support for architecture-based devel-

opment and system evolution. Some ADLs focus on a special domain, detail individual components

more than others, or provide a more formal language than others. (E.g. While Rapide focuses on

the external behavior of interfaces, Wrigth details semantic of architectural connections). Another

questions which has to be answered by an ADL is: How to support developers?

An ADL should enable communication between developers and does support understanding for the

entire system. In terms of this, an ADL has to be simple, understandable and should have graphical

syntax. Moreover, it should provide the kinds of tools that aid visualization, understanding, and sim-

ple analyses of architectural descriptions.

In certain cases it is also necessary to describe a system from different point of views. This enables

different stakeholders participating in the development, to get specialized insights into system de-

tails which are explicitly relevant for their work. I.e. on the one hand an ADL has to describe the

technical architecture, which must be communicated to software developers. On the other it should

22

Chapter 2. Background and Basics

also be possible to describe a functional architecture or non functional requirements. This kind of

architecture is communicated to stakeholders and enterprise engineers. To meet the requirements

of any stakeholder, an ADL can provide possibilities to specify the entire system on multiple lev-

els of abstraction or views. These levels especially address requirements and expertises of certain

stakeholders and contain information for their work. Concentrated information concerning different

aspects or levels of a system description are characterized as artifacts. An artifact is the result of a

specific analysis, i.e. a particular view. Thus it must be clarified for each artifact, what it describes

from which point of view and how it supports the developer. By this means, a system is composed

of multiple artifacts step by step.

Language Elements of an Architecture Description Language

Unlike textual descriptions, an ADL must have a formal syntax and semantic, to enable analysis,

model checking, parsing, compiling, and code generating. However, some ADLs exclusively use

strict formal methods, like Petri Nets or Process Algebra, to achieve the most formal semantics as

possible for describing an architecture. This strict formal proceeding comes along with the advan-

tage that the descriptions of a system can preeminently be analyzed and simulated. However, on

the other side, these approaches are very difficult to learn/apply and thus they are not widely ac-

cepted. By contrast other ADLs use semi-formal approaches to ease understanding and application

of such a language. Semi-formal approaches base for example on UML and describe an abstract

syntax of architecture elements. By means of constraints and limiting profiles these approaches can

be extended with additional semantics. Hence, such approaches are also able to provide adequate

formalisms as well as tool support.

Some ADLs also describe a methodology to provide developers with a form of Guide Line. Such

a methodology describes how and when certain artifacts have to be created and so it specifies a

proceeding comparable with a development process. Therefore the methodology shows correlations

between artifacts inside the proceeding as well as when artifacts have to be created. It answers the

questions how to build an entire system using the ADL.

Thus an ADL can generally be defined as:

A language that provides features[, like language elements, views, artifacts, and/ or method-

ologies,]for modeling [and analyzing] a software system’s conceptual architecture, distin-

guished from the system’s implementation. ADLs provide both a concrete syntax and a con-

ceptual framework for characterizing architectures. The conceptual framework typically re-

flects characteristics of the domain for which the ADL is intended and/or the architectural

23

Chapter 2. Background and Basics

style. The framework typically subsumes the ADL’s underlying semantic theory (e.g., CSP,

Petri nets, finite state machines).(compare Mevidovic [45])

2.2.2. EAST-ADL2

This section wants to introduce a specific ADL developed for the automotive domain. This ADL,

called EAST-ADL2, has been developed by multiple agents in the automotive domain for several

years, including both OEMs and suppliers.

In a previous version EAST-ADL2 was developed within the scope of the EAST-EEA ITEA project.

The developed architecture should ensure interoperability between the software and the hardware to

enable re-usage and exchangeability of distributed components. In order to simplify development of

embedded automotive systems, a subproject of EAST-EEA developed a domain specific ADL called

EAST-ADL. The ITEA project finished 2004 and was further developed within the ATESST, Advancing

Traffic Efficiency and Safety through Software Technology, IST-project. The current version of EAST-

ADL is version 2.0. Now a new project called ATESST2 follows.

EAST-ADL2 Abstraction Levels and System Model

EAST-ADL2 is an UML based solution and an UML profile captures the ADL in a XML file. This

enables using well-known tools for tool interaction and model exchange as well as open use and

standardization. Furthermore, it also complements AUTOSAR with e.g. functional specification and

requirements. Beyond the objective of EAST-ADL2 to define a standardized Architecture Description

Language for modeling all aspects of an (automotive) system, it also targets documentation and a

methodology.

EAST-ADL2 Language Elements EAST-ADL2 defines language elements in order to describe

certain properties of an architecture. These language elements can be classified into five main

concerns:

• Requirements: The Elements of the requirements language base on SysML constructs and

are used to specify all kind of requirements. A requirement is a condition or a capability

which must be satisfied by the system. Requirements change over time and they could be

introduced by various people, like marketing people, control engineers, system engineers,

software engineers, Driver/OS developers, basic software developers or hardware engineers.

24

Chapter 2. Background and Basics

• Structure: This part of the specification defines the structural constructs used in EAST-ADL2.

The structural view of a model focuses on the static structure of components of the system

being modeled and their static relationships. This includes the internal structure of such com-

ponents like their external interfaces through which they can be connected to communicate

with each other, by exchanging data or sending messages. For the design of systems of

arbitrary size and complexity, the possibility of hierarchical structuring of the instances is pro-

vided in the language. The structure contains the most important packages and bases on the

BasicComponents package of UML.

• Behavior: The language elements here are used to describe a behavior model. EAST-ADL2

supports its own simple algorithmic behavior model and it is also able to reference external

defined behaviors. That makes it possible to reference behavior definitions, which may be

specified by other tools and/ or mechanisms than EAST-ADL. (E.g. Statemate or Simulink)

Beside behavior modeling the EAST-ADL2 enables Error-Modeling as well.

• Verification and Validation: These elements concern possibilities to describe Testing and

Verification strategies or methods.

• Variability: Elements of the variability package are used to support describing various vari-

ants of architecture’s artifacts or product lines.

Figure 2.5.: EAST-ADL2 Abstraction Layers and Artifacts from [9]

25

Chapter 2. Background and Basics

Figure 2.6.: The seven artifacts of EAST-ADL2 and their interactions: Overview from [37]

EAST-ADL2 Artifacts and Abstraction Layers EAST-ADL2 abstraction layers are used to allow

reasoning of the features on several levels of abstraction. The aforementioned language elements

are used by several abstraction layers, and so they can be refined from a general view down to a

more specialized view. Figure 2.5 shows the five abstraction levels of EAST-ADL2: Vehicle Level,

Analysis Level, Design Level, Implementation Level, and Operational Level.

These abstraction levels are populated by 7 artifacts, i.e. the process elements, which are described

by the language. The levels and artifacts have been selected to allow various, company specific

development processes and enhance the separation of software and hardware development.

Figure 2.5 also shows that there is a relationship between AUTOSAR and EAST-ADL2 concepts. In

particular, the figure shows that AUTOSAR especially concerns the implementation level of EAST-

ADL2.

Firstly there are five artifacts building multiple abstraction levels which abstract technical details of

26

Chapter 2. Background and Basics

an architecture (or rather of AUTOSAR):

• Vehicle View: The Vehicle Level is the most abstract Level inside of EAST-ADL2.0. Here the

VehicleFeatureModel(VFM) supports model-based requirements engineering. The electrical

systems, vehicle product lines as well as perceivable features of a vehicle are described by

use cases. So, general needs and requirements are defined to be part of the VFM.

• Functional Analysis Architecture (FAA): One or several entities (analysis functions) of the

FAA can be combined and reused to realize vehicle features of the VFM. The FAA captures

the principal interfaces and behavior of the subsystems of the vehicle. It allows validation and

verification of the integrated system or its subsystems on a high level of abstraction.

• Functional Design Architecture (FDA): The aspects, which orient more towards implemen-

tation are introduced while defining the Functional Design Architecture (FDA). The features

are here realized in a more implementation-oriented manner. The system is structured and

decomposed to suitable components taking efficiency, legacy and reuse, COTS availability,

hardware allocation, etc, into account.

• Middleware Abstraction (MWA) or Platform Model: The Middleware Abstraction artifact

contains software components realizing middleware und OS-Functionality of AUTOSAR. Since

AUTOSAR has based on a standardized platform with fixed content, the entities of the middle-

ware does not have to be modeled explicitly in the AUTOSAR context. AUTOSAR middleware

modules are predefined and can partly be generated based on requirements of application

software.

• Hardware Design Architecture: The Hardware Design Architecture artifact describes the

topology of an architecture. This concerns ECUs, sensors/ actuators, BUS systems and gate-

ways. The respective AUTOSAR entities are found in the ECU Resource Template and System

Template (see section 2.1.2).

Below these levels there are two further artifacts to refine the artifacts from above, in order to describe

the technical level of implementation:

• Implementation Architecture (IA) or Function Instance Model (FIM): The Implementation

Architecture artifact contains software components realizing the functionality of application

software specified by the FDA. The content of the IA is defined by the means of the AUTOSAR

Software Component Template (see section 2.1.2).

27

Chapter 2. Background and Basics

• Operational Architecture or Allocation Model: Operational level representing the binary

entities and their related tools. It represents the actual software and electronics in the manu-

factured vehicle.

Cross-architecture constructs, such as allocation decisions and signal-to-frame mappings have to be

part of the Implementation Architecture directly, as both software and hardware should be allocation

independently and reusable. Parts of the AUTOSAR System Template (compare to section 2.1.2) of

AUTOSAR are therefore located directly in the Implementation Architecture.

To verify and validate a feature across all abstraction levels, an Environment Model is needed early

on. This plant model captures the behavior of the vehicle dynamics, driver, etc. on each abstraction

level.

Figure 2.6 exemplifies the interplay between different artifacts of EAST-ADL2. Thereby some kind

of methodology is introduced in order to prescribe an chronological order between artifacts and

activities. This methodology is described in more detail below.

Figure 2.7.: A V-model for automotive development from [7]

EAST-ADL2 Method aligned with the V-Model Figure 2.7 shows that EAST-ADL2 may be aligned

with a common V-Model. As such, it provides a form of methodology for creating the different ar-

tifacts. First of all, the VehicleFeatureModel matches the Features and Requirements Level of the

shown V-Model and models the intentions, which should be satisfied by the system. The Functional

Analysis Architecture can be compared with the next level down the left side of the V-Model, the

28

Chapter 2. Background and Basics

abstract functional definition. This uses the results from the level above and models the common

system specification. Based on these abstract functional definitions, the Functional Design Archi-

tecture of EAST-ADL can be used to model a system architecture and a detailed functional design

as well. These levels capture information before module specification and implementation. After

that, the more specific artifacts for implementation specifications of EAST-ADL can be derived from

the former specifications. For this purpose, EAST-ADL2 specific “ADLRealization”-dependencies be-

tween abstraction levels are used to record traceability from abstract levels down to more specific

levels.

2.2.3. EAST-ADL2 vs. SEA-AADL and other approaches

Section 2.2.1 lists a lot of ADLs. As such, each of them enable a description of common architectures

containing components and interconnections among them. But the nature of these ADLs is mostly

either aligned with a theoretical and academical background or not aligned with specific domains or

both in the majority of cases. For this reasons and because there are two languages already, EAST-

ADL2 and SAE-AADL, more specific to the needs of automotive system development, just these two

approaches will be discussed below.

The SAE-AADL language comes closest to the facilities of EAST-ADL2(compare section 2.2.2). IN

2004 SAE-AADL was renamed from “Avionic Analysis and Design Architecture” to “Architecture

Analysis and Design Language”. Although it was developed by SAE, the Society of Automotive En-

gineers, it was originally intended for avionic systems. However, by now the AADL is also being used

within other domains, such as Space, Robotics, Industrial Control, Medical, and Automotive. Table

2.1 bases on [37] and clarifies big differences and commonalities of these two languages.

SAE-AADL is a more common approach usable for various domains than EAST-ADL2. However, a

comparison between the two languages shows that EAST-ADL2 can complement SAE-AADL, and

vice versa. Both languages enable modeling of static, software-intensive embedded systems. On

the one hand, while SAE-AADL can be used for modeling and analysis on a level close to imple-

mentation, it is possible to use EAST-ADL2 for design modeling and validation on a high level of

abstraction. Especially, well supported possibilities for analysis and tool usage make SAE-AADL

interesting. EAST-ADL2 though, provides theoretical concepts for analysis, but there are just a few

tools supporting or executing these analyzes. On the other hand EAST-ADL2 supports modeling of

behavior, which is not considered by SAE-AADL. This makes it possible to integrate behavior mod-

els, like State-Charts- or Use-Case-Diagrams into a EAST-ADL2 model. Additionally, EAST-ADL2

29

Chapter 2. Background and Basics

EAST ADL2 SAE AADL
Focused Domain Automotive Main focus on Avionic sys-

tems. But also used by
other domains, like Automotive,
Robotics, Space flight,..

Focus on distributed em-
bedded systems

yes yes

Focus on dynamic sys-
tems

no yes

Modeling of non architec-
tural elements

requirements not supported

Modeling of Behavior supported by External or Native
Behavior

not well-supported

Support of HW-/SW-Co-
Design

yes yes

Notation graphical, a few textual graphical, textual
Abstraction Levels multiple abstraction levels no specified abstraction levels

Interfaces to other lan-
guages

XML, UML Profile, External Be-
havior

XML, UML Profile

Exchange of models XML/ XMI XML/XMI
Development process V-Model is base no specified process
Support for analysis possible through Validation and

Verification language elements,
see 2.2.2. But not mature or
well-supported by tools

yes, e.g. performance, schedu-
lability, reliability..

Table 2.1.: Comparison of EAST-ADL2 and SAE-AADL, following [37]

30

Chapter 2. Background and Basics

provides a variant management to support product lines and requirements modeling.

2.3. Integration

A lot of hardware, software, and mechanical components must be integrated in order to realize all

functions of a vehicle. EAST-ADL2 and AUTOSAR want to enable an integration of such components

on the model level already without using expensive real components on an early stage of develop-

ment. However, for understanding model integration firstly, it is important to understand integration

itself. For this purpose chapter 2.3.1 introduces integration and some questions, which must be

observed for integration, generally. Afterwards, section 2.3.2 details the term integration to show

differences between integration within an automotive environment in comparison to more general

component based integration strategies. After that, section 2.3.3 introduces the concepts of view

integration as well as model integration, as these kinds of integration are of particular interest to the

integration on model level of AUTOSAR and EAST-ADL2. Finally section 2.3.4 shows some practical

integration problems in the scope of AUTOSAR.

2.3.1. Integration in general

Generally integration is derived from Latin ”integrare” and means to bring different artifacts together

into a whole. In other words: it is a process of combining or accumulating. Because of this broad

definition, integration is a term which is used within many scientific areas whereas each of it has its

own specific interpretation for it. However, two basic questions concerning integration remain the

same independently from individual areas:

• What has to be integrated?

• How does something have to be integrated?

As the thesis’ goal is to address component based software integration, the following sections also

will discuss these questions to that effect.

What has to be integrated? In general, from a software point of view two disciplines of integration

concerning the “what” can be identified.

31

Chapter 2. Background and Basics

• On the one hand, system integration is a process by which smaller pieces of software are

brought together to form a larger piece of software. In this context, a piece of software means

a software component, whose more detailed definition can be found, for example, in [39] or

[43]. This kind of integration deals with the interconnection of components’ functionality. In

today’s software engineering this generally means the interconnection of ports and interfaces

of several components that they are able to communicate or to interact over messages and

signals.

• On the other hand data have to be integrated as well. This kind of data integration allows data

from one device or software to be read or manipulated by another. Especially in the area of

databases this kind of integration is established well. The problem here is to match different

data representation formats as well as exchange formats and semantics of data.

How does something have to be integrated? The kind of integration also has a strong stake in

efficiency of integration because it is a big difference if data or functions have to be integrated when

an executable code is available or before. This leads to some integration strategies, which will be

discussed in more detail below:

• Manual integration of data and functionality is the hardest way one can choose because of the

complexity of large systems. Therefore this is not really a possibility and so it is not further

discussed by this thesis.

• Other approaches, such as [40] and [28], describe a good taxonomy of common integration

strategies, which can be applied on code/software level directly. This kind of integration can

be seen as logical integration, which applies to integration during execution, where the data

remain on the different sources and integration only occurs when data or functions are re-

quested at runtime.

Each term of this taxonomy stands for a specific class of design patterns, which are able to

manage the integration of components during execution. Such a design pattern can either be

a bridge, which converts data from one component to another, without knowing its clients, or

a wrapper, which is structured in that way, that it is completely shielding each component from

direct interaction with its context. Further design patterns are, for example, the proxy or the

mediator pattern.

32

Chapter 2. Background and Basics

• Beside these essential design patterns there are other possibilities to overcome integration

before a code is available. These approaches, which can be seen as materialized integration,

stand for integration before execution and thus during the design or analysis phase. Such an

approach tries to eliminate later integration faults by the use of more detailed descriptions.

In comparison with logical integration, all data and functions, which have to be brought to-

gether, are prepared before an entire system executes the functions or works with their data.

These approaches detail properties of a system to that extend, that misunderstandings be-

tween developers concerning components or artifacts may be reduced or solved before later

conventional integration phases. Especially, by the means of models, these detailed descrip-

tion techniques are realized in order to enable integration already on model level, which is

discussed more closely in section 2.3.3. Some examples for common techniques are:

– Specification of extended interface descriptions, compare [50]

– Interaction protocols using for example the Protocol Definition Language (PDL) [50]

– Formal description languages like petri nets, compare [59, 55]

– Semi-formal description languages like UML, AUTOSAR, or EAST-ADL2 concerning

static structures or the dynamic behavior of a system (compare: Sequence Diagrams,

Activity Diagrams, Use Cases Diagrams, State Machine Diagrams, or Interaction Dia-

grams)

Informal descriptions like Text may also describe system components, but they are not listed

here due to their lack of the ability of computational processing as well as formalism.

2.3.2. Integration in an automotive environment

After the last section has dealt with common questions of a general component based integration,

the following shows what integration means for automotive systems. For this reason and in order

to get a better understanding for what integration means in the scope of this thesis, the following

section will describe step by step what is special for integration in a vehicle. For this purpose, the

most important points of integration of common component based applications are described at first.

After that, the challenges of an integration of components within embedded systems are discussed,

before automotive systems as special case of an embedded system are addressed. These three

forms of integration can be seen as specialization from the more general case of component based

33

Chapter 2. Background and Basics

applications down to the more special case of component based application in an embedded au-

tomotive system. Therefore the respective requirements, which come along with the more general

case, must be taken into account by the more special case of integration.

• Integration in general component based applications: Today, applications are not devel-

oped independently. Most applications are part of larger architectures and have to interact

with other applications. While some applications are developed for a specific application fields

from scratch, other applications just are reused in form of components of the shelf(COTS).

This fact must be taken into account for the development of components, too, since there

could be several functional dependencies between individual applications within one archi-

tecture. During components’ development it has to be ensured already, that the components

can be integrated into the entire architecture afterwards and are able to interact with other

components as well. This concerns system integration and data integration like described

in section 2.3.1. All these points considerably influence a good and accurate integration of

components into an entire architecture.

• Integration in an embedded environment: Unlike general component based applications,

an embedded system is a computer, which is embedded into a technical context and respon-

sible for controlling, setting, and observing that system. They often are adjusted to a special

job and therefore they can be realized as a cost-effective composition of hardware and soft-

ware. In the process, an embedded system is subject to strong restricting conditions, such

as minimal costs and a low consumption of space, energy, and memory. While an embedded

system normally has just reduced resources, mostly without any storage drive, operating sys-

tem, keyboard, or display compared to a personal computer, an embedded system mostly has

to comply critical requirements, like real time or safety requirements.

The more functionalities provided by an embedded system ,the more is the complexity of inte-

gration of such functionality. In consideration of the restricted resources, like described above,

the software has to be attended to them.

• Integration in an automotive environment: A vehicle or an aircraft are examples for a com-

plex embedded system and a special case of conventional embedded systems. Such a com-

plex embedded system is a network of autonomous embedded systems in combination with

mechanic as instruments. In the concrete case this means, that multiple ECUs are distributed

over the whole vehicle, whereas each ECU represents a conventional embedded system it-

self, which has to interact with other ECUs or rather other embedded systems. For this reason,

the ECUs are interconnected by so called BUS systems, like CAN, LIN, or FlexRay. This net-

working of multiple embedded systems, which controls the hardware, software and mechanics

34

Chapter 2. Background and Basics

functionality, represents the particular challenge for integration within the entire system vehi-

cle.

AUTOSAR component integration

AUTOSAR as description language for complex automotive embedded systems has to deal with the

following kinds of integration:

• Software-Software Integration(SW-SW integration):

Software-Software Integration means that software or software components designed by AU-

TOSAR have to be integrated into a whole, so that an interaction with other software within

the system or vehicle is possible. However, AUTOSAR specifies different kinds of software

components. Each kind of software component must be integrated with similar or other kinds

of components. The resulting integration strategies are described below:

– Application Software Integration (ASW integration):

On application layer, see figure 2.1, there are many application described using the

AUTOSAR software component Template, see section 2.1.2. Each AUTOSAR software

component specifies its required and provided interface, the behavior, and a lot of other

properties, which are important to describe the interplay with other components. During

the integration phase, all application software(their descriptions) have to be put together.

The difficulty is, that interaction points between components are described correctly, so

that an interplay is possible.

– Basic Software Integration (BSW integration):

On basic the layer, the software to manage basic functionality, like memory, communi-

cation, or scheduling is established. Today’s basic software layer contains 53 modules

to realize any function which is important to support all functions of application software.

Since basic software modules also have to interact, the basic software modules have to

be integrated as well.

– Application Software - Basic Software Integration (ASW-BSW integration):

The two blocks of the application layer and the basic software layer have to be brought

together in that way, that an application software component can also use the infras-

tructure functionality provided by the basic software. As a kind of middleware between

application software and basic software, on RTE layer the runtime environment can be

35

Chapter 2. Background and Basics

generated for a specific ECU. I.e. to integrate the different layers of the AUTOSAR archi-

tecture into a whole, so that any software component is able to communicate with other

components like specified by a developer.

Especially, interfaces are the interaction points between components and therefore have to

be interconnected during integration. Therefore AUTOSAR specifies three different types of

interfaces, see figure 2.8, to interconnect the components which were just described.

Figure 2.8.: AUTOSAR Interfaces from [16]

– AUTOSAR interfaces:

An “AUTOSAR Interface” and its description is independent of a specific programming

language, ECU or network technology. AUTOSAR Interfaces are used in defining the

ports of software-components. AUTOSAR makes it possible to implement this commu-

nication between software-components either locally or via a network.

– Standardized AUTOSAR interfaces:

A “Standardized AUTOSAR Interface” is an “AUTOSAR Interface” whose syntax and

semantics are standardized in AUTOSAR. The “Standardized AUTOSAR Interfaces” are

typically used to define AUTOSAR Services, which are standardized services provided

by the AUTOSAR Basic Software to the software-components.

36

Chapter 2. Background and Basics

– Standardized interfaces:

The “Standardized Interfaces are typically defined for a specific programming language

(like “C”). Because of this, “standardized interfaces” are typically used between software-

modules which are always on the same ECU. When software modules communicate

through a “standardized interface”, it is not possible any more to route the communica-

tion between the software-modules through a network.

Beside software integration, there are further elements, which must be integrated. Although

they are not of any particular interest for this thesis, they are listed for completion in the

following:

• Software-Hardware Integration (SW-HW integration):

As a vehicle can not only consist of software, the software components described above

have to be mapped or integrated with the underlying hardware or rather ECU. This kind of

integration concerns the interplay between the basic software and the hardware, so that the

basic software can address hardware interfaces and vice versa. Especially for this kind of

integration a lot of ECU specific parameters have to be set within the basic software modules

and their Templates. During integration, these paramters are at least as important as the

interfaces between hardware and software.

• Software-Hardware-Mechanics Integration (SW-HW-M integration):

When software is integrated with the hardware, the next step is to integrate hardware with

the mechanics. The mechanics is controlled by the hardware. Therefore it is important for

integration, that an action intended by a software or a hardware component can be executed

by the connected mechanics.

• Hardware-Hardware integration (HW-HW integration):

When one ECU and its constituents(software, hardware, mechanics) is working properly, sev-

eral ECUs have to be put together for building the entire vehicle. The interconnection of

different ECUs, each responsible for another job, is realized by a BUS system. This kind of

integration has to ensure that the different ECUs, interconnected over more than one BUS sys-

tems subdivided into clusters(clusters are interconnected by gateways), work together prop-

erly. Working together properly means that ECUs are able to share functionality in spite of the

remote communication caused by the distribution of ECUs over the entire system vehicle.

Despite these multiplicity of integration tasks, the following focuses on software-software integra-

tion.

37

Chapter 2. Background and Basics

2.3.3. Special kinds of integration concerning models and views

After integration and individual kinds of integration within automotive systems were introduced, the

following section clarifies the question from section 2.3.1: How does something have to be inte-

grated?

Generally one can say that the thesis addresses integration of components, which were discussed

in the last section 2.3.2, on the model level. From this point of view, a materialized integration will

be performed, as AUTOSAR as well as EAST-ADL2 models particularly concern the design, anal-

ysis, or specification level. Indeed it would be possible to use design patterns, like mentioned in

section 2.3.1, but patterns are used in the context of executable code. This means, that integration

is done at runtime, which slows down the execution time of individual functions and hard real time

requirements. Furthermore, integration on the level of executable code can only be done at a late

phase of development yet. As implemented modules are a late output of conventional development

processes, also problems can only be found at a very late stage.

For this reason and because models are available much earlier than the code, EAST-ADL2 and

AUTOSAR enable integration on a model level or rather on a virtual integration. Thereby the basic

task of virtual integration is to bring artifacts and language elements of AUTOSAR and/or EAST-

ADL2 together. However, integration on a model level can be further subdivided into two kinds of

integration, which are of particular interest to this thesis: View Integration and Model Integration.

These two integration tasks are detailed now:

Model integration

Caused by the distributed development of an automotive system, a lot of models are created using

AUTOSAR or EAST-ADL2. These models are created by even more developers to cover certain

aspects of a system in order to analyze and to run interactions among components. This makes it

indispensable that models have to be integrated into each other when developers have to communi-

cate or have to work together in a global distributed development process. This means, that model

integration is a methodology to construct new models by assembling correlated sub-models or to

extract sub-models from already defined models. [32]

Figure 2.9 shows a conceptual view on a model integration. On the model level, multiple models

are defined representing different components or properties of an architecture. These models could

38

Chapter 2. Background and Basics

be modeled by the same or differing standards, like common UML, AUTOSAR, or... Model integra-

tion means putting these models together into an entire system. This makes it possible to analyze

or simulate behavior not only of the single models but also of the entire system. For this purpose,

the models have to define interfaces or access points. Model or component interfaces inside of the

models have to match to ensure that the models or components are able to interact well. Only if

models are able to be integrated, an analysis of these models on model level can be performed. For

this reason, model integration can also be seen as a virtual integration of components, as system

components can be integrated on model level (virtual) already without using expensive hardware or

mechanics. Thus, virtual integration can prevent problems during the integration of “real” compo-

nents on the implementation level, because individual problems and faults can already be found on

the levels before.

[34] though distinguishes between a deep integration and a functional integration. While a deep

integration produces a single new model which combines two or more given models, functional inte-

gration does not yield a new model. Functional integration leaves the given models as they were and

superimposes a computational agenda for coordinating calculations over them. While deep integra-

tion uses its common formalism or syntax for combining the entire model, the functional integration

does not. This work deals with both the deep integration as well as the functional integration. Deep

integration concerns the AUTOSAR approach in terms of a common formalism to represent static

structures of the entire software architecture on a technical level, the functional integration concerns

the usage of other means like an ADL to represent other aspects which rise above the power of

AUTOSAR.

View integration

Beside models concerning different parts of the system, there are also multiple abstraction levels

or views on that system, which particularly concerns various aspects described by an architecture

description language like EAST-ADL2. The IEEE Draft Standard 1471 [36] refers to a view as some-

thing that “addresses one or more concerns of a system stakeholder.” Stakeholders are individuals

who share concerns or interests in the system (e.g. developers, users, customers, etc.). In this

context, a model is the connection of multiple views related to the same system and views are par-

tial descriptions of that model representing information on different abstraction levels (compare to

EAST-ADL2 Abstraction Levels 2.2.2) as well as static or dynamic behaviors of a system.

Typical views of (sub-)systems may be the data view as data model, the interface view as black box

model, state view as state machine model, process view as workflow model, or the architecture view

39

Chapter 2. Background and Basics

Figure 2.9.: Model Integration (Schematical)

as Architecture model. This means that already small systems mostly consist of a large number of

different views so that an integration of them into a model exhibits redundancies and other problems

among views. However, since views represent only individual aspects of a system model, those

views are meant to be together; only if they are together they can fully describe the model of a sys-

tem. For this reason, view integration must keep different views consistent.

Thus when using AUTOSAR and EAST-ADL2, it is important to observe correlations between dif-

ferent abstraction levels. However, not only the different views of EAST-ADL2 have to be observed.

Especially, transitions between EAST-ADL2 and AUTOSAR views have to be observed, because

here the difficulty to integrate two standards complicates view integration.

Figure 2.10 exemplifies view integration by the means of EAST-ADL2 design level view, which

abstracts AUTOSAR or rather the EAST-ADL2 implementation level view. The figure shows that

there are a lot of “ADLFunctions” on design level, which are refined by further detailed concepts

(Runnables) on implementation level. View integration must provide exact relationships between the

concepts of different views in order to ensure a continuous transition between the views. This avoids

redundancies, indicates which concepts abstracts or refines which component within other views

40

Chapter 2. Background and Basics

and enables traceability of design solutions across development phases and stakeholders.

Figure 2.10.: EAST-ADL2.0 Example of a mapping between Design and Implementation Level, from
[9]

Prerequisites to integrate models and/or views

The last two sections have introduced the concept of model and view integration. However, there are

some most important prerequisites, which must be hold, in order to ensure that integration is possible

at all. When using models it is important not only to ensure that components, which are specified by

these models, can be integrated, but it is also important to ensure that the models themselves can

be integrated. For this purpose it is necessary to ensure that different models are created by holding

the same prerequisites, which are detailed by the following listing:

• Syntax: Syntax concerns the representation or language elements (compare to section 2.2.1)

of models with all of their properties like entities, their attributes, and relationships between

41

Chapter 2. Background and Basics

entities, etc. Thus, it specifies the vocabulary as well as model building rules which define what

model elements may be connected or not. Furthermore attributes of these elements have to

be represented in a standardized way. When models have to be integrated, there must be an

agreement of the common syntax between sub-models, which also may be modeled by their

own syntax.

• Semantics: Matching of data in terms of their semantic is a further task for model integration.

This means that there must be an agreement between the semantic or the meaning of model

elements represented by the common syntax.

• Exchange Format: Another objective of model integration appears in terms of the exchange

format of models. This especially concerns the use of different tools supporting the devel-

opment of them. Many tools provide a mechanism to export data like models. These data

are used to be imported by another tool for a further processing. Although XML is a popular

exchange format, there is no unique standardized exchange format. The OMG though speci-

fies one possible standard called the XML Metadata Interchange (XMI [48]), but that standard

already differs caused by different versions of XMI.

The last sections 2.3.2 and 2.3.3 have answered the two questions from section 2.3.1 for an automo-

tive environment generally. However, covering all aspects of integration concerning an automotive

development would blow the scope of this thesis. This thesis wants to confine itself to a certain area

of integration inside of vehicles. For this purpose, the following definition wants to restrict integration

to software aspects exclusively and should be used for the following sections.

Integration: Integration means combination of functionalities offered by multiple (AUTOSAR) soft-

ware components (application software and basic software). Thereby an entire system must be

built, which provides and manages all functionalities provided from each single component. Unlike

conventional integration, which combines real software components in the form of executable code.

Virtual integration has to combine models and views, which abstract from real components in order

to simplify their development. In both cases, integration means combining static interaction points

and dynamic behavior of components, that components are able to collaborate among each other

and within their environment.

42

Chapter 2. Background and Basics

2.3.4. AUTOSAR integration from a practical point of view

After introducing integration from a theoretical point of view, the following section intends to show

different integration tasks from a practical point of view. For this reason a workshop was proceeded

to get practical insights into the working with AUTOSAR. The workshop has shown two types of

projects, which deal with different aspects of integration. Unlike above, where integration only con-

cerns system components exclusively, other interests must be brought together as well. Therefore

the first integration project concerns a common development process for the development and in-

tegration of BSW modules. While the second project shows a demonstrator, which exemplifies the

interaction of different integrated ECUs whose software is exclusively designed with AUTOSAR. The

workshops’ goal was to get insights and to find out problems within an AUTOSAR environment. The

two projects and the workshops’ experiences are described in more detail below:

Integration of BSW Modules: Currently a common process for the integration of BSW modules

is under development. The goal is to specify a basic software development process for different

and global distributed divisions. Four divisions, each distributed over several locations, presently

are developing a total of 53 different AUTOSAR basic software modules. Each division develops

certain modules and especially one division is responsible for the integration of these modules. The

planned process does not deal with hardware or application. It just concentrates on basic software

functionality and wants to coordinate e.g. cross-divisional process phases and roles for BSW mod-

ule development and integration. For this purpose, the process depends on the common V-Cycle

development process and defines phases like planning, analysis, design, implementation, testing,

integration,and so on. In parallel with each phase the new process specifies the specification of test

cases for certain artifacts. I.e. a developer designs and implements his/her component(s) to define

test cases for the developed components.

In addition, the demonstration has used two tools: a configuration tool (Telelogic Synergy) as an

example repository for software configurations, specifications and requirements. And furthermore,

problems are communicated by a change request tool (Telelogic Change) for gathering and tracing

of errors, suggestions, and so on. However, the tools and the distributed development come along

with some problems. First of all there is no central database to store all data by now. The Telelogic

tools are just examples for tool support. However, there are many other tools and databases in use.

This comes along with the drawback that a synchronous data management is not possible in most of

the cases. Repository synchronization between Telelogic based systems is realized once a day but

this is not the norm. Mostly a configuration or something else is sent over mail and has to be entered

43

Chapter 2. Background and Basics

into the own system manually. This missing synchronization may cause multiple faults. For exam-

ple: if one developer of company 1 makes some changes within component A which depends on a

component B. An other developer of company 2 developing component B finds out these changes

tardily. The latter developer may make changes within component B causing disastrous effects.

Other problems, which were shown during the demonstration, concern the synchronization of devel-

opment process phases and the co-development of different modules. A release of an entire block

of BSW modules is subdivided into several baselines. These baselines concern individual modules

and they define the time when a development phase has to be finished. Furthermore the baselines

are points in time, when an integrator has to integrate and test the new (enhanced) modules. Coor-

dination between baselines of different modules and devisions is an important point to avoid delays

among different stages of development.

AUTOSAR Demonstrator: Within the scope of AUTOSAR a demonstrator was developed. This

demonstrator was constructed over one and a half year to show AUTOSAR functionalities and for

learning by doing. The demonstrator consists of three interconnected ECUs concerning three dif-

ferent domains which lead to a cross divisional working group: engine control, cluster instruments,

and body. Generally the three ECUs realize an automatic cruise control, a clime control system,

and an instruments cluster (tachometer and speedometer). All functions depend on each other. For

example: the cruise control system is realized by the engine control system(ECU 1) and depends

on the actual speed shown by the instruments cluster(ECU 2). Furthermore, the actual speed has

a bearing on the clime control system(ECU 3), which is responsible for heating or cooling of the

interior and the engine. All functions within the three ECUs are realized using AUTOSAR. Thus the

project is well-suited to show experiences handling with AUTOSAR components. All experiences

were captured in so called “Lessons Learned”. The most relevant ones are explained below:

• Tools: Even a few years ago when the demonstrator was created there were just a few,

not mature tools available for developing. This was the first drawback during the develop-

ment phase. AUTOSAR is a complex framework which can not be handled manually or by

insufficient tools not supporting certain parts of AUTOSAR. Today there are much more tools

available, but the problems still exist. The complexity of AUTOSAR makes a tool enhance-

ment important. Furthermore, because by now there are a lot of AUTOSAR tools available,

interchange between different tools is additional problem.

44

Chapter 2. Background and Basics

• Missing experiences: Additionally, the missing experiences hamper the development with

AUTOSAR. Meanwhile it was learned from the demonstrator project, but experiences need to

be gathered further on, in order to specify useful modeling guide lines or best practices, which

are enhancing the handling of AUTOSAR and collaboration with other AUTOSAR developers.

• Missing conventions: The demonstrator project has shown the importance of implementa-

tion rules and clear naming rules as well. Especially for automatically generated codes it is

important to prescribe such rules, so that an developer is able to understand that code. Today

these rules are partly defined within AUTOSAR.

• Mapping from AUTOSAR Runnables to OS tasks: A further problem up to now concerns

the mapping of different Runnables onto tasks scheduled by the operating system. The map-

ping must be implemented manually, because it needs a lot of implicit knowledge about the

Runnables to order them. As a consequence of the mass of Runnables within the system this

is a very difficult part.

2.4. Inconsistency

Previously, this thesis has described some prerequisites in order to enable model integration as a

special kind of integration. These prerequisites come along with some problems if more than one

specification of syntax, semantic or exchange format is used for modeling or rather if more than one

model is used to represent a large entire system. In other words: when multiple models (or views)

have to be integrated, disaccords may occur concerning model elements themselves as well as their

relationship (syntax), the content and the meaning of model elements (semantics), and the usage of

models within several tools (exchange format). These kinds of disaccords between models disable

the possibility to integrate models, which may also have negative bearings on software components.

As software components will be derived from these models at the next step of development, prob-

lems, which concern the content of models (the system, which has to be developed), can not be

found and eliminated on the model level. However, this is exactly the advantage, which is expected

from the usage of models.

For this reason, the following chapters will show, that AUTOSAR and EAST-ADL2 provide a common

basis for modeling in order to ensure, that models can be integrated generally.

By contrast, not only mismatching prerequisites between models may have negative bearing on the

45

Chapter 2. Background and Basics

integration behavior of system components. There are also a lot of reasons, which hamper collabo-

ration between multiple developers generally and independently of any component implementation.

These reasons concern the basic condition of development and are responsible for so-called in-

consistencies between software components themselves. While the reasons are outlined in section

2.4.1, section 2.4.2 describes concrete inconsistencies in more detail. After that section 2.4.3 de-

scribes why it is necessary to avoid inconsistencies (as well as reasons for them) by showing some

consequences, which emerge from components’ inconsistencies at runtime.

2.4.1. Reasons for inconsistencies: Basic Conditions of Development

The essential artifacts, which must be integrated, are software components. However, in order to

develop these software components, there are a lot of divisions, processes, and developers, which

have to interact for developing the components. There are a lot of different expertises, languages,

habits, or development processes, which come together during the development. For this reason,

beside software components, also these different parties must be brought together, that they are

able to collaborate easily. Unfortunately, in most cases it is difficult to integrate different parties, that

problems, which come along with multiple collaborating parties, have a negative effect on software

components too. Therefore the problems, which are sketched in the following, are called the reason

for the concrete inconsistencies between software components (see section 2.4.2).

Since there are a lot of thinkable reasons which may be responsible for concrete inconsistencies

between software component implementations (compare to section 2.4.2), the following listing just

exemplifies some of them. Almost any concrete reason can be classified into a certain class, which

aggregates multiple reasons. Furthermore the listed classification of reasons is generic to that ex-

tend, that almost any kind of inconsistency between software components can be caused by one of

these classes.

1. Lacking maintenance of artifacts: Maintenance of artifacts plays an important role in order

to ensure the availability of artifacts and information. If developers are not able to orient

oneself with multiple artifacts, they cannot find necessary information while they would even

be available. However, updates on artifacts must be supported as well in order to ensure that

developers work with a valid version of the respective artifact.

2. Missing Information: Missing information are another source for inconsistencies between

software components on the implementation level. This concerns situations in which informa-

46

Chapter 2. Background and Basics

tion is not available, as it had been forgotten or had got lost during the exchange. For example,

data get lost if tools use different exchange formats for the import and export of models and

information. Furthermore, wrong information is similar to missing information, because in both

cases available information is not sufficient to understand specifications of other developers.

Therefore it will lead to individual solutions and inconsistencies.

3. Misunderstandings: Here, inconsistencies emerge from human and/or technical misunder-

standings as well as mismatching specifications. Misunderstandings cause inconsistencies

between components when there is more than one developer, even if all components are de-

scribed exactly. If one developer does not understand necessary artifacts/specifications or

components of another developer, it will co-design its own component as if it understands the

other one and not like it was intended. On the other side, mismatching specifications concern

situations in which two or more artifacts concern the same element. If one artifact describes

an element unlike another artifact, a developer is not able to find out, which specification is

the right one. Such situations will lead to irritation and misunderstandings, which again may

lead to inconsistent implementations.

4. Inconsistent Processes: Inconsistencies caused by the used processes concern the coop-

eration of different teams or companies. When different parties are responsible for different

components, which depend on each other, the processes have to be aligned. This concerns

the timing of different phases, component releases, the integration of modules, testing of the

integrated modules, the communication of information like change requests, and much more.

2.4.2. Categories of Inconsistencies between Software Components

After some reasons for inconsistencies were discussed, this section details the real inconsistencies

between software components. Such an inconsistency either emerges from mismatching basic con-

ditions of development, like discussed before, or it comes along with mismatching implementations

or models of components directly. To show different kinds of inconsistencies, the following listing

based on Saglietti et al. [38] shows a taxonomy of common inconsistencies emerging between vehi-

cles’ system components (see section 2.3.2) when they are put together.

1. Syntactic Inconsistencies: Syntactic inconsistencies may occur if the data exchange format,

by which components communicate, does not conform, e.g. component A sends “String” data

to another component B expecting “Integer” data.

47

Chapter 2. Background and Basics

However, syntactic inconsistency may also concern model elements like component inter-

faces, ports, signatures, or data names. For example, if the syntax of an operation of a

components’ provided port does not match with the operation of the required port of another

component, the components can not be interconnected or integrated caused by the inconsis-

tent syntax.

2. Semantical Inconsistencies: Semantic inconsistency relates to a differing interpretation of

identical data. This happens if data with different or ambiguous semantic are being inter-

changed between components. Compared to [38] these kinds of inconsistencies may be

numerical inconsistencies (e.g. differing number representations), language inconsistencies

(e.g. caused by the ambiguity of the language elements), or reference system inconsistencies

(e.g. identical physical units differ in semantic, like Celsius and Fahrenheit)

3. Application-based Inconsistencies: Application-based inconsistencies are characterized

by a violation of states inside of applications or their context inside the system caused by the

usage of components without respect to their system environment. That means that compo-

nents make wrong assumptions about the behavior or the execution semantic of other system

components. Constrained service parameter, violation of states saving a legal behavior, vio-

lation of obligatory relations between input parameters and internal states, or restricted data

ranges may be possible reasons for this kind of inconsistency.

4. Pragmatic Inconsistencies: Pragmatic inconsistencies refer to discrepancies concerning the

computational environment. Reasons for pragmatical inconsistencies may arise from concur-

rency constraints and race conditions between components, access restriction on extern re-

sources, mismatching timing requirements defined by hardware or user interface restrictions.

Further risks result from violations of absolute timing requirements or between operations or

from violations of relative timing requirements. Furthermore, a mismatching use of commu-

nication pattern, like message-oriented or client/server, may lead to inconsistencies among

components, thus avoiding a later integration.

In conclusion, the four classes of inconsistency on the one hand concern the vocabulary (syntax)

by which components, interfaces and data are described as well as the meaning (semantics) of that

vocabulary. On the other hand there are inconsistencies which concern the behavior between com-

ponents or rather their interplay (application-based). At last there are inconsistencies which concern

the components’ environment (pragmatic), which does not provide requirements needed by a com-

ponent.

48

Chapter 2. Background and Basics

Inconsistencies between components on model or module level may have extensive effects on inte-

gration of components and their later interactions. Therefore the following section describes possible

consequences of inconsistencies (section 2.4.2) and their reasons (section 2.4.1), which should be

avoided already on model level.

2.4.3. Consequences of inconsistencies for integration

Within this section, individual consequences of inconsistencies are described to show two things:

Firstly a couple of faults based on Mariani [43] are described to show the effects, which can be

caused by the inconsistencies and reasons from above. Secondly these faults should show the

importance of the avoidance of inconsistencies within the development.

1. Non-Functional Faults: This kind of fault refers to requirements like reliability, availability,

performance, etc.. Non functional faults are particularly caused by application-based or prag-

matic inconsistencies. E.g. a component A which must produce a result within x seconds and

needs a datum from a component B to complete the computation.

2. Faulty Interfaces and Ports: Ports and interfaces indicate what kinds of services are pro-

vided or required by components. Normally a components’ required port and components

provided port must match in order to interconnect two components. This should ensure, that a

component can use required functionality, which is provided by an other. However, if there are

inconsistencies between such two ports, a component, for example, is not able to use func-

tionality, which is provided by the other component. These kind of fault particularly is caused

by syntactical or semantical inconsistencies.

3. Faulty Connectors: As components or their interaction points are linked by connectors, faulty

connectors emerge from any kind of inconsistency between components. This concerns for

example the communication protocol or the data model and message format respectively, e.g.

if two components make conflictual hypothesis about the protocol of the connector: (callback

versus client-server) or the data format (ASCII stream versus C-based data structures).

4. Faults on the Infrastructure: Infrastructure faults emerge from non-conform assumptions

of software components and accordingly developers about the underlying infrastructure of the

system. These faults are particularly caused by pragmatic inconsistencies, e.g. if components

use two different versions of the same dynamic library or if components access the same

variable of an distributed shared memory in a wrong manner.

49

Chapter 2. Background and Basics

5. Faulty Behavior: Even it is possible to interconnect all system components statically, it must

be ensured, that components are also able to interact during runtime. For this reason an

component must behave like it is expected by other ones. Due to a mismatching behavior it

could happen, that a component sends or accepts wrong data. Such wrong data, for example,

can result from a wrong message order or a wrong timing, when data are sent or received

too late or too early. Thereby a component dos nor only work on wrong data, but it will also

return wrong data to other components. Faulty behavior mainly is caused by semantical or

application based inconsistencies and could result either in wrong data or in system crashes.

Figure 2.11.: Inconsistencies Overview

After this classification of different reasons, inconsistencies and consequences, which is summa-

rized in figure 2.11, the following definition briefly shows what inconsistency should mean within this

thesis and the next sections:

Inconsistency: Inconsistencies are problems between software components hampering or avoid-

ing the static interconnection or the dynamic interaction between software components or their en-

vironment. Inconsistencies can occur in the form of syntactical, semantical, application-based, or

50

Chapter 2. Background and Basics

pragmatic mismatching. Thereby they are caused from individual reasons concerning the basic con-

ditions of development in most of the cases.

2.5. Related Work

A lot of works deal with the integration of software components into an entire system. They mostly

address the same problems and describe possible methods of solution to make a component integra-

tion easy. The methods of solution therefore enrich existing component descriptions with additional

information, that problems can already be avoided in the forefront of an integration through a bet-

ter understanding of the component itself and its behavior. Differences between these approaches

concern the formalism and the kinds of information which enrich a component description. In the

following miscellaneous approaches are exemplary introduced to clarify how integration problems

can be tackled.

2.5.1. CCI

CCI stands for Consistent Component Integration. This approach was developed at the Department

of Software Engineering of the University of Erlangen and presents an extended interface descrip-

tion language supporting the avoidance and the automatic detection and tolerance of inconsistency

classes likely to occur when integrating pre-developed components. This approach focuses on al-

most all classes of inconsistency as described in section 2.4.2: semantic inconsistencies, application

based inconsistencies, and pragmatical inconsistencies, see [38, 39]. To overcome these problems,

a strict and formal model was developed to detail components more than usual. Based on this formal

model, an UML profile was developed in order to enrich existing UML with additional semantics.

Beside this UML representation, a mechanism was developed in order to generate a Wrapper class

for each component. As mentioned above (compare to section 2.3.1) a Wrapper encapsulates com-

ponents from its environment. The Wrapper gets involved in interaction of components and in other

necessary functionalities to monitor and safeguard consistency properties. Additionally, other analyt-

ical functionalities, e.g. logging of calls may be provided by the wrapper. By means of the additional

semantic provided by the UML Profile, the Wrapper is able to recognize or tolerate possible faults.

More general than AUTOSAR and/or EAST-ADL2, the CCI approach intends to simplify integration by

providing model elements with additional information. CCI indeed is not able to describe an individual

51

Chapter 2. Background and Basics

architecture, model, or domain. Instead the information are bent on the avoidance of inconsistencies

during integration within any domain or model.

2.5.2. UnSCom

UnSCom (Unified Specification of Components) [50, 51] offers a way to describe the external view

of a component in all relevant facets. This includes business and technical details which can inform

about the expert functionality of the component and of its quality of service capabilities. Each of

these levels (or pages, a term borrowed from UDDI [47]) is defined by a meta schema which is com-

posed of the entities available in each level and their relationship to each other. The meta schema

also poses restrictions on the cardinalities and introduces properties to the entities as well as value

types used to populate some of these. A generic component model forms the basis of UnSCom.

This model structures the definition of a component into components, interfaces, connectors and

compositions and provides an abstract way to access the interfaces of the component by so called

required and provided interfaces. The model adheres strictly to the concept of Design by Contract.

Additionally, a type system is introduced, enabling static analysis at design time. Based on the

model, a classification schema is proposed, separating the description of the component into three

layers, expert, logical (software architecture) and physical (quality). Furthermore, different views are

introduced. The static view deals with the structural part of the component, the operational view with

the effects and the dynamic view with the interactions of the component. The aforementioned meta

schemata for the different pages enable the designer to describe the properties of each page in a

standardized way. Together, these descriptions form a complete, structured characterization of the

component and therefore a specification framework. Finally, a procedure model assigns the different

parts of the component specification to the phases of a development process. The application of

the specification framework and an order in which the artifacts should be created is proposed, thus

reducing complexity and guiding designers and developers.

By the means of that specification framework it is possible to detail individual concerns of system

components on different levels of abstraction/views. Due to the standardized language and some

obligatory relationships, which are provided by the meta schema, the components’ functionality can

be well described on expert level. Thus, misunderstandings and inconsistencies can be prevented

on specification level like it is also intended by AUTOSAR and the additional abstraction levels of

EAST-ADL2, which particularly focus on the automotive domain.

52

Chapter 2. Background and Basics

2.5.3. Other integration platforms

Beside the aforementioned approaches CCI, UnSCom, AUTOSAR, and EAST-ADL2, there are other

approaches, whose focus is not on the description of software components itself by using one single

standard. Instead, theses approaches want to enable the integration and management of different

standards, tools, and/or meta models by providing a mediating framework. As mentioned in section

2.3.3, syntax, semantics, and exchange format are important prerequisites, which must be equal

between models and/or tools in order to ensure that different models are able to be integrated.

However, in the majority of cases different developers and divisions hold different prerequisites. For

this reason the platforms and frameworks, which are described in the following, enable the integration

of models and tools in spite of differing prerequisites.

• GeneralStore is a platform enabling an integrated development process running from models

to an executable code, in which heterogeneous CASE tools (e.g., Matlab/Simunk, and AR-

TiSAN RT Studio) and their associated code generation facilities are integrated.The software

features coupling of subsystems from different modeling domains on model level. From the

coupled model it generates a running prototype by code generation.[53] In particular, while

using UML models for overall system design, this approach supports the transformations of

subsystem models in time-discrete and time-continuous domain. This is achieved by provid-

ing meta-level definitions of CASE data in UML, and then integrating the meta models in a

MOF (Meta Object Facility) object repository. The data interchange between CASE tools is

supported by XML (eXtensible Markup Language). GeneralStore provides support for config-

uration management. [30]

• Fujaba was developed by software engineering researchers for solving the problems of vari-

ety of notations and tools in the development process as well as for providing data consistency

management in tool integration, particularly at the meta-level. Fujaba supports bi-directional

associations between meta-models for different tools that are developed and compiled in sep-

aration, such as UML and SDL (Specification and Description Language). To keep models

consistent, Fujaba supports automatic consistency checking on model change events. Con-

sistency rules are defined with graph grammar rules. [30]

• ToolNet is an integration platform, managing the integration of domain tools targeting specific

design phases or aspects of embedded software systems, such as DOORS, Matlab/Simulink,

and Borland Together ControlCenter. This approach leaves the domain data at their respective

tools. Data integration is achieved by specifying a VirtualObjectSpace in terms of relationships

and consistency constraints of domain tool data, which is then stored and managed in a

53

Chapter 2. Background and Basics

relation repository. Standardized APIs are used to support tool access and XML based export

of tool data. ToolNet provides graphical user interface for navigation. [30]

• System Weaver aims to provide configuration management for complex systems. The need

is motivated by the insufficiency of traditional document-based specification for large systems.

A system information model defines a complete system. Through a defined API or XML

file exchange, the platform supports the development of user specific clients (views) and the

integration of domain tools. [30]

All these platforms are able to compensate missing standards like AUTOSAR and EAST-ADL2 by

integrating multiple quasi-standards, where no common standard exists. However, beside the draw-

back, which they are not able to describe architectures, models, or domains themselves, these

approaches are local solutions of one enterprise or division. They are not able to reach the benefits,

which come along with a global standard.

54

Chapter 3.

Discovering mistakes of integration in

practice

In section 2.3.3 and 2.4 essential challenges and problems of an integration of models or com-

mon software components are described. Some of these problems may be avoided by the use of

AUTOSAR and EAST-ADL2 as well. However, in order to find out what special problems arise at

the integration of vehicle software in praxis, some interviews were realized. These interviews are

described below.

3.1. A Survey to find out current problems

The interviews should sniff out sources of failures within an accepted software development and their

effects on a later integration. On the one hand the interviews’ results are used to analyze what kinds

of problems of an accepted development can be avoided yet by the use of the AUTOSAR standard

and/ or the concepts of an ADL like the EAST-ADL. On the other hand indications for problems which

may cause integration faults and which are not enough focused by AUTOSAR or the ADL should be

found.

To reach an audience as broad as possible, the interviews were performed in form of a survey whose

structure and intention are described in section 3.1.1. The overall survey can be found in the annex

of this thesis, see B. After that, section 3.2 summarizes the results of the survey. These results give

the focus for this thesis and define its further course.

55

Chapter 3. Discovering mistakes of integration in practice

3.1.1. Structure and goals of the survey

The survey should be fulfilled by an utmost number of people and though constrain the interviewees

as few as possible. Therefore it was decided to divide the survey into a mandatory part, which could

be fulfilled with 15 minutes, and a voluntary part, which coveredsome detailed questions in terms of

integration.

Inside of the mandatory part the interviewee should be prepared for the topic of integration step by

step. On this account, the survey started with very abstract questions concerning the interviewees’

working environment and ended with questions concerning the integration. In other words: this part

of the survey led from questions about the basic conditions of development (compare to sec-

tion 2.4.1) to questions about concrete inconsistencies of integration (compare to section 2.4.2).

Overall, the mandatory part of the survey consisted of five blocks, which will now be described:

1. Role and working environment: Here the interviewee should give a job description of his

daily work. He should describe with what kind of developers of other expertises the intervie-

wee works. The answers of these questions should give information about the perspective(e.g.

hardware or software development) from which the survey was fulfilled.

2. Communication: Within the communication block the interviewee should describe how he

communicates with other developers and what kinds of documents are used for this. Moreover

problems occurring in this context should be described. The goal of this questions was to find

out general communication problems and reasons for them.

3. Tool Support: This block covers the tools/ tool chain, which support developers at their daily

work. On this account, the used tooling should be described before problems arising through

the use of these tools should be described. The answers were used to find out if the inter-

viewees generally are satisfied with their tool environment or not. A further goal was to get

information about the interplay of the different tools and their problems.

4. Development process: The development process block asked about the proceeding or pro-

cess which is used for development. Here the problems concerning the process, its compli-

ance, and the artifacts should be found out.

5. Integration of different components into a whole: The last block of the mandatory part

concentrated on integration itself. There the point in time was discovered when integration

plays a role for the interviewee, what kind of artifacts are important for the integration, and

what integration faults occur.

56

Chapter 3. Discovering mistakes of integration in practice

Subsequent to the mandatory, part six detailed questions cover individual and critical problems con-

cerning the integration. There the inconsistencies of section 2.4.2 were concerned particularly:

1. Artifacts before implementation: This question particularly covers the relationships and de-

pendencies of artifacts before the implementation. The interviewee should describe possible

problems which arise through multiple artifacts, abstraction levels, their dependencies, and

the management of these artifacts.

2. Specification vs. Implementation: There are mostly a lot of inconsistencies between a

specification and its implementation. The question here should give answers for: What kinds

of inconsistencies are between specification and implementation? What are the reasons for

these inconsistencies?

3. Semantic inconsistencies between components: The interviewee should describe partic-

ular semantic inconsistencies like defined in section 2.4.2 and such as those arising within his

working environment.

4. Application based inconsistencies between components: The interviewee should de-

scribe particular application based inconsistencies like defined in section 2.4.2 and such as

those arising within his working environment.

5. Pragmatic inconsistencies between components: The interviewee should describe partic-

ular pragmatic inconsistencies like defined in section 2.4.2 and such as those arising within

his working environment.

6. Common questions: The general questions on the one hand refer to the compliance of Guide

Lines and an opportunity is offered for the interviewee on the other hand to address problems

which were not covered by this survey or which had not been considered during its creation.

3.1.2. Interpretation of the surveys’ answers

The next sections want to format the surveys’ answers for the following chapters. For this reason,

each question block of the survey is contemplated step by step. First of all, the current situation con-

cerning the respective block, such as communication, tool support, development process, integration

or concrete inconsistencies is described. The problems, which come along with the respective actual

situation, are then listed and (possibly) subdivided, before their effects on development and integra-

tion are derived from them. After that, some results, questions, and problems are outlined. And

finally, for each relevant block some possible solutions, which were given from the interviewees for

57

Chapter 3. Discovering mistakes of integration in practice

some referred problems, are listed. A detailed list of all answers can be found in appendix C.

Communication

The current situation in terms of communication looks like this: There are a lot of tools or commu-

nication possibilities available and used as well. These tools or means can be subdivided into two

categories: communication and data storage. As a “simple” communication most of the interviewees

use media, like E-Mail, Phone, or regular meetings. However, video conferences, Wikis, and other

internet supported tools, like NetMeeting or WebEx are used as well.

As data storage there are also a lot of tools in use. There are different tools for an exchange of

knowledge and project related data, like specifications, work outputs, or code. Examples for such

tools are: Telelogic Synergy, Telelogic Change, or Microsoft based repositories called Sharepoints.

Furthermore the survey gave information about the used format by which information are exchanged.

It shows that the most of the interviewees prefer textual documents (67,78%). After that, the next

mostly used medium is code (19,25%). Models are used very rarely though (9.5%). Other, not fur-

ther specified exchange formats are used by 7,5% of the inerviewees.

In the following, the communication block is subdivided into four problem blocks, which may be

concerned by today’s situation: Used Media, Exchange Format, Humans, and Specifications.

• Communication - Used Media:

– Problems: The interviewees did not note particular problems concerning the used me-

dia themselves.

– Effects & Classification: Consequently there are no effects of these problems, which

have to be classified.

– Results & Resulting questions: Although there were no problems mentioned explicitly,

the survey shows, that there are a lot of tools and possibilities for communication. This

variety holds the risk, that consistency of information between different tools and de-

partments can not be assured. Only this survey does not allow any conclusion whether

a consistent data storage is possible and whether data can always be found within a

58

Chapter 3. Discovering mistakes of integration in practice

system containing e.g. more than 1000 documents. But as shown in section 2.3.4, this

kind of consistency between tools and locations is still a problem. Thus there is a rea-

son for inconsistency, which can be classified into the reason number 4 (Inconsistent

Processes), see section 2.4.1. Inconsistent Processes can emerge any kind of incon-

sistency mentioned in section 2.4.2.

Furthermore the survey does not give information about particular problems or what kind

of medium is the most suitable for certain needs. E.g. is it better to use mail, phone, or

a tool like Telelogic Change for a particular information exchange?

A further question, which can not be answered by the survey, concerns the logging of

the used media. For example: is it possible to log a medium like phone or video confer-

ence? (How) Can logged (informal) information be linked with (formal) documents like

models, for which these information are relevant?

• Communication - Exchange Format:

– Problems: no particular problems are mentioned concerning the exchange formats’

themselves at this point of the survey. The exchange format especially was noted in the

“Tool Support point” see below.

– Effects & Classification: Consequently there are no effects of these problems, which

have to be classified.

– Results & Resulting questions: The most used exchange format is textual documen-

tation. Models, on the other hand, are used very rarely. Only 9.5 percent of the intervie-

wees use some kinds of models. However, the survey gives no information about why

models are used so rarely. From the point of view of this thesis, the survey shows that

models are used insufficiently. Especially because textual documents do not provide any

standardized syntax or semantics. Therefore they do not ensure completeness or clear-

ness of specifications like (meta) models do. Caused by incompleteness and ambiguity,

which particularly is in the nature of things of textual descriptions without formalism, any

inconsistency can emerge from it. However, it has to be clarified if textual documents

or implemented modules are better for exchange than other formats like models, or if

models are able to solve more problems than they could cause during their introduction

(e.g. more design effort, new (non-mature) tools, departure from a well-known develop-

ment,..).

The following two blocks (Humans and Specifications) and the results of them concern both

the Used Media and the exchange format in equal shares.

59

Chapter 3. Discovering mistakes of integration in practice

• Communication - Humans

– Problems: Two categories of problems concerning the human factors were mentioned

in the scope of the survey: problems with the language and cultural peculiarities of other

developers as well as problems concerning the various technical backgrounds and dis-

ciplines of these developers.

Linguistic problems refer to the different spoken languages among one or more (global

distributed) teams, e.g. German, French, or English. Sometimes this hampers the un-

derstanding of descriptions or statements of other developers.

On the other hand, communication problems concern the different cultural and technical

backgrounds of multiple developers. Different cultural backgrounds concern the different

working styles and habits, which are normal for one certain region or country but some-

times a mystery to other developers from other regions.

By contrast, the different technical backgrounds emerge from different disciplines, ex-

pertises, and educations of the individual developers. (E.g. an implementer also has to

communicate with a requirements engineer) Even if a developer is an expert on his field,

he has to communicate with developers of an other field or expertise.

– Effects & Classification: Language problems are not unusual because of the dis-

tributed development over several locations within the automotive domain. English in-

deed is a standard language for development, but it is not the mother tongue of the

most. as a result out of that, a lot of misunderstandings are preassigned even if devel-

opers exclusively communicate in English. It can also happen that two companies based

in different countries use the respective official language for documentation and specifi-

cation. This may disable developers from reading important documents and especially

leads to syntactic (inconsistency number 1 in 2.4.2) and semantical inconsistencies (in-

consistency number 2 in 2.4.2). However, other inconsistencies can not be excluded

neither.

One has to get used to different cultural backgrounds, but by contrast technical back-

grounds are a little more special. Different technical knowledge can disable teamwork or

hamper the collaboration among developers at least. This is caused by misunderstand-

ings and the fact that one eventually is not able to understand what another developer

demands from him. In addition to the aforementioned possible inconsistencies (syntax

and semantics), different technical backgrounds and the resulting problems may lead to

application based inconsistencies. For example if a developer does not understand an

others’ component, he will use the foreign component in a wrong manner.

60

Chapter 3. Discovering mistakes of integration in practice

As an further consequence of language problems and different backgrounds comes a

missing communication. Because these problems can reduce communication to a min-

imum caused by preconceptions. For example: if a developer knows that another one

does not understand him (on language or technical level), he will not contact him a priori.

Generally, all these problems are caused by reason number three(Misunderstandings),

see 2.4.1. However, the problems mentioned above can cause almost any category of

inconsistency listed in section 2.4.2. In particular they may cause syntactical (Inconsis-

tency number 1)2.4.2 and semantic (Inconsistency number 2)2.4.2 inconsistencies.

– Results & Resulting questions: In conclusion it can be said that misunderstandings

and global distribution cause a lot of problems. There is a missing transparency between

expertises and application fields to link all technical and non-technical information these

days. As a result of this, the following questions are important: How can the involved

different disciplines and expertises be linked? How can we ensure that all relevant in-

formation are available for a developer? How can communication be made more unam-

biguous? Would an increasing use of alternative media or exchange formats improve

the actual situation?

• Communication - Specifications

– Problems: The survey shows three problems concerning the development using specifi-

cations and other similar artifacts: the documentation of specifications, a missing linkage

between these specifications, and the content of a specification itself.

The interviewees note that the documentation of specification and the specifications

themselves are incomplete, unclear, and/ or contradictory. In addition, the documenta-

tions or specifications may be made inconsistent through changes or updates of them.

Moreover they note the difficulty to trace or derive things like requirements caused by

a missing linkage between multiple documents and artifacts. Sometimes it is unclear

which artifact holds which kind of information. The missing linkage between various

system (sub-)components seems to be a problem as well. A further noted problem

concerns a general missing or neglect of special kinds of specifications, like for exam-

ple the specification of non-functional requirements. These kinds of specifications are

often neglected by developers (or tool vendors) caused by far too high time pressure

or because of some developers think that an executable code is more important than

documentation.

– Effects & Classification: Based on these problems two main effects result: Firstly,

missing information caused by a missing linkage of documents and a missing knowl-

61

Chapter 3. Discovering mistakes of integration in practice

edge about how to find important information. Secondly, misunderstood, misinterpreted

or wrong information may be caused by human problems like mentioned above by the

missing of information, or by incomplete, unclear, and/ or contradictory specifications.

Generally these problems may lead to a development based on wrong information. As

a consequence this leads to mismatching connection points, connections, behavior, and

wrong assumption about the environment, which leads to any kind of inconsistency men-

tioned in section 2.4.2. A further problem concerns the discrepancy between specifica-

tions and their implementations. This may be caused not only through imprecise work-

ing, wrong code generators, or misunderstood specifications. But also through wrongly

derived requirements caused by missing specifications or links between specifications

and/or requirements.

– Results & Resulting questions: Unfortunately, the survey does not give any hints

about specific problems with specifications. However, it shows that if data are missing

or misunderstood, this may lead to a lot of inconsistencies and faults. Therefore it has

to be clarified how documents can be specified in a clear manner. Furthermore it has to

be clarified or specified where information can be found and how they depend on each

other. In particular, it must be clear which artifact holds which kind of information.

Moreover, certain requirements like non-functional ones must not be neglected to ensure

that a component fulfills specified and not arbitrary requirements. For traceability it also

has to be possible to derive the components’ properties from the specified requirements.

In conclusion, it has to be ensured, that all specifications are available and complete. At

the same time it has to be ensured that they match. For this, the consistency not only

has to be ensured for a single artifact, but also between the multiple artifacts. And

finally, when all specifications are consistent, it has to be ensured that implementations

are close to these specifications. This must be ensured through used code generators

and implementers as well.

The survey does not show whether textual documents and the rare usage of models are

the reason for these results.

In conclusion, this block of the survey shows following results and challenges which have to be solved

to avoid inconsistencies:

The central question, which results from this block is: How can communication be made more unam-

biguous? It must be possible to specify all important artifacts, like specifications or documentations,

in a complete and unambiguous manner. This also includes non-functional requirements which are

important to derive the components’ properties from the specified requirements and which must not

62

Chapter 3. Discovering mistakes of integration in practice

be neglected to ensure that a component fulfills specified and not arbitrary requirements. At the

same time the consistency of information between different artifacts, tools, and departments has to

be assured and information which are communicated over the used communication media (phone,

mail,...) have to be logged and linked with the concerned artifacts. The former one guarantees the

possibility to integrate all artifacts into a whole, while the latter one avoids repeated inquiring and

provides the completeness of information.

Furthermore it must be ensured that all relevant information is available for any developer. For this, it

has to be clear or specified where information can be found and how they depend on each other. In

particular it must be clear which artifact holds which information. Moreover, the different disciplines

must be integrated within the development similarly. For this reason the specifications of different

disciplines have to be linked and derived correctly.

In the scope of this thesis it must be clarified if an increasing use of alternative media or exchange

formats could improve the actual situation? Are models better than textual descriptions and are they

able to solve more problems than they could cause during their introduction (e.g. caused by more

design effort, new (non-mature) tools, departure from a well-known development,..)?

Tool Support

The survey shows that there are a lot of tools (not only for communication) in use. Development

tools for software specifications, modeling, requirements engineering, simulation, calibration, and

programming. Administrative tools for content management, change management, configuration

management, and documentation. A complete list of the used tools, which are noted in the survey,

can be found in appendix C.

Caused by the large set of tools, in most of the cases it is not standardized which tool has to be used

and how these tools have to be integrated into a tool chain.

• Problems: The list in appendix C shows that there are a lot of tools in use. This leads to

the first and probably the main problem concerning the tool support: the exchange format.

The exchange format enables interaction and collaboration of several tools by providing rules

and a format to export information of one tool, which should be imported by another tool. As

there is no standard exchange format, multiple individual solutions do not match in most of

the cases. This begins already with differing header files of the respective exchange files and

ends with differing language elements. Thereby the vendor specific solutions of the exchange

formats mostly emerge from a non-applied or non-mature (incomplete) standard.

A further problem concerns differing file structures of artifacts and configurations, which may

63

Chapter 3. Discovering mistakes of integration in practice

differ from division to division or from tool to tool. As there is no overall standard about how to

store the files, many adaptations have to be made when multiple files are exchanged between

repositories or tools.

Furthermore, the tools enable an automatic code generation to simplify the work of developers

by generating some predefined code segments. However, the survey shows that even todays’

generators are not mature enough for automotive software development.

• Effects & Classification: The problems above make a lot of post-processing necessary. Not

only file structures have to be adapted and transformed, but also the artifacts themselves and

the containing information have to be adapted as well. In the scope of such adaptations it

may come to syntactic (Inconsistency number 1) 2.4.2 and semantic inconsistencies (Incon-

sistency number 2 2.4.2).

Generally, tools have to support developers. But if tools are not able to do their job well and

if they are not able to represent important information (modeled perhaps using an other tool),

this will lead to some reasons for inconsistency: lacking maintenance of documents created

by different tools (Reason number 1 2.4.1) and misunderstandings (Reason number 3 2.4.1).

All these reasons will lead to any kind of inconsistency.

Especially a non-standardized import/export mechanism (format) may lead to lost informa-

tion (Reason number 2 2.4.1) and human misunderstandings (Reason number 3 2.4.1). This

may be caused, for example, by differing vendor adapted meta models inside of the modeling

tools. Thereby, too many formats cause differing representation possibilities which hamper

understanding of information. Furthermore it is possible that one tool focuses elements more

than other ones. Especially non-functional requirements often are neglected, and so these

requirements may get lost from one tool to an other. However, if other functional elements,

mostly seen as more relevant, got lost from one tool to an other, this will lead to any kind of

inconsistency listed in section 2.4.2 too.

Furthermore, if an automatic code generation is insufficient, it wastes a lot of resources, like

experiences, money, and time, to produce an usable code. Manual reworking of such gener-

ated code is very susceptible to human misunderstandings (Reason number 3 2.4.2), which

again may lead to any other kind of inconsistency.

The survey gives no statements about more concrete inconsistencies caused by tools.

• Results & Resulting questions: Generally, each single tool which is not integrated into a

tool chain does its job well. However, interaction of different tools or the fact that there is more

than one tool for the same job within different divisions, slow down the overall development

drastically. The survey shows that an standardized exchange format, which is realized and

64

Chapter 3. Discovering mistakes of integration in practice

accepted by each tool vendor in a compatible manner, is needed badly. Defining a general

applied file structure for tools, multiple artifacts and configurations is a further important point

to support developers at their work, because information can be found more quickly. And fi-

nally, better or more mature code generators are needed to minimize manual post-processing.

The survey does not show which tool is the best tool for a certain job. However, after a certain

training effort each tool may be a good tool. (Perhaps by using well known work-arounds.)

Development Process

Most of the interviewees had noted that they apply the V-Cycle process within their teams. Only one

uses a form of RUP, the Rational Unified Process. The problems concerning the process and their

consequences have to be described below.

• Problems: There are five main problems, which were noted in the scope of this survey. (1)The

project schedule mostly is not detailed enough and at the same time it is not well communi-

cated. (2) Because there are a lot of people involved in development, there are also a lot

of different interests and targets between the teams. (3) On the other hand responsibilities

(defining who has to do what within the process) are unclear defined and (4) it is difficult to

contact developers, who are responsible for other (former) projects and modules. (5) A further

problem concerning todays’ development processes seems to be the missing or neglected

risk management and escalation procedures, which are defined only rarely.

• Effects & Classification: (1) Caused by the restricted project schedules and the restricted

process appliance, some important steps for documentation and a clear specification are ne-

glected. (2)The differing targets and interests emerge competition/ concurrency and other

focuses on quality among different teams. This may lead to situations, where the teams loose

sight of the actual target. They are busy doing standing up for their interests. (3) No clear de-

fined roles and responsibilities make it unclear who has to do what for certain process phases.

As a consequence it is not clear who has to be contacted when problems or questions arise.

This leads to point (4) where missing contact information may lead to situation in which de-

velopers are not able to communicate with other involved developers. In this case they simply

do not know who can be contacted. (5) A missing or insufficient risk management concern

undesired situations within the development process. If there is no risk management or esca-

lation procedure defined or prepared, it is too late to define strategies when the disaster has

happened. Such a missing firstly causes a lot of development time and much more money

secondly.

65

Chapter 3. Discovering mistakes of integration in practice

These resulting kinds of problems emerge from reason number 4(inconsistent processes),

which may lead to any kind of inconsistency of section 2.4.2. The survey gives no statements

about concrete inconsistencies caused by inconsistent processes.

• Results & Resulting questions: In conclusion it can be said that there are a lot of deficits

in terms of the development processes and particularly in terms of a cross-divisional process.

Sometimes a too restricted schedule causes an imprecise proceeding and the vague defini-

tion of roles and responsibilities causes lacks of clarity concerning the application fields and

contact persons. Furthermore, a missing risk management does not compensate situations

in which the mentioned problems occur. Therefore it has to be analyzed if an overall process,

which purports and contracts more than todays’ processes, could solve these problems.

Sadly, the survey does not show how tests are involved in todays’ processes. However be-

cause of tests are an essential part of development, they must not be neglected in terms of

an old or newly defined process.

As described in section 2.3.4 there is attempt to define a common cross-divisional process for BSW

module integration these days. For this reason, a cross-divisional development process is a point,

which is not further contemplated. Experiences and results of that process should be taken into

account before defining further cross-divisional processes.

Integration as a whole

The survey shows that todays’ integration as described in section 2.3 primarily uses implemented

modules or textual descriptions. Also models and interface descriptions are in use rarely. In terms

of models and the integration on model level there are just two oppositional opinions: yes or no.

Some of the interviewees think that models and their integration can be helpful as models enable an

early system overview and the possibility to define and simulate test cases. The other party thinks

that models are not helpful as most of the problems are handled on other levels like code and the

tools are not mature enough. In spite of these negative opinions in term of models, a clear trend

can be recognized. Most of the interviewees expect a big improvement from the usage of models

and the possibility to integrate multiple (sub-)models into an entire model. After the actual situation

concerning integration was described, the problems which hamper integration and their effects have

to be detailed. These problems are used as basis for further problems, which will be concretized

within the surveys’ optional part.

• Integration faults and their reasons: As often mentioned insufficient and wrong specifi-

cations are a big reason for a lot of inconsistencies. This also hampers the integration of

66

Chapter 3. Discovering mistakes of integration in practice

components, which are not well-described. Imprecise, inconsistent, or missing information

may be caused by not well-communicated component or specification changes but also by an

insufficient communication between developers. Changes may concern modules themselves,

used libraries, or the like.

Beside the difficulty to overview the complexity of an entire system, which is a further problem,

mismatching component interfaces are also a main problem for integration.

Furthermore it is important for integration to know certain details about the environment of

the component, which has to be integrated. The survey shows that even such information are

missing. Environment here does not only mean the software environment of a component but

also for example the real environment of the hardware, which executes the software compo-

nent, and the real world, which also influences the software (or hardware).

There are also different variants of software or hardware components for differing variants of

OEMs and vehicles. This makes it necessary to manage these differing variants even for in-

tegration tasks. However, the survey shows that todays’ variant management is insufficient or

unavailable.

• Effects: Generally, integration problems are caused by insufficient or wrong information about

components. Reasons for integration faults therefore are a lack of maintenance(Reason num-

ber 1) or misunderstandings (Reason number 3).

This leads to situations in which components are not able to be interconnected. Situations like

this may be caused by syntactic (Inconsistency number 1 2.4.2) or pragmatical (Inconsistency

number 4 2.4.2) inconsistencies. However, if components are able to be interconnected, it

does not imply that components are able to interact. Due to aforementioned missing or insuf-

ficient information it is possible that components’ behaviors does not match. Data are sent

or computed in a manner, which can not be handled by involved components. This may be

caused by semantic (Inconsistency number 2 2.4.2) or application-based (Inconsistency num-

ber 3 2.4.2) inconsistencies.

The disability to manage and integrate different variants of a component emerges from the

fact that it is not well-supported by actual standards. However, due to the large set of variants,

which are generated during the development of multiple components for multiple OEMs and

vehicles, it is also important to support the management of them. Because if variants are not

well supported, it can happen that an engine control system of a vehicle with 40 hp controls

an engine with 230 hp. Problems would be preassigned. More details about concrete faults

are not given at this point of the survey but further below.

• Results & Resulting questions: The survey shows that future means have to help reduc-

67

Chapter 3. Discovering mistakes of integration in practice

ing complexity of entire systems and supporting the management of variants. Furthermore,

the interfaces or rather the system have to be specified in an unambiguous, complete, and

standardized manner. For this reason the semantics behind interfaces or data, the behavior

of components and their environment have to be described as well. In the case of changes it

must be possible to be communicate these changes well.

• Suggestions (from the interviewees): In the case of changes, the following information have

to be recorded for each change and component: (1) What is new compared to other baselines

and builds? (2) What has changed compared to baselines and builds? (3) What dependencies

to other modules or baselines are concerned by a change? (4) What fault was resolved by a

change? (5) Who made a change?

Concrete inconsistencies

All the points from above concern particular abstract problems or the basic conditions (see section

2.4.1) of an automotive development which may cause any kind of inconsistency. The obligatory

part of the survey does not show detailed faults which can be categorized into an individual kind of

inconsistency. But within the optional part some detailed information about concrete inconsistencies

(see section 2.4.2) were noted.

1. Integration and Syntactic based problems: Especially the interfaces between components

are concerned by syntactic inconsistencies, which hamper the interconnection of components.

If syntax between interfaces does not even match, it also not possible for components to

interact. This means to ensure that any kinds of interfaces are describable on syntactical

level. The descriptions have to be complete and unambiguous as well.

2. Integration and Semantic based problems: Data, which have to be exchanged between

components, are often inconsistent caused by mismatching semantics. This means that a

component misinterprets data received from another component. For example, if one compo-

nent sends a data type float with the semantic of speed in kilometer per hour and the receiver

component misinterprets this float with the semantic of speed in miles per hour.

Beside data the semantic of interface descriptions also may be unclear. This does not only

concern the name of interfaces, but also the job (What does an operation compute?) and

the behavior (How to use the operation? Is there an operation sequence order defined which

must be hold?) which is represented by an interface. This means that the semantics of data

and operations has to be well-defined.

68

Chapter 3. Discovering mistakes of integration in practice

3. Integration and Application based problems: On application level it was noted that values

received by a component are even obsolete when they are processed. This means that it

must be ensured that an component uses values within a predefined time or that an value has

information about when it is obsolete.

The survey does not give any hints about problems concerning interaction protocols and the

states of a component.

4. Integration and pragmatic based problems: Pragmatic inconsistencies emerge from unob-

served or unspecified timing restrictions of one or more interacting components. This either

concerns the minimal or maximal runtime of a single operation or the runtime of multiple op-

erations, which are executed successively. So the timing behavior of components has to be

specified in a formal and obligatory way.

Furthermore it has to be ensured that an component is used within the right context of the

system. This concerns the performance of the underlying hardware and environmental soft-

ware components as well.

However, as there is an actual project called TIMMO (Timing Model), which particularly ad-

dresses the specification of components’ timing behavior, this thesis will not further focus

problems concerning the timing.

3.2. Results of the whole survey and further course

Before the thesis one thought that the survey will show some concrete inconsistencies between soft-

ware components caused by the actual development style. In a second step it should be analyzed

whether these inconsistencies can be avoided by the support of AUTOSAR and EAST-ADL2.

However, the survey shows that problems do not concern a concrete level of particular inconsis-

tencies, as described in section 2.4.2. But more general problems concerning the communication,

specifications, development processes, or tools are responsible reasons, which can lead to the de-

scribed concrete inconsistencies, like described in section 2.4.1. It makes it even more obvious that

a lot of information was given within the obligatory part of the survey, which concerns the abstract

level more than concrete inconsistencies while within the surveys’ optional part, which particularly

concerns concrete inconsistencies between (software) components, just a few problems were noted.

Even within the obligatory block “Integration of different components into a whole” just few concrete

inconsistencies, which hamper integration, were noted.

69

Chapter 3. Discovering mistakes of integration in practice

Therefore one can say that concrete inconsistencies between components do not avoid integration

predominantly. However, basic conditions of development cause the problems, which affect modules

and their integration possibility in a second step. Thus, the thesis’ target must be realigned at this

point of the thesis:

All present reasons for later inconsistencies on implementation level, which come along with devel-

opments’ basic conditions, must be analyzed. For this reason section 3.2.1 summarizes the most

important results from the survey, which particularly concern problems of basic conditions of devel-

opment. Afterward, section 3.2.2 summarizes the surveys’ results particularly for concrete inconsis-

tencies. The problem classes, which are identified during this summarization are taken on section

4.1 in order to analyze these listed critical points of the actual development style. There the anal-

ysis has to find out, which enhancements or advancements come along with the new development

paradigm using AUTOSAR or EAST-ADL2.

3.2.1. Reasons for inconsistencies

This section describes the surveys’ results, which particularly concern the basic conditions of de-

velopment (compare to section 2.4.1). The results from the respective survey blocks (compare to

section 3.1.2) are categorized into problem classes, which will be analyzed in the context of AU-

TOSAR , see section 4.1.2, and EAST-ADL2, see section 4.1.4.

1. Benefits from the usage of models: Generally, as the survey shows that models are used

rarely, it must be clarified whether models are better than other formats like textual descrip-

tions. It has to be analyzed if models are able to reduce the complexity of a system to avoid

problems of a conventional development (see also section 3.1) more than textual descriptions

or code itself.

2. Completeness & Clearness: It must be possible to specify all important artifacts, like speci-

fications or documentations, in a complete and unambiguous manner. However, not only the

completeness and unambiguity of a single artifact has to be ensured. Also the whole set of

specified artifacts must be available and dependencies among them and the content of the re-

spective artifact must be clear. This also includes that individual abstraction levels for analysis

or design which contain, for example, (non-)functional requirements and variants, have to be

involved.

3. Consistency: Consistency of information or data has to be ensured, whereas consistency

must be hold between three different elements. 1. Between artifacts’ data, which may be

70

Chapter 3. Discovering mistakes of integration in practice

defined on the same or different abstraction levels. This means that it must be possible to

derive and update information between artifacts on different abstraction levels correctly. Also

artifacts on same abstraction level must be hold consistent. This concerns, for example, inter-

faces and data, which are defined and related within more than one artifact. 2. Consistency

must be hold between tools, when information is exchanged between tools. It must be en-

sured that exported information of a tool A conforms to the imported information of a tool B.

For this, a standardized exchange format, which is realized and accepted by each tool vendor

in a compatible manner has to be established. Moreover, it must be ensured that an import

and export of data even is possible without adaptations or work-arounds. 3. As artifacts also

have to be exchanged among several departments and division it must be ensured that each

party works with a valid and actual artifact. This point also depends on one of the following

points, “Maintenance of data”.

4. Continuity & Traceability: Beside a whole set of artifacts, it must also be ensured that de-

velopers or stakeholders are able to switch between all artifacts continuously. This should

support the availability of information not only of one single artifact, but also from other points

of views, concerns, or components. Furthermore, concerning different abstraction levels and

respective artifacts it must ensure traceability of individual design solutions among several

abstractions, process phases, and disciplines.

5. Integration of all disciplines Because there are more than one discipline involved with de-

velopment of vehicles (e.g. Requirements Engineer, Software Architect, Implementer,..), it

must be possible to integrate different disciplines into the development in equal shares. This

means that information tracing between different disciplines must be possible to understand

influences of other disciplines on the own.

6. Maintenance of artifacts: To reduce the complexity of the large set of artifacts, which are cre-

ated during development phase, it must be possible to manage artifacts in a standardized and

well-known way. On the one hand this means that a general, well-known project file structure

for (different) tools and configurations must be applied. This should ensure that developers

are able to find relevant information inside of each configuration management system, model

repository, or something else. On the other hand it must be possible to manage different

artifact versions, baselines, or releases. For this reason it must be possible communicate

changes to other developers. This is an important point, because changes within one compo-

nent may have influences on the behavior or the development of other components caused by

dependencies between components. It must be possible to annotate the kind of change, the

impact of that change on other components, or the responsible contact person of that change

71

Chapter 3. Discovering mistakes of integration in practice

as well.

7. Assignment of roles and responsibilities: In order to specify who is responsible for which

task, it is important to specify roles and their responsibilities. It should be clearly defined,

who has to do a particular task within the development process or not. Beside this definition,

roles enhance the possibility to contact responsible persons to clarify possible problems. For

the latter advantage it should be possible to annotate detailed contact information to other

developers or projects for each specification, module, or information.

3.2.2. Concrete inconsistencies

This section describes the surveys’ results, which particularly concern the concrete inconsistencies

(compare to section 2.4.2). There the results from the respective survey blocks (compare to section

3.1.2) are categorized into problem classes, which will be analyzed in the context of AUTOSAR , see

section 4.1.3, and EAST-ADL2, see section 4.1.5.

1. Static properties of interfaces: Beside the demand to specify entire system architecture in

a complete and unambiguous manner, component interfaces play a major role for integration,

as they represent the interaction points between components. In order to integrate software

components on module level, the syntax of interfaces has to match. As concrete interfaces

should be derived from their specifications/models, the specification level yet must provide the

syntax to specify interfaces in an unambiguous, complete, and standardized manner. This

ensures either that modules properly can be derived or generated from specification level

above, or that specifications/models can be integrated on design/ model level yet.

2. Dynamic properties of interfaces When components can be integrated on specification or

module level, it does not mean that components are also able to interact. To reach this nev-

ertheless, it must also be possible to specify the semantics behind interfaces or data, the

behavior of components, and their environment. It must be ensured that all important proper-

ties, which form the dynamics of an application, can be defined by specifications/models.

All these points must be analyzed within the following section 4.

72

Chapter 4.

Solving the actual problems using

AUTOSAR, EAST-ADL2 and additional

concepts

After identifying the most critical points of the current development style for automotive software,

the following section will analyze these points in more detail. Therefore section 4.1 shows how far

AUTOSAR in combination with EAST-ADL2 is able firstly to enhance the actual basic conditions and

secondly to avoid concrete inconsistencies by the means of their meta models and specifications.

Afterward, section 4.2 sketches an approach, which completes AUTOSAR and EAST-ADL2 with

missing language elements and information.

4.1. Analysis of the surveys’ results

AUTOSAR and EAST-ADL2 are model based solutions for specification of large automotive software

architectures. However, the surveys shows that models are used rarely. In order to warrant the use

of AUTOSAR and EAST-ADL2 models, section 4.1.1 will clarify whether models bring advantages

compared to todays’ applied formats generally. After that, section 4.1.2 and section 4.1.4 will detail

how far AUTOSAR and EAST-ADL2 are able to enhance the problems of basic conditions, which

were identified in section 3.2.1, while section 4.1.3 and section 4.1.5 discuss AUTOSAR and EAST-

ADL2 in terms of concrete inconsistencies, which were identified in section 3.2.2. Finally section

4.1.6 summarizes how far the actual development can be enhanced or supported by AUTOSAR and

EAST-ADL2.

73

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

4.1.1. Why are models better than textual documents or executable code?

The following section will compare models with textual documents and implemented code to show

advantages and disadvantages of the respective format. Particular properties, which should be

achieved by any format, are compared as well as particular possibilities, which come along with the

respective format.

Format Distinction: Syntax Support

When information is exchanged, it is important to understand the representation format of informa-

tion. In the case of textual documents, it is not very difficult to read them when someone is familiar

with the language which is used inside of these documents. When models are used, it is not so diffi-

cult to understand them too, because models abstract from finenesses and provide a graphical and

clear syntax. A graphical syntax simplifies understandability even more, because graphics mostly

are better to understand than other formats like native text or code. When the modeling syntax is

well-understood, models will show dependencies between model elements and will provide a good

overview of the specified system. By contrast, the implemented code indeed also provides a clear

syntax, but on the other side it is hard to understand. Mostly it is very difficult, even if someone knows

the programming language, to understand dependencies between variables, functions or classes if

the code has not written by oneself.

Format Distinction: Semantics Support

Understanding the representation format of information is one thing, but one also has to understand

the meaning of the represented information. Textual documents indeed are less time-consuming, but

the survey shows that they are affected by many misunderstandings caused by linguistic problems

and their incomplete, contradictory, and informal character. This causes a wide room for interpreta-

tion of this kind of specification. Implemented and executable code in contrast is very time-consuming

and affected by misunderstandings as well. Implementations indeed are nearly complete and for-

mal, but it is very difficult to understand the functionality of the code just using the code itself. For

this reason, the implemented code uses comments for documentation in form of text to clarify the

functionality of functions, variables, and classes. However, this again causes the same problems

as described for textual documents. On the other side, models are concerned by misunderstand-

ings rarely. Meta models, profiles, and the possibility to define constraints ensure a predefined,

74

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

Figure 4.1.: AUTOSAR Components-Ports-Interfaces, from [12]

maximal necessary syntax in a semi-formal manner. Meta models ensure the completeness of the

derived models by prescribing important or obligatory relationships among model elements, neces-

sary variables, and constraints for the usage of model elements and variables on model level. In

this context, meta models provide abstract syntax and semantics as well, which can or must be ap-

plied on model level. It is easy to understand models, if the comparative small syntax of the meta

model is understood. After practice and when the modeling technique is understood, modeling is not

very time-consuming, because it can be seen as fulfillment of predefined model elements and their

relationships.

75

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

Format Distinction: Consistency Support

A further problem of specification in form of textual documents is, that implementations are not con-

sistent with their specification in most of the cases. This is caused by the very informal character of

textual documents, which enables a lot of interpretations. This informal character practically makes

it impossible to transform textual documents into another format or to generate code from text auto-

matically, while models are suitable for transformations and code generations optimally. These days’,

model transformations, which transform models into other models or representations, are no prob-

lem using languages like QVT (Query View Transformation), which was specified by the OMG [49].

And as a particular kind of transformation, a lot of mature frameworks like OpenArchitectureWare[2]

or the Eclipse Modeling Framework[1] provide automatic code generation for models as well. The

advantage is that transformations as well as code generations can be repeated as often as neces-

sary. Thus it is possible to update model modifications within dependent models or implementations

automatically.

An automatic consistency check of textual documents is practically impossible because native lan-

guage can not be understood by programs, which need strict formal rules to interpret inputs. In

the scope of implemented code in contrast, it is possible to use compiler or model analyzer [31]

for checking whether the content of code conforms to the syntax of the programming language and

whether dependencies between variables or functions are consistent. Furthermore it is possible

to debug code in progress to find and to understand faults. Models provide the possibility of con-

sistency check as well. There are also model checkers/analyzers like ATL (Atlas Transformation

Language)[29] which assert the well-formedness of models and the compliance of a given model to

its meta model. On the other hand, models are able to be simulated, but the possibility to debug

these simulation is very restricted and not mature enough these days.

Format Distinction: Continuity Support

Two last advantages which come along with models more than with implementations or textual doc-

uments concern a later adaptation of language elements on meta level or below and the traceability

between different artifacts. While changes within textual documents or implementations cause a lot

of manual reworking within other documents or implementations, changes or adaptations inside of

models can be propagated simply. Changes on model level, which affect dependent models or model

elements, can be updated easily, because all model elements are interconnected via relationships,

76

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

which indicate dependencies between them.

For example: a model element A defines a variable, which is used by another element B. If someone

changes the variable of component A, the used dependencies between the two components, indi-

cates, that also the used variable of component B must change.

Furthermore, model usage even enables to change the meta models’ abstract syntax and semantics

ex post in order to adapt language elements on model level. By the means of model transformers

it is possible to update changes on meta level, also on model level automatically. In an analogous

manner it is possible to update changes on model level, also on implementation level by the use of

code generators.

Integrated development environments (IDEs) indeed enable similar adaptations on code level as

well, but not for specifications which are also be covered by models. An adaptation of language

elements of the programming language itself is impossible too.

Format Distinction: Traceability Support

On the other side, textual documents and implementations do not provide mechanisms to trace

between abstraction levels of specifications, (sub-)systems, or artifacts as simple as models. One

model, however, can consist of a lot of sub-models which are interconnected by multiple specified re-

lationships like refinements or dependencies. Thus, developers can trace within one model between

several models, abstraction levels (views), and information. While textual documentations provide

this functionality only with the additional use of configuration management systems, implementa-

tions only provide this on code level or again with the additional usage of configuration management

systems. The disadvantage of such configuration management systems is that the large set of doc-

uments and the missing graphical representations of dependencies among artifacts make it difficult

to keep an overview on all documents and to find the relevant artifact quickly.

All in all it seems that models provide more advantages than disadvantages in comparison with

textual documents and the implemented code. Probably they are used so rarely because they are

new territory for the most of the developers. However, as summarized in table 4.1 models come

along with enough benefits, which warrant the use of AUTOSAR and EAST-ADL2.0 in the following.

The future will show if models completely enter the work of automotive developers as within other

domains.

77

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

Text Code Models

Usage often often rare
Understandability understandable difficult well understandable
Misunderstandings often often rare
Completeness mostly not yes mostly
Formalism no yes semi-formal
Time expenditure low high low
Close to implementa-
tion

no yes mostly

Code generation not possible not necessary possible
Consistency checks not possible difficult possible
Transformations difficult possible simple
Adaptations difficult difficult simple
Traceability difficult difficult simple
Debugging not possible simple not mature

Table 4.1.: Comparison between models, textual documents, and code

4.1.2. Basic Conditions & AUTOSAR

Some reasons for inconsistencies (compare to section 2.4.1) could be avoided by using existing

AUTOSAR concepts. If the AUTOSAR standard would be applied by any OEM or supplier, the

common base could avoid most of the problems, faults, or failures. On the basis of the points, which

were identified in section 3.2.1, the following will show how far AUTOSAR is able to enhance the

actual situation, which was criticized within the survey.

Completeness & Clearness

The actual AUTOSAR standard intends to enable the description of automotive systems just on a

technical level. It consists of 139 structured documents which contain 7629 pages of textual docu-

mentation and the AUTOSAR meta model. About 140 mega bytes result from this set of documents,

whose rough structure is subdivided into five parts, which can be found at [10]: a “Main” part, “Appli-

cation Interfaces”, “SW Architecture”, “Methodology & Tools”, and “Conformance Testing”. Further-

more, many secondary literature can be found on the internet. Alone this large set of specifications

could lead to the assumption that AUTOSAR must be complete. However, the quantity of docu-

ments does not give any hints for their quality or completeness. While completeness is important,

as missing artifacts will lead to individual solutions or work-arounds, the quality or clearness ensures

78

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

Figure 4.2.: AUTOSAR Elements, from [12]

understandability of specifications.

For modeling automotive architectures AUTOSAR provides a meta model which model elements

can be used for specification on model level. For this reason, the meta model as well as a model as

instance of that meta model must be complete and clear. The meta model must provide a complete

and clear set of model or language elements, which are necessary to specify all aspects of automo-

tive architectures. Also on model level it must be ensured that the model of a concrete architecture

is complete and clear. Hence the two levels must be distinguished for completeness and clearness

in the following.

On meta model level

• Completeness on meta model level: The meta model must be complete in terms that all

syntactic elements, which are necessary to describe a system on a model level, are available.

If the abstract syntax of the AUTOSAR meta model does not provide all necessary syntax

elements, it will not be possible to describe an AUTOSAR model properly. However, for larger

meta models it is hardly possible to verify that the meta model provides all domain specific el-

ements. This comes from the fact that meta models are defined by domain specialists, which

posses a large knowledge about the respective domain, manually. Due to the importance of

detailed domain knowledge, which no machine can posses, it can not be automated. And

because of the complexity of automotive systems it can not be ensured that even a domain

specialist forgets some details.

79

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

Figure 4.3.: AUTOSAR Software component implementation, from [12]

Closed projects have shown some missing concepts or elements, which were entered in re-

vised AUTOSAR releases. However, by now it can not be said surely or verified that the actual

version of the AUTOSAR meta model is complete or incomplete. At this point, only a rough

overview about the meta model must suffice for the assumption, that it is able to describe au-

tomotive systems on the technical level completely. Incompleteness will be shown by further

test projects in the future.

Figure 2.3 shows the overall meta model or template structure of AUTOSAR. One can see that

AUTOSAR describes software components(basic software and application software), hard-

ware components(ECUs), dependencies between these components in terms of a system,

some generic ECU specific parameters, and other overall used elements. Furthermore, fig-

ure 4.2 depicts all AUTOSAR elements, which are used within these just mentioned elements

to describe elements like HWElements, ComponentTypes, InternalBehavior, Implementation,

PortInterface, DataType, or SystemSignal.

“HWElements” (hardware) can be an ECU, a memory segment, a peripheral, a processing

80

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

unit, a sensor, an actuator, or other ECU electronics. “ComponentTypes” represent soft-

ware components for applications, sensors, actuators, ECU abstractions, drivers, services

in terms of the basic software, or a composition of such software components. “Internal-

Behavior” and “Implementation” classes provide detailed information about the “Component-

Types’ ” “Behavior” or “Implementation” of software components. PortInterfaces describe

the ports and interfaces which serve as connection points between all components, as de-

scribed in section 2.3.2. For this, AUTOSAR defines components’ required and provided ports,

Sender/Receiver-Interfaces, and Client/Server-Interfaces (see figure 4.1) to indicate different

communication patterns. Furthermore AUTOSAR specifies data types like boolean, integer, or

float as well as system signals which are exchanged over hardware via BUS systems. Section

4.1.3 will give a more detailed example for the completeness and clearness of AUTOSAR and

for the usage of syntax elements.

This rough set of AUTOSAR syntax elements, which are more detailed by the AUTOSAR

specification see [10], should show that AUTOSAR provides the possibility to specify the most

important elements of an automotive system on the technical level. In the scope of this thesis

there can no statement be given about the underlying syntax details of each element. It would

rise above the ability of one single person to understand any detail on software, hardware or

system side. Therefore it must be trusted in the expertises of several domain experts which

are developing the AUTOSAR standard, that AUTOSAR provides a complete or sufficient set

of syntax elements.

• Clearness on meta model level: Even if all syntax elements are defined completely, it is

important for developers to understand the meaning of syntax elements and the context within

they are allowed to be used. For this reason the AUTOSAR standard provides a lot of docu-

ments, which describe the AUTOSAR meta model in detail. However, there are four most im-

portant documents to detail the AUTOSAR meta model: “Software Component Template”[15],

“Specification for the ECU Resource Template” [19], “Specification of the System Template”

[25], and “Specification of BSW Module Description Template” [20]. Each document details

the meaning of syntax elements of the respective template by the use of native text, in addition

to the graphical representation of the meta model. Both the documents and the meta model

are available to describe the semantics or meaning of AUTOSARs’ abstract syntax and the

relationships among its elements clearly. AUTOSAR documents do not only refer to spec-

ifications but also to requirements, which must be hold for using AUTOSAR. Consequently,

81

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

clearness of the AUTOSAR meta model is ensured by detailed specification documents and

requirements, which explain the syntax and its usage.

The detailed description of syntax elements and their semantics on meta level, enables developers

to specify concrete automotive systems on technical level by the use of these elements. This leads

to the question if concrete specifications as model instances of the meta model are complete and

clear.

On model level

• Completeness on model level: As it is important that the specification on the model level is

complete too, AUTOSAR specifies a methodology (see [13]). This methodology, described in

section 2.1.3, specifies all relevant artifacts or work products and dependencies among them.

Furthermore, procedures describe relevant artifacts and functions, which are necessary to

come from one set of artifacts to another set of artifacts. The procedures provide continuity

and traceability between artifacts as well. However, even if the methodology prescribes or

recommends artifacts and a chronological order between them, the methodology just has a

supporting character. As AUTOSARs’ methodology does not intend to prescribe anything,

developers themselves must ensure that the content of artifacts is complete. But thereby they

are supported by tools.

Some artifacts may contain implemented code and other artifacts contain specification mod-

eled by the use of AUTOSAR. While syntax and individual semantical aspects of code can be

verified by the use of compilers, AUTOSAR specified artifacts can be verified by the use of

model checkers/analyzers [31, 29], which are able to proof models whether only AUTOSAR

syntax elements are used properly and whether constraints, which were specified for these

elements on meta level, are hold. Because the AUTOSAR meta model specifies relationships

yet, it is possible to proof whether syntax elements on model level possess all predefined re-

lationships to other elements.

A model analyzer, for example, can verify that a ClientServerInterface possesses minimum

one OperationPrototype, like decribed by the AUTOSAR meta model see figure 4.1.

• Clearness on model level: Model checkers/analyzers indeed are able to verify a small set

of semantics defined by constraints within the meta model, but they are not able to under-

82

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

stand whether the specified elements makes sense too. An operation, for example, which is

specified requiring four input parameters will be correct for a model checker though the im-

plemented operation requires two input parameters. Such a syntactic inconsistency can just

be recognized during integration of components on model or code level, or by the developer

itself. In the same way it is not possible to ensure that an implemented operation does the job,

which was specified. An operation called getTemperature(), which has to return the engine

temperature, can also return the environment temperature. This represents a semantical in-

consistency between components and currently AUTOSAR solves this semantics problem by

the use of textual comments. But because of the problems which come along with textual doc-

uments like described in section 3.1.2, textual documents will lead to several interpretations

and misunderstandings too. Therefore it is an drawback of the current AUTOSAR standard.

A further drawback concerns the missing abstraction levels of AUTOSAR. As mentioned

above, AUTOSAR specifies an automotive system just on a technical level. Higher levels

of abstractions, which abstract from technical details are missing. Such abstraction levels

may concern the observable behavior of vehicle, a vehicles’ environment, vehicles’ variants,

or (non-)functional requirements. Indeed, figure 4.3 shows that AUTOSAR allows the descrip-

tion of processing unit, resource consumption, or compiler properties. However, this does

not suffice to describe all (non-)functional requirements. Section 4.1.4 will show that EAST-

ADL2 will extend AUTOSAR by such higher abstraction levels and most of these requirements.

All in all the last section shows that AUTOSAR ensures completeness of specifications as far as

possible. By the means of the clear specified meta model, it is possible to avoid misunderstandings

(compare to reason number 3 in section 2.4.1), because all available syntax elements posses an

unambiguous meaning. But also missing information (compare to reason number 2 in section 2.4.1)

can be avoided by prescribed obligatory relationships within the meta model. Individual drawbacks

concerning some missing but necessary abstraction levels may be avoided by the use of the EAST-

ADL2, as we will see in section 4.1.4. Other drawbacks, which concern the semantics of information

and which come along with the use of textual description, stay unclear.

Consistency

In order to ensure the consistency between software components on the code level, it is important

that already the software components’ specifications are consistent. Like above, consistency con-

83

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

cerning the specification must also be hold on different levels or between different things. First of

all the artifacts themselves must be consistent. This is discussed section “Consistency between ar-

tifacts” below. If multiple artifacts are consistent within one tool, it must also be possible to transfer

artifacts to other tools to ensure the interoperability with other developers, companies, or devisions,

which mostly do not use the same tool. This is described in section “Consistency between tools”. Fi-

nally, if consistent artifacts can be exchanged between tools, consistency must be ensured between

different working copies and versions of artifacts. Before this topic will be detailed in section “Main-

tenance of artifacts”, section “Consistency between devisions and departments” briefly introduces

it.

Consistency between artifacts:

• Consistency on meta model level: In order to work with AUTOSAR, the large set of docu-

ments and the meta model (see [10]) must be hold consistent to avoid inconsistencies among

different documents. However, as mentioned above, it is almost impossible to proof or to verify

the consistency of all AUTOSAR standard specifications. This does not only concern the tex-

tual documents, but also the consistency between meta model and documents, which detail

the meta model. Two elements are provided by most documents to simplify the orientation

between documents and to understand the life cycle of them: a document change history and

a listing of dependent documents to trace between different documents and information. This,

on the one hand should restrict consistency checks to dependent documents. On the other

hand the change history anticipates question in terms of consistency with earlier versions of

documents. Unfortunately there are no further possibilities to proof the consistency, so that

consistency again must be based on experiences.

• Consistency between meta model level and model level: Consistency between meta

model level (this concerns documents and meta model) and model level can be ensured by

two things: First of all the AUTOSAR meta model or profile has to be used on the model level

for modeling. This restricts general modeling elements, which may be provided by a tool, to

AUTOSAR conform syntax. For modeling AUTOSAR specifies so called Modeling Rules (see

[26]), from which, for example, one demands that a model shall be compliant to the meta

model. And, like above mentioned, a model checker/analyzer [31, 29] can be used to verify

that constraints on meta model elements are kept on the model level. This should ensure the

consistent usage of meta model elements within concrete instances on model level. Secondly,

a developer should also stick to the AUTOSAR standard, which means that developers should

use AUTOSAR syntax elements in the right context, that models make “sense”.

84

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

• Consistency on model level: By then, it can be assumed that everything on meta model

level and between meta model level and model level is consistent. After that, the last chal-

lenge is to hold models or specifications on model level consistent for enabling the integration

of multiple models (compare to model integration 2.3.3). As models should all be designed

by the use of the same (AUTOSAR) meta model, it can be assumed that the used syntax of

multiple models is equal and consistent. The functionality of AUTOSAR Tools then can be

used to ensure the consistency between models, which concerns dependent data and rela-

tionships as well. “AUTOSAR Tools are software tools that may occur within the AUTOSAR

methodology and support interpreting, processing and/or creating of AUTOSAR models.”[21]

Each AUTOSAR tool should keep multiple models consistent within itself. For this, such a tool

should provide the same functionality like conventional development environments: syntax

checks, updating of changes within all dependent models and packages, and simple seman-

tical checks. Thereby simple semantical checks, for example, concern used data types or

matching interfaces. But in order to hold artifacts more consistently, AUTOSAR should intro-

duce some modeling guide lines which ensure consistent naming, structuring, and modeling

between multiple developers.

In conclusion it can be assumed that AUTOSAR supports consistency between models or specifica-

tions of the same version within one tool.

Consistency between tools:

• Exchange Format: As specifications or models have to be exchanged between develop-

ers and companies, from which each perhaps uses another tool, it must be possible to ex-

change models between tools and developers. For this, AUTOSAR specifies a standardized

exchange format in form of XML. So called “Model Persistence Rules [14] specify the proceed-

ing to transform concrete AUTOSAR models into a concrete XML description. For this reason

the rules also describe how a XML Schema can be generated out from the AUTOSAR meta

model in order to validate the structure of a concrete model in XML notation. The persistence

rules specify the order of XML tags, the linkage of XML or AUTOSAR components, and the

compliance between multiple XML Schemes or documents. Figure 4.4 shows the correlation

between AUTOSAR, XML, and Model Persistence Rules. As instance of UML2.0 and ap-

plying the AUTOSAR Template Profile, “AUTOSAR Templates” represent the meta model as

described in section 2.1.2. These templates can be transformed into a XML Schema repre-

sentation by using the “Model persistence Rules”. As instance of the AUTOSAR meta model,

a concrete model can be specified on model level, which again can be transformed into an

85

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

Figure 4.4.: AUTOSAR Model Persistence Rules for XML , from [14]

XML description of these models by using the “Model Persistence Rules” as well. The XML

descriptions can then be checked and validated against the XML Schema. As XML is an over-

all accepted standard, it should be supported by most of the tools available.

• Tool interoperability: Beside this XML based exchange format, in the “Specification of Inter-

operability of Authoring Tools” [22] AUTOSAR also specifies the interoperability of AUTOSAR

tools, which (like mentioned above) support modeling with AUTOSAR, itself. The specification

provides some requirements, which should be taken into account by any AUTOSAR tool. The

requirements prescribe, amongst others the support for concurrent modeling (e.g. between

OEM and supplier and back or between developers), the shipment of AUTOSAR models and

related artifacts (e.g. from one tool to an other), the migration between different AUTOSAR

and model versions, and the compliance of meta models and models.

Furthermore, AUTOSAR specifies interaction between AUTOSAR and other Behavioral model

tools, like statemate or simulink, within the “Specification of Interaction with Behavioral Model”

document, see [21]. The document concerns the mapping of AUTOSAR specific models to

other functional behavior models tools, which base on more mathematical models than AU-

86

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

TOSAR.

These documents and a large set of other specifications and requirements, which would blow

the scope of this thesis, enable interaction of tools and model exchange. Holding all these re-

quirements and demands can ensure the interoperability of several tools well. However, even

if interoperability of different tools is ensured principally, two drawbacks still remain:

Different vendors try to give models a personal touch and there are different file structures

applied by different developers to store multiple models. The personal touch of vendors tries

to commit developers to one vendor. For this reason some vendors use differing header

files within XML exchange files or they allow additional adapted modeling primitives. These

additional modeling primitives may be necessary in the eyes of individual vendors, because

AUTOSAR makes no, or only just a few guide lines concerning individual elements deliber-

ately. However, this leads to a violation of the AUTOSAR standard, which may cause a lot of

manual reworking and complicates the migration from one vendor to an other. For this reason,

each vendor should keep with the AUTOSAR specification without specific adaptation.

In conclusion, the following recommendations should be hold to ensure interoperability of tools:

• AUTOSAR tools must keep with AUTOSAR specifications

• Tool vendors should reduce personal touches by a minimum

• Additional modeling elements, which are not specified by the AUTOSAR standard, must be

avoided

Concerning differing file structures and versions, paragraph “Maintenance of artifacts” 4.1.2 will give

more information.

Consistency between divisions:

• AUTOSAR provides a small but sufficient set of elements to support consistency of models

between divisions. The package which aggregates the elements is called “AdminData”, see

figure 4.8. The “AdminData” can be found in the “GenericStructure” package of the AUTOSAR

meta model, which enables almost any other package to use these “AdminData” elements.

“AdminData” aggregate some document revision elements which keep revision information

depending on date. Revision information aggregate two further elements: Company specific

87

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

revision information (“CompanyRevisionInfo”) and document specific modifications (“Modifica-

tion”). The “CompanyRevisionInfo” elements are used to generate information on document

version within the respective company. In particular it supports the annotation of team mem-

bers, which provides contact information to other developers. On the other side “Modification”

elements are used to record what has changed in one document, in comparison to its prede-

cessor by the usage of textual descriptions.

All in all “AdminData” support consistency between multiple divisions, by annotating an AU-

TOSAR element with revision versions, company specific information like contact information,

and modifications in comparison to other versions of an element. “AdminData” indeed support

maintenance of artifacts and their consistency but they do not solve inconsistencies between

AUTOSAR models of several departments. Annotated modifications give information about

modifications within one model (element), but this is just an indication for developers. Modi-

fications mostly have a stake in other dependent models, which can not be adapted for con-

sistency automatically. This comes along with textual characters of modification descriptions,

which can not be interpreted by tools. Therefore, developers have to take these changes into

account manually or AUTOSAR tools must be able to detect such changes like demanded by

the AUTOSAR standard and mentioned within the last paragraph.

Further aspects concerning consistent file structures or versioning are described in section

4.1.2, Maintenance of artifacts.

In conclusion it can be said that AUTOSARs’ consistency support enhances the maintenance of

artifacts between tools and divisions (compare to reason number 1 in section 2.4.1). Under the

assumptions, that all AUTOSAR models can be hold consistent, AUTOSAR also prevents misunder-

standings or wrong/inconsistent information (compare to reason number 2 and 3 in section 2.4.1).

Continuity & Traceability

Continuity between models and model elements should enable the traceability of decisions, under-

standing of dependencies, and availability of information. This means that it should be possible to

define continuous relationships which represent the dependencies between AUTOSAR specifica-

tions and/or models.

88

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

Figure 4.5.: AUTOSAR Top level structure, from [12]

As depicted in figure 4.5 an “AUTOSAR” element aggregates multiple “ARPackages”, which can be

subdivided into interconnected sub-packages. Each package again aggregates multiple “Package-

ableElements”, the superclass of any “ARElement”, compared to figure 4.2. A “ComponentType”,

which is derived from “ARElement”, may be an “AtomicSoftwareComponentType”, a “CalprmCom-

ponentType” or a hierarchical composition of them, like depicted in figure 4.6. “AtomicSoftware-

ComponentTypes” can thereby be subdivided into application software, basic services, drivers, ECU

abstraction software, or sensor/actuator software. The characteristic of all of these elements is, that

they are all interconnected and aggregated into one root element, called “AUTOSAR”. This integra-

tion of multiple different models (compare to model integration 2.3.3) is applicable regardless whether

the elements specify software, hardware, the entire system, or a mixture of them. Thus it is possible

for example to define an application software within one department, while a second department

specifies a basic software description. After completion the two elements can be interconnected and

89

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

Figure 4.6.: AUTOSAR components and composition, from [12]

aggregated into one “AUTOSAR” element simply.

So, an “AUTOSAR” element provides availability of all specifications concerning the systems’ hard-

ware and software components inside of one model. As all elements may be interconnected via

relationships, not only the availability (compare to reason number 1 in section 2.4.1) of information

is ensured, but also dependencies among elements can be defined clearly in order to enhance the

understanding of correlations(compare to reason number 3 in section 2.4.1).

Furthermore, AUTOSAR indeed allows tracing between sub-packages and model elements, but AU-

TOSAR does not provide traceability of modeled solutions. As AUTOSAR just focuses on technical

specifications, AUTOSAR does not contain specifications or artifacts concerning non-technical infor-

90

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

mation (e.g. environment modeling or modeling which concerns perceptible vehicle functions). This

leads to technical design solutions modeled with AUTOSAR exclusively, whereas it will not be clear

why exactly this solution was chosen. Thus it is an AUTOSAR drawback, which hampers a continu-

ous development process, that AUTOSAR does not support continuity between all process relevant

artifacts or stakeholders.

Although section 4.1.4 will show that EAST-ADL2 complements AUTOSAR with such artifacts, AU-

TOSAR can also be used in the context of other frameworks or ADLs which provide some missing

artifacts. However, while EAST-ADL2 is aligned with AUTSAR, other ADLs are not. Due to the

differing syntax or semantics, inconsistencies or mismatching between AUTOSAR artifacts and ar-

tifacts provided by other frameworks may be caused. This missing continuity again causes manual

reworking and a lot of adaptations in order to integrate AUTOSAR artifacts with other ones.

Integration of all disciplines

Figure 4.7.: Emergence and Detection of Failures vs. Costs, from [54]

The aforementioned continuity also concerns the integration of different disciplines and stakeholders

into development. Multiple development disciplines are important because each discipline has its

own specialized view on systems’ needs, which can not be covered by a single instance or expert.

Amongst others, such disciplines may be requirements and variants engineering, software engineer-

91

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

ing, hardware engineering, systems engineering, integration, or validation & verification.

Like mentioned above and depicted in figure 2.3, AUTOSAR covers the system, the ECU (hardware),

and software. For this reason one can assume that AUTOSAR supports all activities concerning the

systems engineer, the hardware engineer, and the software engineer. However, AUTOSAR only

focuses on a technical side of development close to implementation. Because no one designs a

software architecture from scratch on implementation level, it is also necessary to support disci-

plines from the level before implementation, like requirements, analysis, or (non-)functional design.

AUTOSAR does not provide support on these levels for system, software, or hardware engineers.

Furthermore, AUTOSAR also does not support validation & verification. This means a critical draw-

back for AUTOSAR, because a missing support for individual disciplines requires the usage of means

which are not conform with AUTOSAR. Section 4.1.4 again will show that EAST-ADL2 complements

AUTOSAR with missing disciplines. This again is only possible because EAST-ADL2 is aligned with

AUTOSAR, its syntax, and its semantics.

On the other side AUTOSAR indeed does not support the discipline of integration explicitly, but im-

plicitly. By the fact that AUTOSAR models can be integrated into an entire model, which can be

validated, checked and simulated as mentioned above, an integrator is also able to integrate compo-

nents on an earlier stage of development before implementation. This kind of integration conforms

to model integration (virtual integration) like described in section 2.3.3. Because models are avail-

able much earlier than the code, integrators are able to find out integration drawbacks, which would

avoid integration on implementation level, already on model or specification level. This possibility to

integrate models already before the executable code avoids integration problems, which cause more

time and money on implementation level than on the early model level. This is also accounted with

some studies which confirm, that faults which are recognized on specification level cause fewer costs

or reworking than on implementation level or later. Figure 4.7, for example, depicts an actual situa-

tion of development and phase specific error-proneness in comparison with error detection and costs

caused by failures . The figure shows that failures are made inside of early development phases, but

tardily detected and fixed expensively. This means that the earlier a failure can be detected by an

integrator, the fewer effort for an integrator emerges from fixing these failures.

In conclusion it can be said, that AUTOSAR integrates all disciplines concerning system, software

and hardware on technical level. Furthermore, AUTOSAR supports, even if not explicitly, the activ-

ities of an integrator by providing a detailed system overview. Other disciplines are neglected by

92

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

AUTOSAR caused by its technical focus. However, they should be supported by other frameworks,

which can be linked with AUTOSAR.

Maintenance of artifacts

Figure 4.8.: AUTOSAR GenericStructure:CommonPatterns:AdminData, from [12]

Figure 4.9.: Example AUTOSAR file structure, from [17]

Section “Consistency between devisions” has described the possibility of AUTOSAR to annotate

models and model elements with revision information, which contain version and modification infor-

mation of AUTOSAR model elements. These information should keep consistency among different

versions of one artifact or model. But because of the large set of information and specifications of

93

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

an entire vehicle, it is not practical and almost not possible to hold all information within one unique

model. For this reason the set of artifacts is split into multiple files, folders, and sub-folders, which

again are subdivided into different versions and configurations.

In order to ensure availability of documents it must be possible to orient oneself within the resulting

large set of files and folders. Especially concerning the exchange of configuration packages it is im-

portant that file structures match between multiple divisions. Because if an exchanged configuration

of a division A does not match the structure of a division B, it takes a lot of time to adapt files for

the intra-divisional file structures. Furthermore, changes and updates on files, artifacts, and config-

urations must be communicated well, in order to ensure that nobody works with obsolete or wrong

working copies.

The AUTOSAR standard specification makes no guide lines concerning file structures or configu-

ration changes. The “Specification of Interoperability of Authoring Tools” [22] of AUTOSAR indeed

recommends that AUTOSAR tools shall support sets of files for example by creating and interpreting

meta data, but there are no concrete recommendations given inside of that or another specification.

That finding also was brought by some AUTOSAR test projects. The projects found out, that the

storage structure on delivery folder or a SVN (SVN stands for Subversion and represents a version

management system) should be compatible to the working structure for each module [27]. This

means that a file structure must be located by using the same path on all work stations. For this

reason, “File Structure of Integrator 2”[17] document, which has not been published so far, specifies

an intra-divisional file structure to simplify the file management and artifact integration. This doc-

ument prescribes several directory levels, naming rules of files and directories, and the content of

respective directories.

For example: The naming rules specify that the length of the directory name should be as short as

possible. Allowed characters are small letters, numbers, and underlines. Moreover, the name of

the main directory shall be a concatenation of module name, vendor name, and hardware platform.

Beside naming rules figure 4.9 depicts obligatory subdirectories of two second level directories “ssc”,

which stands for “standard software core”, and “cfgY”, where cfg stands for configuration and Y is

denoting the specific number of the configuration. The directories shall have the specified content.

Unfortunately, such detailed information about file structures are not given within the AUTOSAR

standard specification. However, in order to avoid irritating reworking and to support availability of

artifacts, the following rules for consistent file structures, which base on [17], should be adopted by

94

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

the AUTOSAR standard:

• Folder structure rules should be prescribed, which define the minimal/maximal depth of direc-

tory levels and obligatory folders on each level

• Folder content rules should be prescribed, which define the kinds of files or artifacts, which

are allowed or obligatory inside of an individual folder

• Naming rules should be prescribed, which prescribe the building of names, and allowed literals

Even if the file structure of one configuration or a set of files will be clear, it is not ensured that

also a right or actual version of a file or artifact is used. An AUTOSAR model indeed allows an-

notation of such version information by the use of “AdminData”, but this is just local solution for

one file or artifact. Concerning the evolution of configurations and files within and between different

baselines and releases, it is important to manage changes and influences of changes on dependent

artifacts globally among different divisions. It is not possible for divisions to check each single file

or model of a configuration for modifications or their dependencies to other files. Therefore not only

the management of changes and versions is important, but also the communication of them to other

developers. In this context section 2.3.4 mentioned two tools: Telelogic Change and Telelogic Syn-

ergy. While “Synergy” manages configurations, “Change” is responsible for change management

and communication. However, both tools are not part of the AUTOSAR specification. Therefore it is

not ensured that only these tools are used or that they are used in the same manner when different

divisions are working together. In this regard the BSW module integration project from section 2.3.4

tries to define a cross-divisional process, which should support these questions. However, although

the experiences from that project must be awaited to make further assumptions, the following basic

recommendations based on the survey should be hold and adopted by AUTOSAR perhaps:

• There should be a central/global repository or “SharePoint” for configurations and changes

• Each developer must be able to use the most actual, but released artifact

• Changes must be communicated to all involved parties as quick as possible

• It must be communicated what is new compared to other baselines and builds

• It must be communicated what has changed compared to baselines and builds

• It must be communicated which dependencies to other modules or baselines are concerned

by a change

• It must be communicated which fault was resolved by a change

95

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

• It must be communicated who made a change

Assignment of roles and responsibilities

AUTOSAR and its Methodology, see [13], give no guide lines concerning roles and responsibilities,

like described in section 2.1.3. AUTOSAR sets roles and responsibilities aside in order to apply

AUTOSAR within any development process, which differs from division to division, individually.

However, it is important to define roles and responsibilities in the scope of one or more development

processes. Because roles are coupled with disciplines, it makes no sense that each divisions as-

signs the roles individually. In that case it could happen that experts of different disciplines have to

communicate about the same artifact during a cross-division development. Due to different techni-

cal backgrounds and knowledge base of different disciplines (compare to section 3.1.2), this comes

along with misunderstandings and faults. Furthermore, if roles and responsibilities are not assigned

before the development, it could happen, that nobody is responsible for individual artifacts. This

could lead to forgotten artifacts and to extensive reworking ex post.

So it is a benefit of AUTOSAR that it is integratable into any development process and division. On

the other side, missing role assignments also represent a drawback of AUTOSAR, which leads to

misunderstandings and missing artifacts. For this reason it would be important for AUTOSAR to

provide a framework of roles and responsibilities, which can/should be applied by divisions. But be-

cause the BSW module integration process, which is presently under development like described in

section 2.3.4, tries to define roles more explicitly, the experiences of that process should be awaited

before further recommendations are made concerning roles and responsibilities.

Conclusion AUTOSAR Support to enhance Basic Conditions

In conclusion, figure 4.10 summarizes all results concerning basic conditions of development, which

can be enhanced by AUTOSAR. Thereby the arrows indicate how far AUTOSAR provides support

for a current critical point. Unfortunately, there is no measurement, which measures enhancements

exactly. For this reason the grade of enhancement was assessed subjectively on the basis on variety

and the helpful character which is provided by AUTOSARs’ specifications.

96

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

Figure 4.10.: AUTOSAR Support to enhance the basic conditions

One can see, that AUTOSAR supports completeness, clearness, and consistency for artifacts very

well, while roles and responsibilities are not supported at all. Therefore it is very important to find

solutions, which support this concern. Inbetween there are critical points concerning the continuity

between artifacts, different disciplines, and maintenance of artifacts, which are supported by AU-

TOSAR. However, in comparison with the green arrows within figure 4.10, these points should be

extended in order to simplify integration further more.

Therefore, it would be advisable and a first step for enhancing the basic conditions, if guide lines or

best practices would be established more than today. Such rules should concern amongst others the

aforementioned six points in order to ensure, that any party handles the basic conditions similarly to

other involved parties. This simple step could help to avoid inconsistencies or irritations yet.

4.1.3. Concrete Inconsistencies & AUTOSAR

Beside reasons for inconsistencies, there are also some concrete inconsistencies (compare to sec-

tion 2.4.2), which may be avoided by using existing AUTOSAR concepts too. If the AUTOSAR stan-

dard would be applied by any OEM or supplier, the common base could avoid most of the problems,

faults, or failures. On the basis of the points, which were identified in section 3.2.2, the following will

show how far AUTOSAR is able to avoid some concrete inconsistencies, which were criticized within

the survey.

97

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

Figure 4.11.: AUTOSAR Data Types Overview, from [12]

Static semantics of interfaces

The survey has shown that interfaces, by which components are interconnected and integrated, do

not match sometimes. This can be caused by static or dynamic mismatches between two inter-

faces. While static interface properties have an impact on the static connection of components, the

dynamic properties have an impact on the behavior between two components at runtime. Both prop-

erties must be specified and implemented properly to enable the interaction of components. For

this reason, the following section analyzes AUTOSARs’ possibilities to describe the syntax or static

properties of interfaces in a standardized manner. Subsequently section “Dynamic semantics of in-

terfaces” concentrates on the dynamic properties of interfaces.

AUTOSAR language elements to describe static semantics of Ports & Interfaces:

Generally AUTOSAR specifies ports and interfaces to describe the static semantics of interaction

points. A component can define some ports, which are associated with an interface, like depicted in

figure 4.1. A port can be a required port or a provided port. While a required port indicates, what kind

98

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

Figure 4.12.: AUTOSAR Primitive Data Type, from [12]

of services are required by a component, the provided port indicates, what services a component

provides to other components. “In addition to the formal specification required to implement the com-

munication via ports, a “PortPrototype” can carry so-called Port Annotations. They do not directly

influence the signature of calls via this port, but contain further information useful for the application

developers of the components on both sides of the connection. [15]” Annotations may be very useful

for developers to understand details of ports concerning their usage. However, the drawback here

is that annotations are not standardized textual descriptions. This may lead to misunderstanding as

well as misinterpretations.

The interfaces themselves can be subdivided into different communication patterns. “SenderReceiver-

Interfaces” allow for specification of the typical asynchronous communication pattern where a sender

provides typed and named data (compare to “DataElementPrototype” in figure 4.1) that is required

by one or more receivers. Due to the unambiguous definition of data, which are sent or received by

“SenderReceiverInterfaces”, this kind of communication can be well described on syntactical level.

On the other side the underlying semantics of a “ClientServerInterfaces” is that a client may initiate

the execution of an operation, see “OperationPrototype” in figure 4.1, by a server that supports the

operation, which is provided by a “ClientServerInterfaces”. The server executes the operation and

immediately provides the client with the result (synchronous operation call) or else the client checks

for the completion of the operation by itself (asynchronous operation call). Figure 4.1 also shows

that “ClientServerInterfaces” aggregate minimum one operation. For each operation it is possible

99

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

Figure 4.13.: AUTOSAR Connectors, from [12]

to define an ordered set of typed, named, and directed parameters. The direction kind of param-

eters specifies whether a parameter is input, output or both. Therefore its possible to specify the

syntax of all operations inside of “ClientServerInterfaces” exactly. By using AUTOSAR, the name

of an operation, the number and order of parameters, the data types of input parameter, and the

result parameter can be defined. All properties of a signature are well-described, and the syntax

of operations can be described unambiguously, which avoids mismatching operation calls between

components.

In addition to that, section 4.1.2 has already described, that AUTOSAR enables the building of com-

positions of components or “ComponentProtoTypes” typed with “ComponentType”(see figure 4.6).

As compositions of “ComponentProtoTypes” have to be interconnected as well, a “CompositionType”,

see figure 4.6, also aggregates the abstract meta-class “ConnectorPrototype”(see figure 4.13). A

“CompositionType” also exposes PortPrototypes to the outside world. However, its PortPrototypes

are only delegated and do not play the same role as “PortPrototypes” attached to “AtomicSoftware-

ComponentTypes”. Figure 4.13 depicts the three kinds of “ConnectorPrototypes”, which can be

associated with a “CompositionType”:

• “AssemblyConnectorPrototypes to interconnect PortPrototypes of ComponentPrototypes that

100

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

are part of the CompositionType as well as”[15]

• “DelegationConnectorPrototypes to connect from “inner” PortPrototypes to delegated “outer”

PortPrototypes.”[15]

• “ServiceConnectorPrototype is exclusively used in the context of ECU configuration phase,

and must not be used within CompositionTypes of software applications.”[15]

Like depicted in figure 4.11 and figure 4.12, the used data types also are predefined by AUTOSAR.

Figure 4.11 shows, that AUTOSAR distinguishes between primitive data types (character, string,

opaque, boolean, and real) and complex data types (array and record) in form of “CompositeTypes”.

That data types are used for “SenderReceiverInterfaces” as well as for arguments of an operation

inside of “ClientServerInterfaces”. By the means of these predefined data types, static type checks

are possible to ensure that exchanged data match in terms of their data type (name). Further se-

mantical properties of data types, which also have to match when data are exchanged, are handled

in section 4.1.3.

Finally, AUTOSAR also specifies the compatibility of data types, of “DataElementPrototypes” in the

scope of “SenderReceiverInterfaces”, of Sender Receiver Interfaces, of Operation Prototypes and

their arguments in the scope of “ClientServerInterfaces” as well as the comaptibility of “Sender-

ReceiverInterfaces” and “ClientServerInterfaces” themselves. See the Software Component Tem-

plate specification [15] for more details.

Benefits from AUTOSARs static semantics:

The detailed AUTOSAR syntax enables describing all aspects of component interfaces and ports

well. At least on the static and syntactical level the connection points can be described in a stan-

dardized and complete manner, as described above. That standardized and complete possibility to

describe interaction points also avoids some inconsistencies between software components on de-

sign level or on implementation level, which must be consistent within the design level (as mentioned

above the consistency between design and implementation level can be ensured by the use of code

generators). The inconsistencies which can be avoided are described in the following:

• Syntactical inconsistencies concerning interfaces, ports, signatures, or data names and

types, compare to section 2.4.2 inconsistency 1, can be avoided by the aforementioned un-

ambiguous syntax elements of AUTOSAR. As interfaces can be related already on model

level, it is possible to match required and provided ports against each other. On the one side

operations, their signatures, and used data types for “ClientServerInterfaces” can be matched.

101

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

On the other side it is also possible to match exchanged data (types) of “SenderReceiverIn-

terfaces”.

• Semantic inconsistencies can be avoided partly. At least language elements of the AU-

TOSAR meta model are defined unambiguously, which avoid language inconsistencies, com-

pare to section 2.4.2 inconsistency 2, between used meta model elements. For example,

AUTOSAR defines the meaning and the allowed context of operations and parameters clearly.

• Pragmatical inconsistencies concerning the communication pattern, see section 2.4.2 in-

consistency 1, can be avoided, because patterns are prescribed by the used interface. As

interfaces can already be related on model level, it is possible to check whether their used

communication patterns match. Furthermore it is possible to link from the software represen-

tation to its hardware description provided by the ECU Resource Template by the means of

“ComplexDeviceDriverComponentType”, “EcuAbstractionComponentType”, and “SensorActu-

atorSoftwareComponentType” (see figure 4.6). By the means of that linking it is possible to

describe which software component may access a certain hardware.

Table 4.2 summarizes these results. The table shows for each inconsistency (categorized in section

2.4.2), which can be avoided, the respective AUTOSAR meta class, which mainly is responsible for

avoiding the inconsistency.

AUTOSAR Interfaces Example(static):

The following example exemplifies the definition and usage of interfaces as well as their interaction

in the scope of the AUTOSAR Memory Stack modules. As the memory stack is composed of basic

software components exclusively, the example is about Basic Software Integration like described in

section 2.3.2.

For this reason figure 4.14 depicts a module overview of the memory hardware abstraction layer

inside the basic software layer of AUTOSAR. The figure shows the NVRAM (Non-volatile Random

Access Memory) Manager. This NVRAM Manager (NVM) shall provide services to ensure data stor-

age. It shall abstract from the underlying modules and administrate NV data. For this, the NVM

can access the “Memory Abstraction Interface”, which abstracts from several memory abstraction

modules like an EEPROM and/or a Flash EEPROM emulation device. Such hardware memory ab-

straction modules again abstract from underlying drivers, which are responsible to access the micro

controller hardware. The figure shows that ports are used to interconnect the different modules. The

ports provide interfaces to other basic software modules, to application software modules, and to

hardware.

102

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

avoidance possible no special support

Syntactic Inconsistencies
inconsistent data exchange for-
mat

X

inconsistent interfaces PortInterface
inconsistent ports PortProtoType
inconsistent signatures OperationPrototype
inconsistent data names DataType

Semantical Inconsistencies
numerical inconsistencies X
language inconsistencies AUTOSAR meta model
reference system inconsisten-
cies

X

Application-based Inconsis-
tencies
violation of states X
violation of obligatory relations X
restricted data ranges X

Pragmatic Inconsistencies
concurrency X
access restriction on extern re-
sources

ComplexDeviceDriverComponentType,
EcuAbstractionComponentType, Senso-
rActuatorSoftwareComponentType

timing requirements on hard-
ware

X

absolute timing requirements X
relative timing requirements X
communication pattern PortInterface

Table 4.2.: Inconsistencies avoided by AUTOSARs’ static semantics

103

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

Figure 4.14.: AUTOSAR Memory Management Overview, from [23]

Because of the standardized character of the memory management or other basic services, each

basic module can prescribe an API more than application software components. This API can be

used either for other basic software modules, application software modules or hardware. The API of

a respective module prescribes used data types as well as functions/operations, which are summa-

rized within some predefined interfaces. Figure 4.15 depicts a “ClientServerInterface”, compare to

figure 4.1, of the NVM, which summarizes functions specified within the API specification of NVM,

see [24]. This “ClientServerInterface” is called NvMService, which indicates that it represents an

AUTOSAR service of the BSW layer. The API specification details all operations, which is exempli-

fied for the “WriteBlock” operation of the “NvMService” in figure 4.16. One can see that AUTOSAR

prescribes the signature (operation name and parameters), reentrancy, and whether an operation

can used synchronous or asynchronous. All information prescribed by an API specification can be

modeled by syntax elements the AUTOSAR meta model depicted in figure 4.1 and described above.

As each basic software module prescribes an API in this manner, basic modules can be integrated

by using this standardized API. In comparison to figure 4.14, figure 4.17 exemplifies the interaction

104

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

Figure 4.15.: NVRAM Manager Client/Server Interface, from [24]

of memory modules by using the specified interfaces and operations.

For example: The NVM can call the “MemIfWrite” operation specified within the “Memory Abstraction

Interface”. The “Memory Abstraction Interface” has to decide whether it uses the “EEPROM Abstrac-

tion” module or the “Flash EEPROM Emulation” module to execute the write operation. For using

the “Flash EEPROM Emulation” module, the “Memory Abstraction Interface” module can call the

“FEE_Write” operation, which calls the “Flash_Write” operation of the “Internal Flash driver” module.

Then the driver can write into flash storage.

Application software can use this API too in order to use the services of basic software. To enable

integration of application software as well, their interfaces can be described in the same manner,

by using AUTOSAR syntax elements of the “Software Component Template”. Therfore it is possible

to describe all interfaces between components completely and consistently. The standardized char-

105

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

Figure 4.16.: NVRAM Manager API function: NvM_WriteBlock, from [24]

acter of ports and interfaces, makes it easy to integrate other modules or to use basic services by

application software.

Dynamic semantics of interfaces

AUTOSAR language elements to describe static semantics of Ports & Interfaces:

All aforementioned elements to describe interfaces, only represent static properties to describe the

structure of interfaces.

In order to specify the real dynamic semantics of interfaces as well, AUTOSAR provides a so-called

“InternalBehavior” for all “AtomicSoftwareComponentType” and an additional “BswBehavior” for ba-

sic software modules, as depicted in figure 4.18. The figure also does show, that each kind of

implementation possesses exactly one behavior, which describes the dynamic behavior of an imple-

mentation. The depicted tripartition separates implementation from behavior and static component

description, which enables to exchange individual component properties.

Figure 4.19 gives an overview about elements, which are provided by AUTOSAR to describe “Inter-

nalBehaviors”. The “InternalBehavior” aggregates so-called “RunnnableEntities”(Runnables), which

represent the smallest code-fragments that are provided by a component and executed at runtime.

Runnables for instance are set up to respond to data reception or operation invocation on a server.

106

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

Figure 4.17.: Interface interaction of Layers, example “Memory Management”, from [18]

Therefore they specify which data may be accessed for writing or reading or which data should be

sent or received. Moreover, runnable entities may associate “ExclusiveAreas” and specify whether

they can be invoked concurrently or not.

“InterRunnableVariables” as well as “ExclusiveAreas”, which prevent an executable entity (runnable)

running in the area from being preempted, can be used for communication among runnables. For

this reason an “InternalBehavior” aggregates some “ExclusiveAreas”, which can be referred by

runnables. In addition, the “InternalBahvior” also aggregates so-called “RTEEvents”, which will occur

during the execution. Such “RTEEvents” may indicate, for example, the reception of a remote invo-

cation of an operation on a provided port or a timeout on a required port, which is not receiving the

data it expects to receive. However, runnables may also specify some waiting points, which indicate

that a runnable waits (a certain time) for a specific “RTEEvent”.

So-called “ServiceNeeds” are aggregated by an “InternalBahvior” in order to provide detailed in-

formation about what a software component (application software or basic software) needs from

(other) basic software components when it has to be integrated on an actual ECU. By the means

of “ServiceNeeds” in combination with information of the BSW Module Template (“BSWImplemen-

107

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

Figure 4.18.: AUTOSAR Implementation of software components and basic software, from [12]

tation” and “BSWModuleDescription”, see figure 4.18), it is possible to generate the “BSWBehavior”

automatically. As the “BSWBehavior” is similar to “InternalBehavior” as far as possible (a “BSWBe-

havior” also uses events, exclusive areas, and runnable entities called “BSWModuleEntity), only the

“InternalBehavior” is described here.

Figure 4.20 exemplifies the usage of “InternalBehavior” elements. One can see, that an “Internal-

Behavior” aggregates some events, which start runnable entities of the behavior. There are a lot of

events (see figure 4.21), which can be defined to execute an individual runnable entity. By the means

of events and runnables, it can be specified how an internal behavior or implementation can react to

dynamic influences (RTEEvents) from the outside world of an implementation.

As one can see in figure 4.1 a “SenderReceiverInterface” also aggregates a so-called “ModeDec-

larationGroupPrototype”, which associates a concrete “ModeDeclarationGroup”. The class “Mod-

eDeclarationGroup” has been introduced to support the grouping of modes and (on model level)

to provide predefined sets of modes that could be standardized and re-used. The set of modes

eventually defines a flat (i.e. no hierarchical states) state-machine where only one mode can be

active at a given point in time. Like also depicted in figure 4.20, those modes can be changed by a

108

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

Figure 4.19.: AUTOSAR InternalBehavior of software components, from [12]

“ModeSwitchEvent”. Such modes can be used for prescribing sequences within a sender/receiver

communication. By means of those sequences it is possible to define communication protocols be-

tween sender/receiver interfaces. Unfortunately, modes or states can not be specified in the context

of client/server interfaces, which eliminates the possibility to define “state machines” or protocols for

obligatory sequences of operation calls.

Furthermore AUTOSAR also defines some strategies in [15] for handling concurrency in terms of

runnables which share memory:

• Mutual exclusion(mutex) with semaphores, which provide access to an exclusive resource that

is used from within several tasks.

• Interrupt Disabling, during the run-time of runnable entities or at least for a period in time

identical to the interval from the first to the last usage of a concurrently accessed variable in a

runnable entity.

109

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

Figure 4.20.: Summary meta model excerpt related to modes, from [12]

• Priority Ceiling, which allows for a non-blocking protection of shared resources.

• implicit communication by means of variable copies, which means that for a concurrently used

variable a copy is created on which a RunnableEntity entity can work without any danger of

data inconsistency.

All these strategies can be implemented by the use of “ExclusiveAreas” and “InterRunnbalevaraibles”

of the “InternalBehavior”.

In order to specify the resource consumption of an implementation, AUTOSAR provides a class

called “ResourceConsumption”, which is depicted in figure 4.22. Each implementation must provide

110

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

Figure 4.21.: Kinds of RTEEvents, from [12]

such a class to indicate its static and dynamic resource consumption. The resource consumption

class can specify the used stack or heap usage as well as an execution time. The respective con-

sumptions then can be associated with an executable entity, which can either be a RunnbaleEntity or

a BSWModuleEntity. This enables the specification of memory or timing requirements on hardware

or other software components.

Concerning the data type semantics figure 4.12 shows that AUTOSAR allows to specify ranges for

numerical data types, like integer and float. Such ranges specify lower and upper limits to avoid

overflows and underflows. Furthermore the figure shows that each primitive type may aggregate

a so-called “SWDataDefProps” class. There the semantics are mainly described by units, which

represent physical units and reference systems, and the aggreagted “compuMethod”, which is used

for the conversion of internal values into their physical representation and vice versa. However,

“SWDataDefProps” [15] covers further various aspects as well:

• The binary structure of the data element

• The mapping/conversion to the data types in the programming language (or in Autosar)

• Invalid values for a data element

• If the data object is virtual - that means it is not directly in the ECU, then it can be described

how the “virtual variable” can be computed from real ones.

• Code generation policies

111

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

Figure 4.22.: AUTOSAR Resource Consumption: Overview, from [12]

Finally so-called “CompositeTypes”, which are build by the use of primitive data types, posses the

described possibility to define the semantics of complex data types. Therefore it possible to compare

two data types not only on a syntactical but also on a semantical level. However, because the

semantical aspects only cover data types and not data themselves, it is not possible to describe

semantics of data on a model level or among. For example: for a variable “temperature” typed with

the data type float, it is not possible to specify whether the variable posseses the meaning of engine

temperature, environment temperature, or else.

Benefits from AUTOSARs dynamic semantics:

The last section shows that on dynamic level the connection points can be described in a standard-

ized and complete manner too. What kinds of inconsistencies can be avoided by these dynamic

description elements, is described in the following:

• Semantical inconsistencies concerning the differing number representations or reference

system inconsistencies can be avoided by the use of “SWDataDefProps” and “compuMeth-

ods”.

• Application based inconsistencies concerning data types ranges can be avoided by the

use of the “Range” class, which is aggregated by all numerical data types. Furthermore,

in the scope of “SenderReceiverInterfaces” it is possible to define “ModeDeclarations” and

relationships between modes and events. This may avoid certain state violations as well as

violations concerning the relationship between individual modes and input parameters.

112

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

Figure 4.23.: NVM Sequence Diagram for WriteBlock operation, from [24]

• Pragmatical inconsistencies concerning the concurrency behavior between components

and their shared memory can be avoided by applying the common strategies of AUTOSAR

which can be used to ensure the required data-consistency. “ModeDeclarartionGroups” con-

cern concurrency as well. By the means of “ModeDeclarations”, “RTEEvents”, and “RunnbaleEn-

tities” it is possible to specify which of the runnables are allowed to start during a message

sequence. This can also be seen in figure 4.20, where a “ModeDisablingDependency” is able

to disable a “RTEEvent”, which otherwise would start a Runnable entity. By the means of

runnable entities, which enable specifying read or write access, it is also possible to define

access restriction on the extern resource “memory”. Furthermore, by means of “Service-

Needs” and “RessourceConsumption” it is possible to avoid mismatching timing requirements

on hardware elements.

• Missing pre-/postconditions or constraints for “operationPrototypes” and modes in terms of a

“SenderReceiverInterface”. It is not possible to define constrained service parameter, oblig-

atory relations between input parameters and internal states. This can lead to application

based inconsistencies.

113

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

Figure 4.24.: NVM Behavior and Runnable Definition, from [24]

• Operation call protocols are missing in order to define an obligatory operation call sequence.

• No possibility to define semantics or meaning of data or functions on meta level M1.

• Individual pragmatical inconsistencies concerning the absolute and relative timing behavior

of components were not considered to await results of an actual project called TIMMO. This

project will provide possibilities to enhance the timing specification of components

Table 4.3 summarizes these results. The table shows for each inconsistency (categorized in section

2.4.2), which can be avoided, the respective AUTOSAR meta class, which mainly is responsible for

avoiding the inconsistency.

AUTOSAR Interfaces Example(dynamic):

To present a short example of how to apply AUTOSARs’ dynamic interface semantics, the aforemen-

tioned NVM again will be used for demonstration of Basic Software Integration (see 2.3.2), compare

to figure 4.14.

114

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

avoidance possible no special support

Syntactic Inconsistencies
inconsistent data exchange for-
mat

SWDataDefProps

inconsistent interfaces X
inconsistent ports X
inconsistent signatures X
inconsistent data names X

Semantical Inconsistencies
numerical inconsistencies SWDataDefProps
language inconsistencies X
reference system inconsisten-
cies

SWDataDefProps

Application-based Inconsis-
tencies
violation of states partly by ModeDeclara-

tionGroupPrototype
violation of relations between
states and parameter

partly by ModeDeclara-
tionGroupPrototype

restricted data ranges Range

Pragmatic Inconsistencies
concurrency ExclusiveArea, Inter-

RunnableVariable, Mod-
eDeclarationGroup

access restriction on extern re-
sources

RunnableEntity

timing requirements on hard-
ware

ServiceNeeds, Ressource-
Consumption

absolute timing requirements TIMMO project TIMMO project
relative timing requirements TIMMO project TIMMO project
communication pattern X

Table 4.3.: Inconsistencies avoided by AUTOSARs’ dynamic semantics

115

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

Beside a lot of requirements on the behavior of basic software functions which are specified within

BSW specifications, some specifications also provide sequence diagrams to detail the behavior of

BSW modules. Within the NVM specification [24] a lot of sequence diagrams prescribe the usage

of functions specified by the aforementioned API. Figure 4.23, for examples, depicts a sequence

diagram for a “WriteBlock” operation, whose syntax was specified in the API exemplified in figure

4.16. The sequence diagram shows the necessary sequence of function calls for an asynchronously

performed “WriteBlock” request between a software component and the NVM controlled by the op-

erating system. There are much more sequence diagrams (not only within the NVM specification),

which prescribe the invocation semantics of API functions. These kind of specification is not a gen-

eral applied AUTOSAR syntax element, but should additionally be used for describing the behavior of

software components. Almost any basic software module uses the possibility of sequence diagrams,

where the behavior can be standardized more than, for example, application software caused by the

standardized character of basic software modules themselves. But also other software components

should provide such descriptions in order to clarify their semantics.

Furthermore figure 4.24 depicts a simplified example for an “InternalBehavior” of the NVM. One can

see that the “InternalBehavior” specifies “RunnableEntities”. Each runnable provides a symbol which

indicates the invoked operation, which is specified by the API, and a tag which indicates whether the

function can be invoked concurrently or not. Note that also the “WriteBlock” operation (the red

bordered runnable in figure 4.24) from below is realized by a “RunnableEntity”. After all runables are

specified, the “InternalBehavior” specifies some ports, which provide the service of the NVM.

4.1.4. Basic Conditions & EAST-ADL2.0

Beside AUTOSAR, the EAST-ADL2 standard also may avoid some inconsistencies by enhancing the

basic conditions of development (compare to section 2.4.1). How far EAST-ADL2 is able enhance

the actual situation, which was criticized within the survey, is again shown on the basis of section

3.2.1 in the following.

Completeness & Clearness

As aforementioned, EAST-ADL2 complements AUTOSAR with language elements to describe non-

technical details and additional abstraction levels. To accomplish that, EAST-ADL2 provides a meta

116

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

Figure 4.25.: EAST-ADL2 System Model: Overview, from [9]

model to specify necessary language elements and their semantics. In comparison with AUTOSAR,

EAST-ADL2 only needs one main specification document to detail its meta model. The document,

called “EAST ADL 2.0 Specification” [8], describes all artifacts, abstraction levels, and language el-

ements, which are provided by the EAST-ADL2 meta model. However, here again the quantity of

documents can not give any hints about the quality or completeness of EAST-ADL2.

Like above in section “Completeness & Clearness” of AUTOSAR (see 4.1.2), both levels the meta

model level and the model level will be considered in terms of their completeness and clearness.

On meta model level

• Completeness on meta model level: As EAST-ADL2 shall complement AUTOSAR with addi-

tional abstraction levels, the EAST-ADL2 meta model must provide all syntax elements, which

are necessary for a complete description of these abstraction levels. However, like in AU-

TOSAR, the EAST-ADL2 meta model is a large set of related syntax elements, which was

defined by some human domain specialists. So it is hardly possible to verify that the meta

model really provides all elements. For this reason, again just a rough overview about the

meta model must suffice for the assumption, that it provides further abstraction levels and

117

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

Figure 4.26.: EAST-ADL2 Requirements Modeling: Overview, from [9]

artifacts, whose syntax is sufficient to describe all relevant aspects of the respective artifact.

Missing elements of individual artifacts will be shown by further evaluation projects in the fu-

ture. Furthermore, the overview shall show how far AUTOSAR will be supplemented by the

means of additional elements of EAST-ADL2.

The levels of abstraction as well as artifacts of EAST-ADL-2 were described in section 2.2.2.

According to figure 2.5, figure 4.25 depicts a meta model overview of EAST-ADL-2, which

shows the all-encompassing System Model of EAST-ADL. One can see, that a System Model

aggregates the different abstraction levels and respective artifacts, which were described in

section 2.2.2: The VehicleFeatureModel (VFM) which represents the most abstract level to

describe perceivable features of a vehicle. The AnalysisArchitecture, which contains the

FunctionalAnalysisArchitecture (FAA), to refine the VFM on Analysis level. The DesignAr-

chitecture, which is subdivided into FunctionalDesignArchitecture, MWAbstraction, and Hard-

wareDesignArchitecture, is used to refine the analyzed features of the FAA by some more

implementation-oriented aspects. Furthermore, the System Model aggregates the Environ-

118

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

Figure 4.27.: Meta-model for the functional definitions of EAST-ADL2, from [9]

mental Model for features across all abstraction levels, and an ImplementationArchitecture,

which is realized by AUTOSAR language elements for specifications on technical level. By

the means of these artifacts, it is possible to represent an implementation architecture also on

other abstraction levels, such as design, analysis, or requirements/features.

While on VFM level the core meta class “Feature” is used to describe all characteristics or

traits that an individual product variant within a product line may or may not have, AUTOSAR

syntax elements are used for specification on implementation level. By contrast, on FAA and

FDA level another central concept, called “ADLFunctionType”, is used on both levels. “ADL-

FunctionTypes”, like depicted in figure 4.27 stand for individual “ADLFunctions”, which either

refine features of the VFM or abstract from AUTOSAR entities. Beside the possibility to inter-

connect “ADLFunctions” by EAST-ADL connectors, which are depicted in figure 4.28, it is also

possible to structure “ADLFunctions” hierarchically by the means of “ADLFunctionPrototypes”.

Furthermore figure 4.27 shows that each “ADLFunction” may aggregate an “ADLBehavior” to

specify the functions’ dynamic behavior.

But beside the possibility to model the structure and the behavior of functions, EAST-ADL2

provides language elements, which could be used, in principle, in any model on any ab-

straction level. These elements concern the specification of validation and verification (V&V),

variability, and general requirements and can be found within the respective EAST-ADL meta

model package.

119

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

Figure 4.28.: Ports and connectors in the EAST-ADL2, from [9]

Concerning the V&V package it is impossible to introduce in the EAST-ADL2 a way to model

all the objects that can be required by all available V&V techniques. For this reason EAST-

ADL2 furnishes just the means for planning, organizing and describing V&V activities on a

fairly abstract level and for defining the links between those V&V activities, the requirements

that are checked by them and the objects modeling the system.

In the scope of variability EAST-ADL2 enables the possibility to express multiple variants of

the same entity. Such entities, for example, may be features on VFM level, “FunctionTypes”

on FAA or FDA level, different variants of implementations or artifacts and configurations in

general.

The last EAST-ADL2 meta model package, which can be used across all abstraction level,

concerns requirements. The requirements as part of existing EAST-ADL2 artifacts, are re-

alized by the meta class “ADLRequirement”, see figure 4.26, and expresses a condition or

capability that must be met or possessed by a system or system component to satisfy a con-

tract, a standard, a specification or other formally imposed properties. A requirement may be

a Design Constraint, a Quality Requirement, or a FunctionalRequirement. Design Constraints

can be detailed by the use of individual “DesignConstraintTypes”, which indicate whether such

a requirement concerns, for example, the costs, the process, reuse, or legacy of a model or

model component. For quality requirements, different kinds of requirement can be specified

120

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

as well. By setting the “QualityRequirementType” of the meta class “QualityRequirement”, it is

possible to specify requirements concerning, for example, performance, dependability, ergon-

omy, safety, or security of an EAST-ADL2 entity. Furthermore a quality requirement may also

be a timing requirement, which especially can be used by “ADLFunctions” for defining their

timing behavior in terms of end-to-end delays, periods and synchrony.

This rough set of syntax elements, which are more detailed by the EAST-ADL2 specification

see [8], should show that EAST-ADL2 provides the possibility to specify automotive system

on different abstraction levels. Like in AUTOSAR, no statement can be given about complete-

ness of each artifact, as it would rise above the ability of one single person to understand any

detail. Therefore it must be trusted in the expertises of several domain experts, which are

developing the EAST-ADL2 standard, that EAST-ADL2 provides a complete or sufficient set of

syntax elements.

• Clearness on meta model level: Even if it is possible to describe all abstraction levels and

concerns completely by EAST-ADL2 syntax elements, it is important for developers to under-

stand the meaning of syntax elements and the context within they are allowed to be used. For

this reason the EAST-ADL2 standard specification [8] describes the EAST-ADL2 meta model

in detail. This document details the meaning of syntax elements by the use of native text, in

addition to the graphical representation of the meta model. Both the documents and the meta

model are available to describe the semantics or meaning of EAST-ADLs’ abstract syntax and

the relationships among its elements clearly. Consequently, clearness of the EAST-ADL2.0

meta model shall be ensured by a detailed specification document like in AUTOSAR.

The EAST-ADL2 meta model and its detailed description of syntax elements and their semantics,

shall enable developers to specify abstract views on automotive systems. This again leads to the

question if concrete specifications as model instances of the meta model are complete and clear.

On model level

• Completeness on model level: To model all obligatory artifacts completely in an ordered

way, similar to AUTOSAR the EAST-ADL2 provides a methodology as well. For this reason

section 2.2.2 has described the EAST-ADL2 methodology, which is aligned with a general V-

Model. The character of the information in the upper parts of the V-Model are more or less

121

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

abstract and correspond to what is captured in the Vehicle, Analysis and Design levels of

EAST-ADL2, like depicted in figure 2.7. The lower part of the V-Model represents the imple-

mentation level, which corresponds to an AUTOSAR modeled system within the EAST-ADL2

System Model. As EAST-ADL2 is aligned with that process and as the V-Model purports the

order of these phases, it is recommendable to hold this order also during the usage of EAST-

ADL2. By holding this order, it can be ensured that all artifacts are modeled step by step from

the most general level down to the more detailed levels and that no artifact will be forgotten.

• Clearness on model level: Even if all artifacts are regarded during the development process,

it is important to check whether all artifacts match the EAST-ADL2 meta model and whether

constraints of the meta model are hold on the model level as well. This task can be undertaken

by model checkers/analyzers, as in AUTOSAR. These model checkers and analyzers [31, 29],

for example, can proof whether all relationships and attributes, which are prescribed by the

meta model, are hold in order to ensure a certain level of completeness. Like in AUTOSAR

model analyzers indeed are able to check allowed syntax elements, constraints and relation-

ships, but it is not possible to check deeper semantics behind functions, data, or processes.

On the one hand it is indeed possible to specify features, which are realized by ADLFunc-

tions, to express what features individual functions are good for. This is an additional benefit

concerning the semantical information in comparison with AUTOSAR definitively. However,

individual descriptions such as ones for features or “ADLFunctions”, which are important to

support the understanding of an entity, are realized by native text written from individual de-

velopers. Because machines are not able to interpret native text, the information are relevant

for documentation more than for automating. However, also for documentation the textual

descriptions have the drawback that they lead to misunderstandings and misinterpretations

between multiple developers, like described in section 3.1.2.

All in all EAST-ADL2 provides abstraction levels and artifacts for analysis and design of automotive

architectures beside their technical details. By the means of different views and additional descrip-

tions, which focus other aspects of the entire system while they abstract from individual details, the

understanding for an entire system can be enhanced clearly and contexts within the system can be

clarified better than on implementation level. In addition, EAST-ADL2 adds variant building, validation

and verification, and functional an/or non-functional requirements to AUTOSAR, so that EAST-ADL2

not only provides abstraction levels for the technical level of AUTOSAR, but also additional infor-

mation about a system or system components. Unfortunately, EAST-ADL2 has the same drawback

122

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

like AUTOSAR. This drawback concerns the textual descriptions which are used to detail certain

semantical information of EAST-ADL2 entities. Because native text as basis for a later implemen-

tation may lead to different interpretations and misunderstandings mostly, inconsistencies between

software components on implementation level are preassigned.

Consistency

Consistency between artifacts, tools, and divisions is important not only in the scope of AUTOSAR

but also of EAST-ADL2. For this reason the following section will analyze EAST-ADL2 to find out,

how it supports the consistency for artifacts, tools, and divisions.

Consistency between artifacts:

• Like in AUTOSAR the consistency between meta model level and model level has to be en-

sured by applying the EAST-ADL2 profile within a modeling tool. This again restricts general

modeling elements to an EAST-ADL2 conform syntax, which can be verified by model an-

alyzers/checkers on the model level. Furthermore, the profile mechanism ensures that all

specifications/models are modeled by the same syntax.

EAST-ADL2 indeed provides a relationship mechanism to ensure continuity between artifacts,

as described further below in section 4.1.4. This can hold consistency between artifacts too.

However, this mechanism only supports developers to indicate dependencies between model

elements for their understanding and view/model integration (compare to section 2.3.3). The

mechanism only shows dependencies, it is not able to proof whether model elements are kept

consistent. Therefore applying the profile is the single explicit mechanism of EAST-ADL2 to

hold consistency between artifacts within a tool generally. Unlike AUTOSAR, which prescribes

certain requirements for tool functionality and modeling rules, the EAST-ADL2 meta model is

just intended to provide syntax elements, which can be used within any modeling tool. For this

reason EAST-ADL2 left consistency checks for artifacts to the individual features of modeling

tools. Therefore, in order to hold artifacts more consistently, EAST-ADL2 also should intro-

duce some modeling guide lines which ensure consistent naming, structuring, and modeling

between multiple developers.

Consistency between tools:

123

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

• Due to the wide-spread development, EAST-ADL2 artifacts or models also have to be ex-

changed between different tools, developers, and divisions just like AUTOSAR models. Un-

fortunately, EAST-ADL2 does not provide any specifications, requirements or guide lines for

the interaction between tools like AUTOSAR. In particular, EAST-ADL2 does not describe an

exchange format for models, as it is done by the Model Persistence Rules [14] of AUTOSAR,

see section 4.1.2. Because almost any modeling tool however provides its own import/export

mechanism, it is still possible to import or export EAST-ADL2 models on basis of the same

EAST-ADL2 profile. Because EAST-ADL does not make any instructions for the format, the

exchange format depends on the used tool, which may differ from party to party.

This represents a critical drawback for EAST-ADL2, because due to the non-specified ex-

change format any exchange format can be used. So it is probable that most of these formats

do not match, which hampers the exchange of artifacts and leads to expensive reworking, loss

of information, and inconsistencies.

Figure 4.29.: EAST-ADL2.0 Support, from [8]

Consistency between divisions:

• EAST-ADL2 provides, similar to AUTOSAR, a small package to support consistent matching

of models between divisions. This package, called “Support” is depicted in figure 4.29 and

shows commonality with the “AdminData” package of AUTOSAR in figure 4.8. The “Support”

package also enables to specify version information for individual so-called “ArchivedEntities”,

which mark instances of other EAST-ADL2 entities as elements for which a version manage-

ment will be established. Therefore it is possible to provide artifacts with version information,

before the “Configuration” meta class is able to gather version-controlled artifacts for one build

or configuration.

124

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

Unlike AUTOSARs’ “AdminData”, the “Support” package of EAST-ADL2 does not provide an-

notations for modifications of individual artifacts. Thus it is indeed possible to define version-

controlled configurations in order to ensure matching artifact versions by the means of EAST-

ADL2. But concerning modifications and a cross-division development, different parties rely

on the help of individual change or version management system, which may differ from party

to party.

All in all one can say that EAST-ADL2 does not support consistency efficiently. It would be advisable

define some obligatory consistency requirements or to standardize modeling rules and/or persis-

tence rules like in AUTOSAR. By the means of such standardization it could be ensured that all

parties handle consistency in the same manner in order to avoid individual solutions, which must be

adapted when information is exchanged.

Continuity & Traceability

Because one EAST-ADL2 system model could hold all artifacts of EAST-ADL2 or AUTOSAR, it can

be ensured that all necessary information are available for developers’ work. Just because EAST-

ADL2 introduces several abstraction levels to represent automotive architectures and in order to

support developers to orient oneself within this large set of artifacts and abstractions, EAST-ADL2

provides a mechanism to ensure continuity and traceability.

EAST-ADL2 supports continuity and traceability by a large set of relationships to interconnect ADL

entities, whereas each relationship possesses its own semantics. Figure 4.30 shows the meta model

excerpt for EAST-ADL2 relationships, which depicts five relationships:

• The “ADLDeriveReqt” relationship, which signifies a dependency relationship in-between two

sets of ADL requirements.

• The “ADLRealization” relationship, which signifies realization relationship in-between two sets

of model elements, one representing a specification (the supplier) and the other represents

an implementation of the latter (the client).

• The “ADLRefine” relationship, which signifies a dependency relationship in-between an ADL

requirement and an ADL entity, showing the relationship when a client ADL Entity refines the

supplier ADL requirement.

125

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

Figure 4.30.: EAST-ADL2.0 Relationship Modeling, from [8]

• The “ADLSatisfy” relationship, which signifies relationship in-between ADLRequirement and

satisfying ADL entity, showing the relationship when a satisfied supplier ADL Requirement is

satisfied by the client ADL entity or satisfied by the client AUTOSAR element.

• The “ADLVerify” relationship, which signifies a dependency relationship in-between an ADL

requirement and a V&V Case, showing the relationship when a client V&V Case verifies the

supplier ADL requirement.

All these relationships can be used either to interconnect ADL entities between abstraction levels or

to add or aggregate additional information. Therefore they represent a well-established mechanism

for view and model integration (compare to section 2.3.3) in order to ensure continuity between vari-

ous artifacts and abstractions.

126

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

For example, figure 2.10 shows the interplay between the EAST-ADL2 design level and AUTOSARs’

implementation level, realized by ADLRealization relationships. One can see that ADLFunctions

on design level may be interconnected with AUTOSAR Runnables of an application software com-

ponent(see section 4.1.3) on implementation level directly. Like here, also ADLFunctions may be

interconnected between design and analysis level or with features on vehicle level. However, not

only for ADLFunctions, Features or Runnables it is possible to interconnect them, but also for re-

quirements or variants it is possible to ensure continuity between different abstractions. Furthermore

by the means of relationships it is possible to trace back individual implementations to other abstrac-

tion levels and development processes phases. Also an incremental development is supported by

EAST-ADL2 relationships, because solutions need not to be specified from scratch. Instead of that,

information can be gathered on one abstraction level to represent rough overview about the archi-

tecture, before these information can be refined on the next abstraction level below.

In conclusion EAST-ADL2 provides the availability of all specifications concerning the system not

only on technical level. As not only the dependencies between artifact elements are prescribed by

the EAST-ADL2 meta model, but also the dependencies among abstraction levels are defined by

relationships clearly, AUTOSAR can be completed by non technical details using the EAST-ADL2 in

a continuous manner. By the means of additional EAST-ADL2 artifacts which explain the technical

design solutions, it is possible to understand individual design solutions of AUTOSAR better than

without EAST-ADL2. So, the drawback which was mentioned in section 4.1.2 concerning the missing

artifacts of AUTOSAR can be resolved by using the EAST-ADL2.

Integration of all disciplines

As mentioned in section 4.1.2, AUTOSAR misses disciplines from the levels before implementation

or beside the technical focus. However, even such levels, like requirements, analysis or design, are

provided by the EAST-ADL2 artifacts. A requirements engineer is supported by the feature modeling

package on vehicle level as well as by the requirements package. By the means of analysis and

design level it is possible to support engineers disciplines, which concern either software, hardware

or mechanics, on higher levels of abstraction too. Furthermore, engineers are supported to model a

global environment model, which concerns any level abstraction. By the means of such an environ-

ment model it is not only possible to specify the system itself, but also the external basic conditions

in which the system must be integrated.

127

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

But EAST-ADL2 also supports further disciplines: Firstly it provides means to support the discipline

of Validation and Verification by furnishing the means for planning, organizing and describing V&V

activities on a fairly abstract level, like mentioned in section 4.1.4. Secondly the variability package

supports product line engineers to describe different variants and differences among products and

product families. The advantage, which comes along with EAST-ADL2, is that V&V descriptions as

well as variability descriptions can be interconnected with the system or system components directly

via relationships within the model, as described within the last section.

However, although EAST-ADL2 supports a lot of disciplines, the EAST-ADL, like AUTOSAR, does

not support the discipline of an integrator explicitly but implicitly. Additional abstractions or views

enable integrators to get a better appreciation for the overall system, because integrators can leave

away individual details to analyze the overall structure more than technical details of a single compo-

nent. For this reason, virtual integration on implementation level, which is supported by AUTOSARs

technical view (see section 4.1.2), will be complemented by additional integratable views (compare

to view integration within section 2.3.3) as well as further possibilities for virtual integration on higher

levels of abstraction. Furthermore the continuity between all artifacts up until vehicle level, enables

integrators to understand why individual solutions were chosen. Because features/requirements or

ADLFunctions must be satisfied by system components on implementation level, an integrator is able

to understand the development process better which leads to the respective implemented technical

solution. Because abstractions of the entire system are available much earlier on analysis and de-

sign level than on implementation level, the early system overview enables integrators to prepare for

integration much earlier as well.

Maintenance of artifacts

EAST-ADL2 primarily supports the maintenance of artifacts like described before in section 4.1.4.

By the means of the support package, which is depicted in figure 4.29, it is possible to support ver-

sion management systems by version and configuration information, which can be annotated with

ADL artifacts. Moreover, the variability package of EAST-ADL2 supports maintenance of artifacts by

grouping system components in accordance with individual products and product lines. Thereby it

is possible to maintain these variants within one model and without using additional management

systems for maintaining product line specifications.

Because EAST-ADL models can be split into multiple files like AUTOSAR models, these files have

128

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

to be managed as well. Unfortunately EAST-ADL2 also provides no guide lines or means to support

the these kind of maintenance. There are no file structures prescribed and also changes remain on

the side of additional change and version management systems, which leads to individual solutions

and inconsistencies. For this reason, EAST-ADL should follow section 4.1.2 by defining recommen-

dations for change management and some file structure rules.

Assignment of roles and responsibilities

EAST-ADL2 also does not assign roles and responsibilities and leaves it to the respective division

how to apply EAST-ADL2. It is indeed possible to derive individual roles from the aligned V-model

and its respective artifacts, but there are no explicit guide lines given. For this reason, divisions can

apply EAST-ADL2 individually, which means an advantage because any division is able to integrate

the ADL into its own development process. On the other side it will lead to inconsistent processes

and role allocations, which lead to the same drawback like within AUTOSAR (compare to section

4.1.2). Therefore EAST-ADL2 should at least provide a framework of roles and responsibilities,

which can or should be applied by any division in order to avoid misunderstandings and forgotten

roles or responsibilities.

Conclusion EAST-ADL2 Support to enhance Basic Conditions

Figure 4.31.: EAST-ADL2 Support to enhance the basic conditions

In conclusion figure 4.31 summarizes all results concerning basic conditions of development, which

can be enhanced by EAST-ADL2. Thereby the arrows indicate how far AUTOSAR provides support

129

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

for a current critical point. Unfortunately, there is also no measurement, which measures enhance-

ments exactly. For this reason the grade of enhancement was assessed subjectively on the basis on

variety and the helpful character which is provided by EAST-ADL2s’ specifications.

In comparison with AUTOSAR, see figure 4.10, also EAST-ADL2 supports completeness and clear-

ness for artifacts very well, while roles and responsibilities are not supported at all. Other points

are also supported by EAST-ADL2 in the same intensity like AUTOSAR. Thereby all points are not

supported redundantly, but according to the respective concerns of each standard. Only one critical

point concerning the consistency of artifacts was left open from EAST-ADL2. The red arrow at this

point indicates, that there is need for strong action in order to enhance consistency support not only

for AUTOSAR artifacts, but also for EAST-ADL2 artifacts. Furthermore, such as AUTOSAR, EAST-

ADL2 also should extend the yellow or orange colored points in order to simplify integration further

more.

So, also EAST-ADL2 should establish guide lines or best practices concerning amongst others the

aforementioned six points. Such rules should describe the best usage of EAST-ADL2 concerning

the aforementioned points and its language elements or artifacts in general. Although simple rules

are not a panacea, it would be a first step into enhancement.

4.1.5. Concrete Inconsistencies & EAST-ADL2.0

Beside reasons for inconsistencies, there are also some concrete inconsistencies (compare to sec-

tion 2.4.2), which may be avoided by using existing EAST-ADL2 concepts too. If the EAST-ADL2

standard would be applied generally, the common base could avoid most of the problems, faults, or

failures. On the basis of the points, which were identified in section 3.2.2, the following will show

how far EAST-ADL2 is able to avoid some concrete inconsistencies, which were criticized within the

survey.

Static semantics of interfaces

EAST-ADL2 language elements to describe static semantics of Ports & Interfaces:

The EAST-ADL2 only provides a small set of syntax elements to describe the static semantics of

interfaces. Each ADLFunction may provide “ADLClientServerPorts” and/or “ADLFlowPorts”, which

are interconnected via “ADLConnectorPrototypes”, as depicted in figure 4.28.

130

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

ADLClientServerPort metaclass is an abstract port for client-server interaction, where an ADLClient-

Port represents the client side and an ADLServerPort represent the server side in a client-server

interaction.

On the other side “ADLFlowPorts”, which can be used for sender-receiver interaction, are interaction

points through which input and/or output of items such as data, material or energy may flow. There

are three meta classes derived from it: The ADLInFlowPort metaclass, which denotes a port that

requires one data. The ADLOutFlowPort metaclass, which is a port that provides one data. And the

ADLInOutFlowPort metaclass is a port with both provided and required interfaces.

ADL ports allow to define the connection points between components/function by providing infor-

mation about the applied communication pattern (Client/Server or Sender/Receiver) at the same

time. However, further syntactic or static details are not supported by the EAST-ADL2 directly, but

by the additional means of AUTOSAR, these information can be refined on implementation level of

EAST-ADL2.

Dynamic semantics of interfaces

EAST-ADL2 language elements to describe dynamic semantics of Ports & Interfaces:

Concerning the dynamic semantics of interfaces, EAST-ADL2 primarily provides a behavior pack-

age in order to describe the dynamics of the system or system components. On the one hand this

package enables the definition of use cases by the means of “ADLUseCases”. ADLUseCase, which

purpose is to define expected characteristics in a user-oriented manner, specifies a set of actions

that the associated entity performs. On the other side the package contains a so-called “ADLBehav-

ior” meta class, which can be aggregated by an ADLFunction like depicted in figure 4.32. Because

“ADLBehavior” is an abstract meta class, there are two further concrete behavior meta classes for

detailing the ADLFunctions’ behavior:

The “NativeBehavior” is a specialization of ADLBehavior and the UML2 StateMachine. It is a place-

holder for a behavioral definition that is recognized by EAST-ADL2 compliant tools.

The ExternalBehavior is a specialization of ADLBehavior too. It represents behavior defined in an

external tool, such as Simulink or Statemate. However, it is merely a placeholder with the purpose

of containing information about and links to the external behavioral model.

131

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

Figure 4.32.: EAST-ADL2.0 Behavior Constructs, from [8]

Additionally, in order to refine the dynamic specification of functions, EAST-ADL provides the defini-

tion of timing requirements and triggers.

Timing requirements, like depicted in figure 4.33, are for defining requirement on end-to-end delays,

periods and synchrony. The figure shows that timing requirements may concern individual quality

requirements, which is indicated by the means of the quality requirement type. Furthermore each

timing requirement may specify some timing restrictions, which specify bounds on system timing

attributes, i.e. end-to-end delays, periods, etc. Such timing requirements can be refined in order to

define synchronization between ports or to define some delay segments which constrain the delay

between two instants of data creation. Delay segments are used for defining requirements on end-

to-end delays and timing chain segments.

132

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

Figure 4.33.: EAST-ADL2.0 Timing Requirements, from [9]

Figure 4.34.: EAST-ADL2.0 Data Types, from [9]

The trigger class contains the trigger parameters necessary to define the execution of the containing

ADLFunctionType, as depicted in figure 4.27. The containing ADLFunction may be trigged according

to the attributes of the Trigger class. By the means of the trigPolicy attribute of the trigger class is

possible to define whether communication is event or time based. For example, such trigger policies

enable to specify whether functions are called periodic (trigPolicy=TIME), or whether functions are

event-triggered (trigPolicy=EVENT). On the other side, trigger specify OCL expressions that allow

release of the ADLFunctionType only if it evaluates to TRUE. However, OCL is a standardized lan-

guage, which is not aligned with the automotive domain, in order to define constraints. Therefore it

represents a good enhancement in comparison with AUTOSAR, but it can not be assumed that all

necessary restrictions can be expressed via OCL.

133

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

EAST-ADL2 also provides a good basis for data type semantics concerning concerning ADLFlow-

Ports and sender-receiver interaction. By the means of the meta classes ADLDesignDataTypes,

ADLFloat and ADLDouble, which are depicted in figure 4.34, it is possible to use predefined data

types. In order to specify the semantics of data types, the ADLDesignDataType aggregates some

attributes for detailing the data type. Such data type information can be used and refined by AU-

TOSARs syntax elements on implementation level.

Benefits from EAST-ADL2s’ static and dynamic semantics:

The last section shows that on dynamic level EAST-ADL2 provides some syntax elements to sub-

stantiate further information, which complement knowledge on implementation level to avoid more

inconsistencies than by using AUTOSAR exclusively. What kinds of inconsistencies are able to be

avoided by these dynamic description elements, is described in the following:

• Semantical inconsistencies between specification can be avoided by the means of the stan-

dardized meta model of EAST-ADL2, as in AUTOSAR. As all available syntax elements are

defined clearly, the meaning of elements will not be misinterpreted.

• The avoidance of application based inconsistencies concerning states and state relations may

by supported by the usage of ADLFunctions’ triggers and their respective triggerConditions.

By the means of these triggerConditions it is possible to define conditions for component

states via OCL. Only if an OCL constraint can be evaluated to TRUE, an ADLFunction will be

executed. As OCL also provides pre- and postconditions, it is also possible to define such

conditions for function on analysis and design level. Beside that, the EAST-ADL2 data type

specification also allows to define physical data type ranges in order to restrict allowed ranges

for interaction of two or more components.

• Pragmatical inconsistencies concerning the absolute and relative timing behavior of software

or hardware components can be specified by the means of timing requirements. The com-

munication pattern can also be predefined by the semantics of EAST-ADL2 ports. Moreover,

concurrency behavior of components and access restriction can be defined by some OCL

constraints rudimentarily.

• EAST-ADL2 also just provides textual descriptions to clarify individual meanings of compo-

nents and data. This means a critical drawback, as native text again may lead to misunder-

standings and misinterpretations, like in AUTOSAR.

Table 4.4 summarizes these results. The table shows for each inconsistency (categorized in section

2.4.2), which can be avoided, the respective EAST-ADL2 meta class, which mainly is responsible for

134

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

avoidance possible no special support

Syntactic Inconsistencies
inconsistent data exchange for-
mat

X

inconsistent interfaces X
inconsistent ports X
inconsistent signatures X
inconsistent data names X

Semantical Inconsistencies
numerical inconsistencies X
language inconsistencies meta model
reference system inconsisten-
cies

X

Application-based Inconsis-
tencies
violation of states partly by OCL triggerCondi-

tions
violation of relations between
states and parameter

partly by OCL triggerCondi-
tions

restricted data ranges ADLDesignDataType

Pragmatic Inconsistencies
concurrency partly by OCL triggerCondi-

tions
access restriction on extern re-
sources

partly by OCL triggerCondi-
tions

timing requirements on hard-
ware

ADLRequirement

absolute timing requirements TimingRequirements
relative timing requirements TimingRequirements
communication pattern ADLFlowPort, ADL-

ClientServerPort

Table 4.4.: Inconsistencies avoided by EAST-ADL2s’ dynamic semantics

135

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

avoiding the inconsistency.

4.1.6. Conclusion

The last five sections have shown that EAST-ADL2 and AUTOSAR are able to enhance the actual

situation of automotive software engineering in many respects.

By the means of the standardized character of both specifications the basic condition of development

can be enhanced and some concrete inconsistencies can be be avoided. Like mentioned above, the

meta models, their detailed documentations, and their respective methodology are able to ensure

that specifications are defined completely and clearly as well. While meta model and methodol-

ogy ensure that no artifact or specification element will be forgotten, the detailed documentations

will avoid misunderstandings or misinterpretations concerning syntax elements, which are used for

specification of concrete automotive systems.

Moreover, both standards enable structuring of the entire system and its components well. Packag-

ing mechanisms and building hierarchies enable developers to structure components and artifacts,

whereas all components and artifacts are interconnected via relationships. Thereby it is possible to

trace correlations within one single model, which can be created as result of multiple integratable

models. EAST-ADL2 even provides relationships by which both standards can be integrated into

a whole, so that all advantages, which come along with one respective standard, can be brought

together. Because all artifacts or components are able to be integrated into a whole, all information

can be made available for developers. However, information are not only available, relationships

between all artifacts allow to contextualize information. By the means of relationships information

of interconnected components as well as information of other abstraction levels are available and

interconnected, that it is possible to switch between all information continuously. All these benefits,

which come along with the complete availability of interconnected information, will avoid missing of

information as well as misunderstandings, which can be prevented because correlations are pre-

sented superiorly.

Furthermore, while EAST-ADL2 only prescribes the meta model or UML2 profile to handle consis-

tency between specified artifacts, AUTOSAR even enhances consistency in addition to the meta

model. By the means of predefined requirements and additional specification documents, a consis-

tency mechanism, which should be hold by any party, is defined in order to ensure that all parties

do handle consistency between artifacts and tools in the same manner. In addition to that, both

136

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

standards indeed provide a rudimentary consistency support for different divisions and parties, but

further standardization will be necessary to prevent individual solutions concerning, for example,

mismatching file structures, management of artifact changes, or the cross-divisional alignment of

baselines or releases.

Different disciplines are supported by EAST-ADL2 and AUTOSAR as well. Both standards together

enable any kind of software or hardware engineer to specify components on different levels of ab-

straction. However, also requirements, testing, or variability disciplines are integrated and are able

interact with any other discipline via “one” standard. Especially integration is well-supported by these

two standards implicitly. As models provide an overview about all abstraction levels, details, and/or

disciplines, an integrator is supported by a maximum possible set of information, which are neces-

sary to understand the entire system for integration.

But though EAST-ADL2 and AUTOSAR support as many disciplines, they do not provide any frame-

work or guide lines for prescribing roles or responsibilities of disciplines or developers within a devel-

opment process. On the one hand this enables each division to integrate both standards into existing

structures without great adaptations. On the other hand, due to that lack, each division will distribute

roles and responsibilities in an individual manner, so that inconsistencies between divisions and ne-

glected responsibilities are preassigned. For this reason it would be advisable at least to provide

a framework for this concerns. Because such a framework is currently under development, as de-

scribed in section 2.3.4, the results and experiences from that project should be awaited to make

detailed statements or recommendations.

All these benefits, which come along with EAST-ADL2 and AUTOSAR, enhance the basic conditions

which were criticized from interviewees in the survey, like described in chapter 3. EAST-ADL2 in

combination with AUTOSAR provide sufficient means to enhance the actual development situation.

This situation is responsible for a lot of reasons (compare to section 2.4.1), which cause inconsis-

tencies between specifications and/or codes hampering a later integration. By enhancing the basic

conditions, multiple reasons for inconsistencies can be avoided before a project start. Although fur-

ther standardization of additional guide lines or best practices, which would blow the scope of this

thesis, could enhance the basic conditions further more. The two standards represent a better basis

for development in comparison with todays’ applied techniques.

However, not only the basic conditions themselves are enhanced by AUTOSAR and EAST-ADL2.

Also concrete inconsistencies on code level can be avoided before code is available. Due to the

137

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

detailed specifications on analysis, design, or implementation level, components and their static or

dynamic behavior are available much earlier in the development. Thus the components can be

checked against each other for inconsistencies already on these levels, like described in the section

4.1.3(Static/Dynamic semantics of AUTOSAR interfaces) and section 4.1.5(Static/Dynamic seman-

tics of EAST-ADL2 interfaces). Because individual inconsistencies can be recognized on an earlier

stage of development, there are not as many inconsistencies to solve when components have to be

integrated on code level.

Table 4.5 as well as appendix D summarize these results by providing a distinction between AU-

TOSAR and EAST-ADL2 and the part, which is contributed by the respective standard to enhance

the individual basic conditions or to avoid inconsistencies. The table shows, except for a few excep-

tions, that EAST-ADL2 and AUTOSAR provide means to avoid reasons for inconsistencies as well

as inconsistencies themselves in equal shares. However, individual drawbacks still remain.

In order to clarify the meaning of individual components and model elements on meta level M1,

EAST-ADL2 as well as AUTOSAR just provides textual descriptions, which can be annotated with

the respective element. Thereby it is indeed possible to support other developers’ understanding

of such an element, but due to the non-standardized textual character misunderstandings, misinter-

pretations, or missing information can not be avoided. Furthermore, even if developers are able to

understand native text, machines are not. Because native text mostly contains implicit knowledge

about components, which may be necessary for integration too, such information get lost presently

for automating. For this reason the following section will introduce a possibility to standardize such

textual descriptions in order to avoid misunderstandings and to enable using this kind of information

also for automating.

4.2. Extension of AUTOSAR and EAST-ADL2 by Semantics

The last sections have identified three main points, which are not or only insufficient supported by

language elements and specifications of AUTOSAR and EAST-ADL2:

• A missing standardized common development process or methodology, which prescribes

amongst others roles and responsibilities

• Missing language elements for detailing the timing behavior or other dynamics of software

components

138

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

Enhancement from
AUTOSAR

Enhancement from
EAST-ADL2

Supports avoidance of:

Enhanced Basic Conditions

Completeness & Clearness:

3 3

Misunderstandings,
Inconsistent Processes

Consistency:

3 0

Loss of Information

Continuity&Traceability:

2 2

Missing Information, Mis-
understandings, Lacking
Maintenance

Integration of all disciplines:

2 2

Misunderstandings

Maintenance of artifacts

1 1

Lacking maintenance of
artifacts

Assignment of roles and re-
sponsibilities 0 0

Avoidance of concrete Inconsis-
tencies

Static semantics of interfaces

3 0

concrete inconsistencies:
see table 4.2

Dynamic semantics of inter-
faces 2 1

concrete inconsistencies:
see table 4.3 and table
4.4

Table 4.5.: Benefits from EAST-ADL2 and AUTOSAR:(0=insufficient; 1=partly; 2=sufficient; 3=good)

139

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

• Missing language elements for detailing the semantical meaning and correlation of concepts

in a standardized manner, especially on meta level M1

But as already mentioned, currently there is one project, which develops a development process

for integration of basic software modules (compare to section 2.3.4), while another project called

TIMMO (compare to section 3.1.2), standardizes a language for describing the timing behavior of

software components in more detail. For this reason and in order to expect the results and expe-

riences of these two projects, the following section presents an approach for detailing semantical

expressiveness of AUTOSAR and EAST-ADL2.

Therefore section 4.2.1 and 4.2.2 will explain the importance of semantics and what semantics mean

in this context. Afterwards, section 4.2.3 describes language elements for describing the semantics

by the means of a meta model, before section 4.2.4 sketches a concrete application of that meta

model and the benefits, which come along with it.

4.2.1. Separation UnSCom from AUTOSAR and EAST-ADL2

Figure 4.35.: UnSCom Component Description: Overview

In comparison with EAST-ADL2 and AUTOSAR, also the UnSCom approach [50] (another compo-

nent description framework which was described in section 2.5.2) provides a meta model to de-

scribe different aspects of (software) components. Thereby UnSCom provides five different levels

(or pages, a term borrowed from UDDI [47]), which are called the white pages, yellow pages, blue

pages, green pages, and gray pages. These levels can be used for describing components on dif-

ferent views and abstraction levels, which are subdivided into a total of eleven individual concerns,

140

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

as depicted in figure 4.35. However, unlike EAST-ADL2 and AUTOSAR, UnSCom does not intend

to provide a meta model for describing components of the automotive domain. Instead UnSComs’

meta model is geared to the description of services or application software components for busi-

ness processes. Nevertheless, even if some language elements and attributes differ between these

two domains, also UnSCom has to describe components, so they are able to be integrated into an

entire architecture. Therefore UnSCom should describe concerns, which are necessary for the un-

derstanding of components as well as for their integration, similar to AUTOSAR and EAST-ADL2 and

vice versa. For this reason the following listing will contrast concerns of UnSCom with concerns,

which can be described by AUTOSAR and EAST-ADL2. This brief comparison will show whether

both sides provide similar information to enable integration or not in order to get an evidence for the

completeness of AUTOSAR and EAST-ADL2.

• Preface(white pages): White pages are used within UnSCom to describe general administra-

tive information of components. For this reason the UnSCom meta model provides language

elements to specify release, baseline and configuration information of components as well

as contact information, which can be used for communication between developers, which are

responsible for the respective component.

However, as described in the sections above, even such information are also provided by, for

example, the AUTOSAR::AdminData package (see figure 4.8) and/or the EAST-ADL2::Support

package (see figure 4.29)

• Classing (yellow pages): The yellow pages of UnSCom can be used for a feature oriented

classification of components. This classification is used to describe what kind of features a

component represents. Thereby it will be possible to exchange components, which are realiz-

ing the same or similar features.

This kind of classification is also provided by the EAST-ADL2 VehicleFeatureModel (VFM),

which was mentioned in section 4.1.4.

By then, only general component information are given. In comparison with the sections above,

these kinds of information can be used for enhancing individual basic conditions of development. By

contrast the following will show some more detailed component information, which are provided by

UnSCom in order to describe components on three different abstraction levels (functional, logical,

and physical), which are split into three kinds of views (static, operational, and dynamic). This

fragmentation is also depicted in figure 4.35.

141

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

• Physical level (gray pages): UnSComs’ gray pages are used to describe qualitative prop-

erties of components. Thereby individual requirements concerning the static view of com-

ponents (e.g. usability, portability, and maintainability) are described. Furthermore, while an

operational view is used to detail th components’ functionality by some requirements, the dy-

namic view describes requirements, like performance, reliability, and efficiency of components,

in order to clarify the components’ dynamic behavior.

On the other hand, the sections 4.1.4 and 4.1.5 have shown, that EAST-ADL2 provides lan-

guage elements to describe such requirements too. AUTOSAR also provides some require-

ments by the means of implementation descriptions, like mentioned in section 4.1.2 (see figure

4.3).

• Logical level (green pages): The green pages of UnSCom abstract the respective views

of the physical level, which was described in the last bullet, in order to describe components

on a logical level. This level specifies operation, interfaces, and data types of a component

within its static view. Beside that the operational view can be used to specify assertions, like

pre-, postconditions or invariants for operations and interfaces, which are specified within the

static view. Furthermore the dynamic view provides means to specify interaction protocols, by

which components are able to communicate. For this reason the dynamic view on logical level

provides states and transitions in order to define some kind of deterministic finite automate,

which prescribes allowed interaction sequences between components.

These kinds of information are also provided by EAST-ADL2 in combination with AUTOSAR.

While AUTOSAR provides more language elements for describing operation, interfaces, and

data types like described in section 4.1.3 and in section 4.1.3, EAST-ADL2 provides possibili-

ties to describe pre-, postconditions or invariants, by the means of triggerConditions and OCL,

as described in section 4.1.5. In addition, these triggerConditions as well as AUTOSARs’ Mod-

eDeclarations, which were also discussed in section 4.1.3, can be used for describing allowed

transitions between different component states. This means, that AUTOSAR and EAST-ADL2

are able to define some kind of interaction protocol too.

• Functional level (blue pages): The blue pages abstract the logical level of UnSCom. On this

level, UnSCom provides language elements to specify a system of concepts, which clarifies

the semantics of concepts as well as their relationships to other concepts. These concepts

concern all information objects (data), functions, and processes, which are necessary for data

142

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

processing realized by the logical and physical level of UnSCom. To accomplish that, Un-

SComs’ functional level provides a meta model too. This meta model is able to replace textual

descriptions in form of native text, which normally are used to describe the concepts and

meanings of elements, by a predefined meta model, which is able to represent an adapted

form of native text in a standardized manner. Due to the standardized character of the meta

model, these kinds of information also can be used and interpreted automatically.

By contrast, EAST-ADL2 and AUTOSAR describe such concepts from a software architecture

point of view exclusively. Other aspects, which concern the conceptual understanding of data,

functions, or processes or other additional information on model level M1, are annotated in

form of native text, which cannot be interpreted automatically.

This listing has shown, that EAST-ADL2 and AUTOSAR provide almost the same information and

abstraction levels like another component description framework called UnSCom. AUTOSAR and

EAST-ADL2 furthermore provide additional standard specifications or guide lines, which can be used

for enhancing the basic conditions of development more than with UnSCom. On the other hand Un-

SComs’ functional level provides information, which are not provided by any language element of

EAST-ADL2 or AUTOSAR. This particularly concerns the textual descriptions, which are used by

EAST-ADL2 and AUTOSAR to detail semantics and conceptual properties of an model element on

meta level M1, as described in section 4.1.6. Therefore the missing of such a description technique,

which is provided by UnSCom, has been pegged as a critical drawback.

In order to get a better understanding for this semantical drawback and in order to show the limita-

tions of AUTOSAR and EAST-ADL2, section 4.2.2 exemplifies a situation, where neither AUTOSAR

nor EAST-ADL2 are able to describe necessary information in a standardized manner. Afterward,

section 4.2.3 introduces a meta model of concepts, which is able to complete EAST-ADL2 and AU-

TOSAR by standardizing these semantical information. By the means of that meta model section

4.2.4 demonstrates how to complement the example of section 4.2.2 with missing semantical infor-

mation.

143

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

Figure 4.36.: Semantical Problem (schematic)

4.2.2. Demonstration and Concretion of AUTOSARs’ and EAST-ADL2s’

semantical drawback

In order to demonstrate the semantical drawback of AUTOSAR and EAST-ADL2, an example was

taken from the memory management of AUTOSAR (compare to figure 4.14). First of all figure 4.36

shows two levels. A technical level, which stands for all existing AUTOSAR descriptions, and a

semantical level. The technical level depicts the NVRAM Manger and the Memory Abstraction In-

terface in the context of a “Write” operation, which copies data from one memory block (the RAM

block) to another memory block (the NV bock). Therefore the NVRAM manager, which provides

other modules with the NvM_WriteBlock operation, calls the MemIf_Write operation of the Memory

Abstraction Interface, which abstracts from different underlying memory drivers and storage medias

as depicted in figure 4.17. However, AUTOSAR specifications of the NVRAM Manger [24] and the

Memory Abstraction Interface [23] only prescribe APIs and individual dynamics of NvM_WriteBlock

and MemIf_Write by the means of the AUTOSAR meta model and additional sequence diagrams.

By contrast, many semantical information and correlations between these two operations and their

parameters are expressed in form of native text distributed across multiple documents.

For integration it is important to understand that NvM_WriteBlock needs two parameters, which are

144

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

passed to MemIf_Write. A NvM_SrcPtr, which identifies the RAM block from which the data are

read from, and a BlockId, which identifies a NV block to which the data are written. Furthermore,

the Memory Abstraction Interface operation MemIf_Write basically provides the same functionality,

but the operation itself and its parameters are renamed according to Memory Abstraction Interface

conventions. For this reason it is not only necessary to understand the sequence of calls, but also

the correlation between parameters of the NVM (NvM_SrcPtr, BlockId) and the MemIf (DeviceIndex,

BlockNumber, DataPtr). There it is indeed possible to check whether data types of individual pa-

rameters between two operation calls match, but it must also be ensured that operations use these

parameters correctly. However these kinds of information are not expressed by the means of AU-

TOSAR or EAST-ADL2 in a standardized manner. Both standards are not able to express for what

individual concepts are used for and how, without using textual descriptions.

This concerns the semantical level, which is depicted in figure 4.36. On this level, firstly there are

multiple disconnected concepts, which are in relationship with other concepts anywise. Human inte-

grators indeed are able to read multiple specifications in order to understand the conceptual interplay

between the two components NVRAM manager and Memory Abstraction Interface. While machines

are not able to interpret textual information for an automated integration at all, human integrators

may also misinterpret them, whereby inconsistencies are preassigned like mentioned in the sections

above.

Especially if multiple operations provide similar or equal signatures, it could be difficult to decide

which operations should be connected.

For example: Figure 4.36 also shows two additional operations of the memory management on the

semantical level. While NvM_ReadBlock operation and the MemIf_Read operation specify almost

the same signatures, like NvM_WriteBlock and MemIf_Write, in terms of their parameters, here

the parameters are used for a “Read” operation. An integrator may posses implicit knowledge,

which enables him to decide, that Write and Read operations have to be handled variably. However,

generally based on simple syntactical information, which is given by the AUTOSAR and EAST-ADL2

meta model, it would be possible to interconnect a “Write” operation of the NVRAM manager with a

“Read” operation of the Memory Abstraction Interface.

This brief example of the AUTOSAR memory management sketches some problems concerning the

integration of Basic Software components, like described in section 2.3.2. Because each AUTOSAR

Basic software module is described by its own standardized specification completely and exactly, it

does not seem to be necessary to standardize the textual descriptions further more. Unfortunately,

145

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

standardized specifications only are available for basic software and not for application software.

Therefore developers may introduce their own concepts, which are not standardized and described

inside of common AUTOSAR documents like for basic software modules. Especially relationships

between multiple concepts and correlations among similar concepts, which can be used for reuse or

exchange of concepts between different components, remain obscurely.

In order to describe such information in a standardized manner, the following section 4.2.3 will show

a meta model for describing conceptual relationships, before section 4.2.4 exemplifies its usage to

express the above mentioned semantical information.

4.2.3. Linguistic Meta Model and Benefits

Generally, the new approach will provide means to describe semantics and conceptual properties

for model elements on meta level M1 without using the native text. For this reason a semi formal

way, which is realized by the means of a meta model too, was chosen. This meta model either

can be integrated into AUTOSAR and/or EAST-ADL2 by the means of a meta model extension of

the respective meta model, or via references. Such references would reference from AUTOSAR or

EAST-ADL2 language elements to the external description like realized, for example, by an EAST-

ADL2 ExternalBehavior (see section 4.1.5 or figure 2.2.2).

However, this thesis primarily does not purpose to prescribe how and whether the new approach

will be integrated into the existing standards. Instead, the following section describes the language

elements, which can be used to specify the desired information, and their usage as well. In order not

to reinvent the wheel and because the functional level of UnSCom even provides a meta model for

the desired concerns, the new approach of this thesis will (re-)use an adapted version of UnSComs’

functional level meta model.

Meta model for describing concepts and semantics: Overview

An overview on the new meta model and its language elements is depicted in figure 4.37. There the

central class, which has to be detailed by other language elements, is the component. A component

could be realized, for example, by a software component template (compare to section 2.1.2), an

EAST-ADL2 entity or any other component description. The figure shows, that a component asso-

ciates a lexicon as some kind of terminology, which aggregates all concepts, which are used for this

component. Concepts can either be information objects, functions, or processes. While information

146

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

Figure 4.37.: New Concepts: Overview

objects are describing things in general, functions describe activities, which transform the informa-

tion objects, and processes describe sequences of multiple functions.

Beside the lexicon, a component also defines a StatementCollection, which is used to relate a con-

cept to other concepts of the lexicon. This is realized based on the meta model, which prescribes

allowed relationships between information objects (see section 4.2.3), functions (see section 4.2.3),

and processes (see section 4.2.3).

After defining all component concepts, it is possible to detail the meaning of a concept itself by

the means of some application-independent statements. For this reason the abstract class Con-

cept primarily provides short- and longDefinition attributes in the form of native text. Additionally

these two attributes can also be expressed by the means of the standardized meta model grammar

via the “Definiens-Definiendum” association. Thereby the concept is related to other component(-

independent) concepts via relationships like above. This means that it is possible to replace or com-

plement native text as well. Therefore, according to native text, an information object can be seen

147

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

as substantive, while functions are used to describe verbs in a linguistic context. Like described in

section 4.2.3, information objects and functions can also be used to express statements in a familiar

linguistic word order (Subject (information obejct) - Predicate (function) - Object (information object))

by the means of the meta model. After that, processes can be used to bring functions or statements

into a chronological ordered sequence.

For example, a system of concepts may be composed of the following concepts: Five information

objects called “Pointer”, “NvM_SrcPtr”, “DataBufferPtr”, “Data”, and “RAMData” as well as one Func-

tion called “point to”. By the means of theses concepts, it is now possible to define statements via

relationships like:

• «A “Pointer” can be a “NvM_SrcPtr” or a “DataBufferPtr”.»

• «A “Pointer” “points to” “Data”.»

• «“Data” can be “RAMData”.»

After that, it is possible to combine all statements, that the following complex statement can be

expressed:

• «A “Pointer”, which can be a “NvM_SrcPtr” or a “DataBufferPtr”, “points to” “Data”, which can

be “RAMData"”.»

Furthermore, a concept can also define some priorities, whereas a particular priority depends on

the context within the concept used. For this reason, an individual context, which also defines an

priority dependent on the application field of a context, defines some priorities in order to aggregate

concepts of the same priority within one certain context. These kind of information can be used

for runtime optimizations in two ways. Firstly, contexts and priorities can be used to differ between

functions in order to indicate whether a function is relevant within an individual context or not.

For example: a specialized function “read Data” is defined in the context of “P&P_Safety_Systems”,

while another function “read Data” is defined in the context of “Body”. As safety has a higher priority

than body definitely, the operating system can decide for which kind of function it will provide more

resources.

Secondly, within the same context it is also possible to differ between priorities.

For example: the two function “read Data” and “write Data” could posses the same context. However,

by the means of additional concept priority information, developers can define that “read Data” must

have a higher priority than “write Data”. This means, that an operating system can also specify that

148

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

a task, which controls “read Data”, is prioritized more than a task, which controls “read Data”.

Meta model for Information Objects

Figure 4.38.: New Concepts: InformationObject

Figure 4.38 depicts the concept of information object and allowed relationships between multiple in-

formation objects. The meta model defines five different relationships to clarify correlations between

information objects. The following listing will detail the meaning of these relationships and differences

between them.

• InclusionOfInformationObject: Conceptual hierarchies between information objects are rep-

resented by inclusion relationships. Thereby an inclusion assigns at least one specialized in-

formation object to exactly one general information object. The specializations can be seen

as general information objects with additional more detailed information, which are intercon-

nected via the logical operation “XOR”(exclusive or).

Example:

«A “logical block number” can be a “BlockNumber” or a “BlockId”».

Furthermore, the kind attribute of the inclusion relationship indicates whether the relationships

builds a partition or not. In the case that an partition is build, the “kind” attribute, whose default

is “Partial”, is “Complete”.

149

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

Example:

While the sentence «A “MemoryDriver” can be a “FlashDriver” or a “EEPROM Driver”.» does

not build a partition (the kind attribut is “Partial”), the sentence «A “logical block number” can

be a “BlockNumber” or a “BlockId”». build a partition (the kind attribut is “Complete”).

• AttributeOfInformationObject: Attribute relationships describe essential constituent proper-

ties of information objects. The attributes are used to describe individual properties of their

AttributeOwner.

Example: «A “MemoryDriver” has a “DeviceIndex” and “Name”.»

In the case that an information object is specified by more than one attribute, the attributes are

linked by a logical “AND”. In addition, by the means of the Illustration meta class (see figure

4.37) it is further possible to define individual parameter value for an attribute or concepts in

general. For example: “A date is a DateTime measured in days” or “A name is a String”.

• AggregationOfInformationObject: An Aggregation is used to express, that values of one or

more concepts are an integral part of another concept. Unlike inclusion relationships, the part

concepts can not be seen as special case of the Generalization. Unlike attributes, the part

concepts are stand-alone concepts describing the properties of a concept.

Example:

«A “MemoryStack” is composed of a “Memoryservice”, a “Memory Hardware Abstraction”,

and “Memory Driver”.

• ConnectionOfInformationObject: A special kind of Whole-Part relationships are concept

relationships, whose relationships lead to new concepts. For this reason the relationship

assigns at least two Constituents, which build together the Whole to a Synthesis.

Example:

«A “logical block number” is a correlation of “BlockIdentifier” and a “data index”.

• AssociationOfInformationObject: The AssociationOfInformationObject relationship, can be

used if other relationships are not able to express the desired relation, or if relations between

information object can not yet be clarified at a certain point of development. It is a form

of compromise in order to represent basic relationships, which should not be used if other

relationships are more suitable to express the relation.

150

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

Figure 4.39.: New Concepts: Function

Meta model for Functions

Figure 4.39 depicts relationships, which can be used to refine functions by the means of aggrega-

tions and inclusions step by step. Beside these two relationships, the AttributeOfFunction relation-

ship assigns information objects to functions in order to describe characteristical properties of the

function.

• InclusionOfFunction: Like information objects, also functions can be specialized via Inclu-

sionOfFunction relationships. This can be used if functions can be summarized into a general

class of functionality.

Example:

«”MemIf_Write” executes either “EE_Write” or “Fee_Write”. (This statement does not build a

partition, because there are more functions, which can be used by the Memory Abstraction

Interface to store data into other kinds of memories than Flash or EEPROM. For this reason

the kind attribute has to be “Partial” in that case.)

• AggreagationOfFunction: An AggregationOfFunctions aggregates functions, which are nec-

essary to accomplish one single job. Like AggregationOfInformationObject, the aggregation

here relates several Parts to one Whole.

Example: «A “Write” Function executes of “NvM_WriteBlock” and “MemIf_Write”»

151

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

• AttributeOfFunction: Generally, there are three characteristcal properties, which can be as-

signed to a function: The Subject, which accomplishes the function, the Object which is con-

cerned by the function indirectly or directly, and the situation, which describes the context dur-

ing execution by the the means of states before and after execution. For this reason the meta

model provides an additional “attributeCase” for attribute associations, which assign different

properties/information objects to exactly one function according to their respective meaning

in the context of that function. Thereby the attributeCase indicates whether an information

object accomplishes the function (Subject), is used for the function directly (Object), supports

the function indirectly (instrument), or result from the function (Result). The situation, within

the function is executed, is described by conditions, which are aggregated by the function

concept, in combination with the conceptContext. The conditions are used to describe pre-,

postconditions, or invariants and can described by the means of OCL or other logical formulas

in form of Strings.

Example:

«The “NVRAM”(Subject) does “MemIf_Write”(Function) by the means of a “NvM_SrcPtr”(Instrument),

a “DeviceIndex”(Instrument), and a “BlockId”(Instrument).» or «A “Pointer”(Subject) “points

to”(Function) “Data”(Object).»

Meta model for Processes

Figure 4.40.: New Concepts: Process

152

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

Interactions, which define chronological ordered application flows and causal dependencies of func-

tions (workflow), can be described by language elements, which are depicted in figure 4.40.

The central language element here is the Process. A process attends to exactly one ProcessObject

by executing at least two ProcessElements. The two obligatory ProcessElements, which must be

part of any process, are a StartActivity as entry point and an EndActivity as exit point of the process.

Between entry and exit point there can be Activities, which are associated with exactly one function,

process interfaces, which serve as link between two independently defined processes, and empty

activities. Thereby activities have a triggering event, whose occurrence will execute the associated

function. Such an event can be a TimingUntil event, which indicates that a function waits for a

certain point in time, a TimingFor event, which indicates that a function waits for a certain period, or

an Message event, which indicates that a function waits for the arrival of a certain message.

Additionally, in order to describe workflows process elements must be related to other process el-

ements by the means of the Connection relationships, which can express one of the following four

dependencies:

Figure 4.41.: Ordered Sequence

OrderedSequence: An OrderedSequence relationship, compare to figure 4.41, which indicates

that an activity B must be executed after an activity A has finished.

Figure 4.42.: Parallel Execution

ParallelExecution: An ParallelExecution relationship, compare to figure 4.42, which indicates that

a parallel execution of activity B and activity C follows activity A.

153

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

Figure 4.43.: Inclusive Branch

InclusiveBranch: An InclusiveBranch relationship, compare to figure 4.43, which indicates that

either activity B or activity C or both activity can follow activity A.

Figure 4.44.: Exclusive Branch

ExclusiveBranch: An ExclusiveBranch relationship, compare to figure 4.44, which indicates that

either activity B or activity C must follow activity A.

By the means of such workflow descriptions it is possible to define complex correlations and chrono-

logical dependencies between functions. This should be exemplified by an example, which is taken

from the specification of the AUTOSAR NVRAM manager [24]. A sequence diagram, which is also

shown in figure 4.23, defines the following statement, which can be expressed now by the means of

the new meta model:

Example:

«The Process “Write” deals with “RAMData” and executes “NvM_Write” then “MemIf_Write” then

either “EE_Write” or “Fee_Write”.»

154

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

4.2.4. Application & Case Study

Appendix E shows a continuous example in order to demonstrate the usage of the aforementioned

meta model (see section 4.2.3). First of all E.1 shows a continuous textual descriptions of state-

ments, which are used to describe the functionality of “Write” in the context of the AUTOSAR Memory

Stack. These statements extend the statements of the latter section in order to represent the missing

information by standardizing the semantical conceptual relationships, which were described in sec-

tion 4.2.2. These continuous statements are then subdivided into single statements from which the

whole statement can be derived. After these textual representations, appendix E.2 depicts a graphi-

cal representation of these statements modeled by the means of the meta model. All concepts and

relationships among them are represented in graphical form by the last figure in section E.2.

Benefits from the Linguistic Meta Model

Figure 4.45.: Transformation between multiple representation format, following [50]

Semantical information are not only annotated in form of key, value pairs like, for example, within the

CCI approach, which was described in section 2.5.1. Instead, the aforementioned meta model is

able to represent relationships between concepts in order to clarify their semantical meaning without

using a predefined set of information or values. Like for linguistic text, correlations are described via

relationships to other concepts, which enables to detail the semantics more than by the means of

CCI or other current standards.

Furthermore, information are not only presentable in form of UML models like depicted in appendix

E.2. As sketched in figure 4.45, it is also possible to define automatic transformations, which con-

155

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

vert these models into linguistic text, a XML exchange format, or vice versa. This enables each

developers to choose a representation format with which he/she is more familiar, which enhances

understanding further more.

By the means of additional tool support, developers can be supported to reuse or to extend exist-

ing concepts. All predefined concepts can be used to describe their own semantical information by

combing these concepts via standardized relationships. After defining multiple statement collection

or lexicons for each respective system component the lexicons are able to be integrated or merged

via the aforementioned exchange format XML. Thereby it is possible to find redundant information

objects, functions, or processes, by what similar data , operations, or operation sequences are able

to be recognized, reused, or optimized.

Beside these benefits, the additional meta model also supports the avoidance of inconsistencies

from section 2.4.2, like described in the following:

• Syntactic inconsistencies: The semantical meta model provides a basis for data (informa-

tion objects) and operations (functions), which are (re-)used and detailed on the abstraction

levels of EAST-ADL2 and AUTOSAR by technical information. As concepts do not only rep-

resent semantical information, but also the static relation between functions and parameters

implicitly, concepts can also be used to avoid syntactical inconsistencies concerning ports,

interface, signatures and data names on an early stage of development.

• Semantical inconsistencies: Basically, the additional meta model comes along with the

avoidance of any linguistic ambiguities of data (names), operations, and processes. This is the

ultimate advantage of this meta model. However, by the means of the Illustration class, which

details the data type semantics of concepts, also other semantical inconsistencies concerning,

for example, numerical or reference system properties can be avoided on an early conceptual

stage of development.

• Application-based inconsistencies: By the means of the description of Functions and Pro-

cesses, also sequences of operations can be specified, by which state violations can be

avoided. Especially the description of Functions in combination with their Attributes avoids

inconsistencies concerning the correct usage and order of parameters for a clearly defined

task.

• Pragmatic inconsistencies: Generally, the meta model also provides language elements to

describe statements, which can be used to avoid pragmatical inconsistencies. But for such ad-

156

Chapter 4. Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts

vantages other approaches like AUTOSAR and EAST-ADL2 themselves or TIMMO are more

suitable than this meta model.

All in all, the meta model comes along with a better understanding for developers concerning se-

mantical relationships of concepts on meta level M1. This does not only support integrators, but it

also the avoidance of inconsistencies. Furthermore, because semantical information will become

machine-readable, these information can be used for an automated integration of system compo-

nents too.

157

Chapter 5.

Conclusion and Outlook

5.1. Summary

The last chapters have analyzed a way to enhance integration for automotive software components

into an entire architecture. Therefore chapter 2 introduces a standard called AUTOSAR and an archi-

tecture description language called EAST-ADL2. These two means intend to enable a standardized

description of automotive architectures on a model level across several abstraction levels and con-

cerns. To lift integration up to an early stage of development section 2.3 has described integration,

i.e. integration of model and views in contrast to an integration of implemented modules.

As the thesis’ goal was to solve inconsistencies during integration, section 2.4 introduces inconsis-

tencies generally, before a survey was made in order to concretize current inconsistencies in practice

without AUTOSAR or EAST-ADL2. The survey, which is described in section 3, has analyzed more

general problems concerning the working environment of the interviewees, which are hampering in-

tegration through bad basic conditions of development more than mismatching software components

themselves. However, concrete inconsistencies problems concerning the integration of software

components were analyzed as well. Thereby the survey has shown, that concrete inconsistencies

are hampering integration less predominantly than mismatching basic condition of development.

For this reason, chapter 4 has analyzed how far the basic conditions of development can be en-

hanced and how far concrete inconsistencies between software components can be avoided by the

means of AUTOSAR and EAST-ADL2. That analysis found out, that AUTOSAR as well as EAST-ADL

provide a complete and clear meta model, which is able to specify models of software components

158

Chapter 5. Conclusion and Outlook

completely and clearly according to their respective concerns. While AUTOSAR supports consis-

tency of artifacts more than EAST-ADL2, both specification together are able to integrate various

disciplines and stakeholders. Therefore they also provide good means for tracing among all arti-

facts, models and views continuously in order to ensure traceability of individual solutions across

multiple development levels. And in order to standardize a common maintenance of artifacts for

their exchange, both provide similar concepts, which are helpful but upgradeable. However, bot

specifications neglect an agreement concerning a common development process or methodology

for prescribing how to use the respective specification. Especially roles and responsibilities are not

defined, so that development delays are caused by a different alignment of several development

processes distributed across multiple enterprises, divisions, and developers.

Beside these basic conditions, the analysis has shown, that AUTOSAR in combination with EAST-

ADL2 provide good support to avoid almost any inconsistency, which were identified in section 2.4.

They are able to avoid syntactical and semantical inconsistencies almost completely. While the most

application-based inconsistencies can also be avoided, some other dynamic inconsistencies con-

cerning the timing behavior and state transitions of components can not be described sufficiently, by

what some integration faults still remain.

All in all the analysis has shown, that AUTOSAR in combination with EAST-ADL2 provide good sup-

port for enhancement of basic conditions and the avoidance of inconsistencies in equal shares. But

by contrast, misunderstandings of concepts on model instance level M1 represent a critical problem

and may lead to any kind of inconsistency. Because neither AUTOSAR nor EAST-ADL2 provide

language elements to describe conceptual semantics without using native text and because there

are already two current projects for enhancing the problems concerning the development process

and the timing behavior of components, section 4.2 has concentrated on semantical problems to

avoid misunderstandings in general. Therefore this section has introduced a meta model for describ-

ing semantical concepts by predefined relationships. By the means of a short example the meta

model was demonstrated in order to show benefits, which come along with these new semantical

information.

159

Chapter 5. Conclusion and Outlook

5.2. Outlook

As this thesis has concentrated on software components in general, future research must analyze

integration problems from a more detailed point of view. As described in section 2.3.2 AUTOSAR

supports several components, which must be brought together. This does not only concern different

software component types, like application and basic software, but also hardware and mechanical

components. As each component has its own requirements on integration, these individual require-

ments also must be taken into account in the future.

Furthermore, the actual problems, which were identified by this thesis, must be solved by further de-

velopment of AUTOSAR and EAST-ADL2. This particularly concerns the development of a process

or process framework, which recommends a development process, which can be applied by any

division to simplify their collaboration. Moreover, the TIMMO project indeed intends to enhance dy-

namics and timing behavior of software components, but because dynamics is a wide area, it should

be analyzed further more.

However, not only critical problems must be enhanced by further research. Also the points, where

AUTOSAR or EAST-ADL2 just provide partial or just sufficient support, must be enhanced or ex-

tended by, for example, guide lines or best practices. Especially EAST-ADL2, which basically pro-

vides just its meta model, must be extended by further specifications like AUTOSAR. Because AU-

TOSAR specifies not only a meta model, but also, for example, tool interoperability, modeling rules,

conformance, and model persistence rules, such specifications should be entered in EAST-ADL2

too.

Beside these objectives the semantical support must be further developed. Perhaps by the means

of meta model extensions or additional support in form ontologies, EAST-ADL2 and AUTOSAR con-

cepts and their semantics should be defined clearly in order to enable an automated integration

beside just syntactical or statical information. For this reason, tools have to be developed. These

tools must support developers in handling of AUTOSAR and EAST-ADL2 as well as in defining their

semantical information. Furthermore, tools or rather the meta models should enable the specification

of tests. These tests should be able to be generated from models automatically, in order to check

or to simulate functionality and interoperability of components already on model level further more.

Such tests could be exchanged between divisions like models, in order to check individual scenarios

between foreign components and the own.

There is a lot of work planned in the future of AUTOSAR and EAST-AD2, but if it works, annoying

work can be avoided even more than already today in order to concentrate on functionality and

160

Chapter 5. Conclusion and Outlook

quality of automotive systems.

161

Appendix A.

Acronyms

ADL Architecture Description Language

ASW Application Software

ATESST Advancing Traffic Efficiency and Safety through Software Technology

AUTOSAR Automotive Open System Architecture

BSW Basic Software

CCI Consistent Component Integration

ECU Electronic Control Unit

E/E electric/electronic

FAA Functional Analysis Architecture

FDA Functional Design Architecture

MDA Model Driven Architecture

MDD Model Driven Development

MDE Model Driven Engineering

MDSD Model Driven Software Development

NV Non Volatile

NVM Non Volatile RAM Manager

OEM Original Equipment Manufacturer

162

Appendix A. Acronyms

OMG Object Management Group

RAM Random Access Memory

ROM Read Only Memory

UDDI Universal Description, Discovery and Integration

UML Unified Modeling Language

UnSCom (Unified Specification of Components)

RTE Runtime Environment

SDL Specification and Description Language

SWC Software Component

SysML Systems Modeling Language

VFB Virtual Functional Bus

XML Extensible Markup Language

XMI XML Metadata Interchange

163

Appendix B.

Survey

164

Survey about problems of software integration in practice

Your Role and working environment

1. Please describe briefly your team and your function or your daily
work within your team.
(I.e. what’s your job title?)

2. With what kinds of developers of other disciplines do you have to
work together regularly?
Do you have specific collaborations with other department/business
units?
If yes, what other disciplines do they belong?

Communication

3. What means do you use for communication and agreements with other
developers, i.e. if they are distributed over multiple locations?
(E.g. Phone, Mail, Meeting, Version Management Systems...)

4. During collaboration with other developers specifications and some
other documenting artifacts have to be exchanged. How are these data
represented for exchange?
How intensely are these individual representations used? Please try to
give percentage estimate.

By models (e.g. UML) %

By textual descriptions %

By code %

By others % which

ones?

5. What kinds of problems do occur, when you have to collaborate with
other developers?
(I.e. with developers with other expertise or with other cultural
background)

6. What kinds of problems do occur, when you are working just with
artifacts like specifications or models of other developers and without
a personal contact?

Tool-Support

7. Which development tools do you use for your daily work? For what do
you use these tools?

used

for:

used

for:

used

for:

used

for:

used

for:

8. Are you supported by your Tools at the best? If you are thinking
your tool does not support you well: can you give a short description
of the problems you have with them?

9. In the majority of cases multiple Tools are in use for the same job
or for different jobs.
These different tools may be used by you or by other developers you
work with.
Is the tool landscape standardized?

Yes

No

Would a standard be helpful?

Yes, it would avoid some problems

No, because this would raise more problems like:

What kinds of problems do occur mostly when different Tools are in use
for working together?

10. Is an integration of artifacts produced by other developers into
your tools or platforms always possible? What kinds of integration
faults do occur?

If you are working with models, are there any special kinds of
problems?

Development Process

11. What kind of development process do you apply? (Unified Process,
Waterfall model, V-model...)

Can you give some examples of problems which do occur in terms of the
development process and its artifacts?

Integration of different components into a whole

12. At which point inside of your development process plays integration
with components produced by others (companies, teams, developers...) a
relevant role for the first time?

What kinds of artifacts are there relevant?
(E.g. Textual descriptions or models or implemented modules...)

13. What problems do occur when you try to integrate several components
of different developers into a whole?

14. What are possible reasons for such an integration fault?

15. Do you generally think integration of components on model level
would avoid some problems?

Yes, because

No, because

The common survey is over at this point.
By now I would like to thank you for your

contribution.
The following section is an optional part of this survey.
It's not necessary to fulfill this part but it would be a
big support if you are all set to answer these questions
too.

Otherwise please save this document and mail it to the
following e-mail address: survey@ds-lab.org

Many Thanks!

This part tries to find out more closely where problems
avoiding a later integration of distributed developed
components do arise. Please have a look at the questions
and try to answer them if you are thinking that they
concern your work.
You can end the survey anytime. Just save the document and
mail it to survey@ds-lab.org

Artifacts before implementation

During analysis and design of a system many artifacts on different
abstraction levels are created
to refine a system from (non-)functional view down to a technical view.
Are there any problems with management or understanding of such
artifacts?

(Possible problems are: common inconsistencies regarding naming or
syntax among documents/misunderstood artifacts caused by different
knowledge bases)

Specification vs. Implementation

It happens that programmers implement beside the specification. Do
special problems compared to the former question arise from such non-
compliance?

Semantic inconsistencies between components

Inconsistencies of semantic nature may occur, if data with different or
ambiguous semantic is exchanged between components. (Examples are:
synonyms, differing data ranges or data formats...)
What kinds of semantic inconsistencies do restrict you more often when
you want to link your component to others? Can you describe these
inconsistencies, please?

Application-based inconsistencies between components

Application-based inconsistency may occur if local functionalities of a
component do not accurately reflect a global application context. This
occurs if global constraints or constraints between components are not
fulfilled by components.
(Examples are: violated state relations among components or mismatches
between conditions of different components)
What kinds of application-based inconsistencies do restrict you more
often when you want to link your component to others? Can you describe
these inconsistencies, please?

Pragmatic inconsistencies between components

Pragmatic inconsistency concerns in particular concurrency constraints,
timing requirements dedicated by hardware and algorithms as well as the
underlying architecture, infrastructure or topology.
(Examples are: violated timing constraints among a sequence of
operation calls or a faulty distributed access on shared variables)
What kind of pragmatic inconsistencies do restrict you when you want to
link your component to others? Can you describe these inconsistencies,
please?

Common questions

Do you have to apply any Guide Lines or Best Practices? Are they always
followed by everyone?

Yes, they are hold

No

Are there any other reasons or problems concerning integration of
components into a whole, which are not listed here?

Would you be prepared to participate a further survey dealing more
detailed with integration problems?

Yes

No

Many Thanks for your contribution!

Please save the document and mail it to survey@ds-lab.org

Appendix C.

Analysis of the survey

Communication

• Used media:

– Mail, Phone, Netmeeting, LiveMeeting, WebEx, regular meetings. Phone/video confer-

ence, project drive, version management systems , Databases, Wiki, WEB Portals

– Knowledge exchange tool SharePoints, common data server

– Project related data and documents like specifications: Document management systems

like Documentum, Sharepoint, etc.

– Software related documents and work outputs: Version management system “CM syn-

ergy / change synergy”

• Exchange Format:

– Model: 9.5%

– Text: 63.75%

– Code: 19.25%

– Others: 7.5%

• Problems:

– Humans:

∗ Language problems (English is not the mother language for most, same wording is

used for total different means).

173

Appendix C. Analysis of the survey

∗ Different cultural backgrounds are issues as well, and very different working style

will come together

– Specifications:

∗ Incomplete/ unclear/ Contradictory documentation

∗ Different technical background / basic knowledge:

∗ Missing link to requirements (for what reasons a certain solution has been se-

lected?)

∗ Missing link to other subsystems/components/disciplines (interrelationships between

the artifacts)

– Process:

∗ Project schedules not detailed enough or not well communicated. Incomplete or

missing project framework (project plans, work packages planning, project objec-

tives, constraints and restrictions)

∗ incomplete or inhomogeneous distribution of information among departments and

teams

∗ incomplete or missing risk management

∗ Different roles have different targets and interests/ Responsibilities not defined

clearly.

∗ At former project a risk analysis has not been performed -> direct contact to the

function developer of former projects

Tool-Support

• Are the Tools standardized? Yes: (1) No: (7)

• Would standardization help? Yes: (6) No: (2)

• Tools are generally o.k.? Yes: (4) No: (3) No explicit opinion: (1)

• Comments:

– Tool support is fair but not excellent.

– Too many different tools

174

Appendix C. Analysis of the survey

– Standardization will limit innovation

• Used Tools:

– Telelogic Synergy/ Telelogic Change used for: Configuration management/ Change

management

– Doors used for: Requirements engineering

– Microsoft Office used for: Documentation:

– Enterprise Architect used for: modeling

– Matlab/Simulink used for: System simulation and function development

– OmniBuild used for: for make in order to address a complicated build environment for a

very large system

– OSS Compiler Tool chains used for: Getting the stuff compiled/linked (VxWorks, Java,

CORBA, etc)

– CONAS used for: Calibration

– MKS used for: CM

– PVCS used for: Common CM tool

– CM Synergy used for: SW-CM tool

– Change Synergy used for: Common CR-tool

– LIMAS used for: Software Specification tool

– XD/Dataspy used for: Auxiliary function development tool to check interfaces of specifi-

cation

• Problems:

– Incompatible file structures

– Incompatible headers in files

– Incompleteness of the meta model

– Inconsistencies, because single source principle is not applied

– Information exchange with OEM is not standardized in a formal way, like doors eXchange

175

Appendix C. Analysis of the survey

• Effect:

– A lot of manual checking/ adaptation/configuration/transformation of artifacts for use with

different tools is necessary/ Large training effort

– A lot of experience is necessary to produce usable code from models

– During export and import between Tools one always looses information: (at least par-

tially or for some attributes/capabilities)

– Different versions of tools/libraries/configurations being used.

– Incomplete or contradictory specifications, particularly concerning the interfaces

– Implementation errors not detected at the component test slow down system integration

drastically

– Incomplete requirements cause unintended system behavior and related integration

faults

– Data models of the different tools do not fit to each other.

Development Process

• Applied processes:

– Variants of the V-model

– RUP

• Problems:

– Due to project schedule restrictions the documentation is neglected

– Problems occur due to incomplete execution of the process and inappropriate restric-

tions during development work (project timing, resources, risk management etc.).

• Possible Solution:

– An overall process defining all roles to be defined in an understandable and easy way

for each step:

∗ What needs to be done?

∗ What is the responsibility of the role?

176

Appendix C. Analysis of the survey

Integration of different components into a whole

Model Integration could be helpful?

• YES, because:

– One gets an overview earlier and can address more precise test cases

– An (HW/SW/mechanical) spanning view of the system can be applied, in order to define

a system structure

• No, because:

– The main issue is the time pressure for integrators.

– Most of the problems are detected and handled on C-implementation level.

– We need a new generation of modeling tools which can handle variant management and

product lines much better than today’s tools can do.

– We need a new approach of describing the semantics of interfaces (data types are not

sufficient, we need for example production rates, accuracy, detailed meaning, etc.)

• Involved Artifacts:

– Implemented modules

– Textual descriptions when testing against requirements is executed.

– Interface descriptions

– Models

Comment:

Changes have to be annotated by a textual description providing. Five questions need to be

known(those questions have to be provided preferable via a WEB portal due to the distributed

nature of the development environment):

1. What’s new in the build today, what (textual description) has changed compared to the

baseline before

2. Are there known (from developers) dependencies in the build. Are possible work arounds

suggested?

3. What about interface changes, if yes which ones

177

Appendix C. Analysis of the survey

4. Which bug-ids, etc. have been tackled by this build/baseline.

5. What has changed (semantic description) between baselines more older baselines?

• Problems:

– Interfaces do not match. Interface problems (missing interfaces, interfaces having the

wrong semantics)

– Incompatibilities e.g. due to dependencies on certain versions of libraries, etc. (rare)

– Problems to fulfill dynamic constraints (like correct sequence of calculation, Trigger times

/ recurrence not supported by host system, etc.)

– Modules are not fitting together, because information is missing

• Reasons:

– The original specifications for the various components were not checked against each

other for consistency.

– Uncared limitations in the environment.

– Insufficient variant management

– Complexity of the system

– Time pressure for integrating developers

– Missing and non formalized information

– Incompatibilities are much harder to solve here than with plain C.

– When working with models it has to be made sure that only right amount of people have

access to the model

Artifacts before implementation

• Problems:

– A lot of misunderstanding of which information should be given in which artifact on which

abstraction level?

– Requirements from various sources are not consistently channeled into one database

– Technical requirements are not correctly derived from overall requirements

178

Appendix C. Analysis of the survey

– A change in overall requirements is not always communicated –> derived requirements

are not updated

– Keeping the implementation close to the specification.

– Underestimating of the importance of Non Functional Requirements.

– The software architects needs to be involved into functional hardware

Specification vs. Implementation

• Problems:

– fuzzy specifications can lead to different interpretations from different developers

– some developer are shy to ask for clarification

– The programmer requires some free creativity

Semantic inconsistencies between components

• Problems:

– The type of data exchanged between components is not always the same (e.g. kph /

mph).

– a changed resolution of an integer representation. (i.e. the C-data type stays the same,

but the physical interpretation changes).

• Possible Solutions:

– Naming convention is needed to solve those problems

– A clear mapping of specification to software implementation is needed

179

Appendix C. Analysis of the survey

Application-based inconsistencies between components

• Problems:

– Parallel state machines that do not run synchronously.

– One module uses obsolete values produced by another module.

• Possible Solutions:

– A meaningful specification needs to be established, in order to detect such inconsisten-

cies on specification level, but not on implementation level.

– A meaningful process (describing which role does what and when) needs to be estab-

lished

– A meaningful quality control shall be established, also checking the content of specifica-

tion

Pragmatic inconsistencies between components

• Problems:

– Run-time restrictions are not always observed overall run time of all modules together

exceeds sometimes the maximum allowed value.

– Functionalities not respecting the defined system timing may fail to be integrated (e.g.

because of exceeding the maximum allowed runtime (cooperative blocking time))

– certain trigger points are not supported in the system (e.g. engine synchronous triggers)

– Software designed for preemptive/cooperative environment has to be used in a "foreign"

context, certain sequencing constraints lead to irresolvable loops of constraints, overall

system performance is not compatible with the functionalities to be executed...

180

Appendix C. Analysis of the survey

Common questions

• Guide Lines are hold? rarely: (0) casually: (2) always: (2)

• Comments:

– The different development locations are not working with exactly the same tools and not

exactly the same target hardware.

– Per default I would like to prohibit any kind of direct check-in by a developer. Instead

I would prefer using the Open Source way where every developer has to achieve the

right to become a “committer”. This means every check-in needs to be proven by a

responsible guy and only then it will become part of the repository (not yet the next

baseline!).

– For a diagram always a textual description is essential

– Lack of openness for applying new things

181

Appendix D.

Summary: Analysis’ Results

Figure D.1.: Enhanced Basic Conditions by AUTOSAR and EAST-ADL2

182

Appendix D. Summary: Analysis’ Results
A

U
TO

S
A

R
(s

ta
tic

)
A

U
TO

S
A

R
(d

yn
am

ic
)

E
A

S
T-

A
D

L2

S
yn

ta
ct

ic
In

co
ns

is
te

nc
ie

s
in

co
ns

is
te

nt
da

ta
ex

ch
an

ge
fo

r-
m

at
S

W
D

at
aD

ef
P

ro
ps

in
co

ns
is

te
nt

in
te

rfa
ce

s
Po

rt
In

te
rfa

ce
in

co
ns

is
te

nt
po

rt
s

Po
rt

P
ro

to
Ty

pe
in

co
ns

is
te

nt
si

gn
at

ur
es

O
pe

ra
tio

nP
ro

to
ty

pe
in

co
ns

is
te

nt
da

ta
na

m
es

D
at

aT
yp

e

S
em

an
tic

al
In

co
ns

is
te

nc
ie

s
nu

m
er

ic
al

in
co

ns
is

te
nc

ie
s

S
W

D
at

aD
ef

P
ro

ps
la

ng
ua

ge
in

co
ns

is
te

nc
ie

s
AU

TO
S

A
R

m
et

a
m

od
el

E
A

S
T-

A
D

L2
m

et
a

m
od

el
re

fe
re

nc
e

sy
st

em
in

co
ns

is
te

n-
ci

es
S

W
D

at
aD

ef
P

ro
ps

A
pp

lic
at

io
n-

ba
se

d
In

co
ns

is
-

te
nc

ie
s

vi
ol

at
io

n
of

st
at

es
pa

rt
ly

by
M

od
eD

ec
la

ra
-

tio
nG

ro
up

P
ro

to
ty

pe
pa

rt
ly

by
O

C
L

tr
ig

ge
rC

on
di

tio
ns

vi
ol

at
io

n
of

re
la

tio
ns

be
tw

ee
n

st
at

es
an

d
pa

ra
m

et
er

pa
rt

ly
by

M
od

eD
ec

la
ra

-
tio

nG
ro

up
P

ro
to

ty
pe

pa
rt

ly
by

O
C

L
tr

ig
ge

rC
on

di
tio

ns

re
st

ric
te

d
da

ta
ra

ng
es

R
an

ge
A

D
LD

es
ig

nD
at

aT
yp

e

P
ra

gm
at

ic
In

co
ns

is
te

nc
ie

s
co

nc
ur

re
nc

y
E

xc
lu

si
ve

A
re

a,
In

te
r-

R
un

na
bl

eV
ar

ia
bl

e,
M

od
eD

ec
la

-
ra

tio
nG

ro
up

pa
rt

ly
by

O
C

L
tr

ig
ge

rC
on

di
tio

ns

ac
ce

ss
re

st
ric

tio
n

on
ex

te
rn

re
-

so
ur

ce
s

C
om

pl
ex

D
ev

ic
eD

riv
er

C
om

po
ne

nt
Ty

pe
,

E
cu

A
bs

tra
ct

io
nC

om
po

ne
nt

Ty
pe

,
S

en
so

rA
ct

ua
to

rS
of

tw
ar

eC
om

po
-

ne
nt

Ty
pe

R
un

na
bl

eE
nt

ity
pa

rt
ly

by
O

C
L

tr
ig

ge
rC

on
di

tio
ns

tim
in

g
re

qu
ire

m
en

ts
on

ha
rd

w
ar

e
S

er
vi

ce
N

ee
ds

,
R

es
so

ur
ce

-
C

on
su

m
pt

io
n

A
D

LR
eq

ui
re

m
en

t

ab
so

lu
te

tim
in

g
re

qu
ire

m
en

ts
TI

M
M

O
P

ro
je

ct
Ti

m
in

gR
eq

ui
re

m
en

ts
re

la
tiv

e
tim

in
g

re
qu

ire
m

en
ts

TI
M

M
O

P
ro

je
ct

Ti
m

in
gR

eq
ui

re
m

en
ts

co
m

m
un

ic
at

io
n

pa
tte

rn
Po

rt
In

te
rfa

ce
A

D
LF

lo
w

Po
rt

,
A

D
LC

lie
nt

S
er

ve
r-

Po
rt

Ta
bl

e
D

.1
.:

In
co

ns
is

te
nc

ie
s

av
oi

de
d

by
E

A
S

T-
A

D
L2

s’
an

d
AU

TO
S

A
R

st
at

ic
an

d
dy

na
m

ic
se

m
an

tic
s

183

Appendix E.

Case Study: Memory Stack

E.1. Statement Collection: textual representation

A «MemoryStack» is composed of a «Memoryservice», a «Memory Hardware Abstraction», and

«Memory Driver».

The «MemoryStack» executes a «Write» Function, which «writes» «Data» «to» «logical block num-

ber».

A «Write» Function executes of «NvM_WriteBlock» and «MemIf_Write», which executes either «EE_Write»

or «Fee_Write».

The «NVRAM» does «MemIf_Write» by the means of a «NvM_SrcPtr», a «DeviceIndex», and a

«BlockId».

The «MemIf» does «MemIf_Write» by the means of a «DataBufferPtr», a «BlockNumbner», and a

«DeviceIndex».

A «Pointer», which can be a «NvM_SrcPtr» or a «DataBufferPtr», «points to» «Data», which can be

«RAMData».

A «MemoryDriver», which has a «DeviceIndex» and «Name», can be a «FlashDriver» or a «EEP-

ROM Driver».

A «logical block number», which is a correlation of «BlockIdentifier» and a «data index», can be a

«BlockNumber» or a «BlockId».

The Process «Write» deals with «RAMData» and executes «NvM_Write» then «MemIf_Write» then

either «EE_Write» or «Fee_WRite».

184

Appendix E. Case Study: Memory Stack

E.1.1. Information Objects

«Data» can be «RAMData». E.2

A «logical block number» is a correlation of «BlockIdentifier» and a «data index».

A «logical block number» can be a «BlockNumber» or a «BlockId». E.2

A «MemoryDriver» has a «DeviceIndex» and «Name».A «MemoryDriver» can be a «FlashDriver»

or a «EEPROM Driver».E.2

A «MemoryStack» is composed of a «Memoryservice», a «Memory Hardware Abstraction», and

«Memory Driver». E.2

A «Pointer» can be a «NvM_SrcPtr» or a «DataBufferPtr».E.2

E.1.2. Functions

The «NVRAM» does «MemIf_Write» by the means of a «NvM_SrcPtr», a «DeviceIndex», and a

«BlockId».E.2

The «MemIf» does «MemIf_Write» by the means of a «DataBufferPtr», a «BlockNumner», and a

«DeviceIndex».E.2

«MemIf_Write» executes either «EE_Write» or «Fee_Write».E.2

The «MemoryStack» executes a «Write» Function.E.2

A «Pointer» «points to» «Data».E.2

«read» «Data» «from» «Pointer».E.2

«write» «Data» «to» «logical block number».E.2

A «Write» Function executes of «NvM_WriteBlock» and «MemIf_Write».E.2

A «Write» Function «reads from» and «writes to».E.2

E.1.3. Process

The Process «Write» deals with «RAMData».E.2

After «NvM_Write» «MemIf_Write» is executed.

After «MemIf_Write» follows either «EE_Write» or «Fee_Write».E.2

E.2. Statement Collection: graphical representation

185

Appendix E. Case Study: Memory Stack

186

Appendix E. Case Study: Memory Stack

187

Appendix E. Case Study: Memory Stack

188

Appendix E. Case Study: Memory Stack

189

Appendix F.

Bibliography

[1] Eclipse modeling framework. http://www.eclipse.org/modeling/emf/.

[2] Openarchitectureware. http://www.openarchitectureware.org/.

[3] Society of automotive engineers. http://www.aadl.info/.

[4] Sysml open source specification project. http://www.sysml.org/.

[5] University of stuttgart - institut für automatisierungs- und softwaretechnik. http://www.ias.uni-

stuttgart.de/forschung/kfz.en.html.

[6] R. Allen and D. Garlan. A formal basis for architectural connection. In ACM Trans. Software

Eng. and Methodology, vol. 6, no. 3, pages 213–249, July 1997.

[7] ATESST. http://www.atesst.org/.

[8] ATESST. East adl 2.0 specification. http://www.atesst.org/.

[9] ATESST. Overview of the east-adl 2. http://www.atesst.org/.

[10] AUTOSAR. http://www.autosar.org/.

[11] AUTOSAR. Autosar ecu configuration. http://www.autosar.org/.

[12] AUTOSAR. Autosar metamodel. http://www.autosar.org/.

[13] AUTOSAR. Autosar methodology. http://www.autosar.org/.

[14] AUTOSAR. Autosar model persistence rules for xml. http://www.autosar.org/.

[15] AUTOSAR. Autosar software component template. http://www.autosar.org/.

[16] AUTOSAR. Autosar technical overview. http://www.autosar.org/.

190

http://www.eclipse.org/modeling/emf/
http://www.openarchitectureware.org/
http://www.aadl.info/
http://www.sysml.org/
http://www.ias.uni-stuttgart.de/forschung/kfz.en.html
http://www.ias.uni-stuttgart.de/forschung/kfz.en.html
http://www.atesst.org/
http://www.atesst.org/
http://www.atesst.org/
http://www.autosar.org/
http://www.autosar.org/
http://www.autosar.org/
http://www.autosar.org/
http://www.autosar.org/
http://www.autosar.org/
http://www.autosar.org/

Appendix F. Bibliography

[17] AUTOSAR. File structure of integrator 2. unpublished.

[18] AUTOSAR. Layered software architecture. http://www.autosar.org/.

[19] AUTOSAR. Specification for the ecu resource template. http://www.autosar.org/.

[20] AUTOSAR. Specification of bsw module description template. http://www.autosar.org/.

[21] AUTOSAR. Specification of interaction with behavioral models. http://www.autosar.org/.

[22] AUTOSAR. Specification of interoperability of authoring tools. http://www.autosar.org/.

[23] AUTOSAR. Specification of module memory abstraction interface. http://www.autosar.org/.

[24] AUTOSAR. Specification of nvram manager. http://www.autosar.org/.

[25] AUTOSAR. Specification of the system template. http://www.autosar.org/.

[26] AUTOSAR. Sw_c and system modeling guide. http://www.autosar.org/.

[27] AUTOSAR. Validator2: Lesson learned. unpublished.

[28] S. Becker, A. Brogi, I. Gorton, S. Overhage, and M. Romanovsky, A.; Tivoli. Towards an engi-

neering approach to component adaptation. architecting systems with trustworthy components.

Springer Lecture Notes in Compter Science (LNCS) 3938. Dagstuhl Castle, Germany 2006,

S.193-215, December 2004.

[29] J. Bézivin and F. Jouault. Using atl for checking models. In Electronic Notes in Theoretical

Computer Science, volume 152, pages 69–81, March 2006.

[30] C. DeJiu, M. Torngren, J. Shi, S. Gerard, H. Lonn, D. Servat, M. Stromberg, and K.-E. Arzen.

Model integration in the development of embedded control systems. In Computer-Aided Control

Systems Design, 2006 IEEE International Symposium on, 2006.

[31] A. Egyed. Instant consistency checking for the uml. In ICSE ’06: Proceedings of the 28th

international conference on Software engineering, pages 381–390, New York, NY, USA, 2006.

ACM.

[32] M. Gagliardi and C. Spera. Some new results in model integration. In 28th Annual Hawaii

International Conference on System Sciences, 1995.

[33] D. Garlan. An introduction to the aesop system. Internet, July 1995.

http://www.cs.cmu.edu/afs/cs/project/able/www/aesop/html/aesop-overview.ps.

191

http://www.autosar.org/
http://www.autosar.org/
http://www.autosar.org/
http://www.autosar.org/
http://www.autosar.org/
http://www.autosar.org/
http://www.autosar.org/
http://www.autosar.org/
http://www.autosar.org/
http://www.cs.cmu.edu/afs/cs/project/able/www/aesop/html/aesop-overview.ps

Appendix F. Bibliography

[34] A. M. Geoffrion. Structured modeling: Survey and future research directions.

http://www.informs.org/Pubs/ITORMS, June 1999. .

[35] M. Gorlick and A. Quilici. Visual programming in the large versus visual programming in the

small. In IEEE Symp. Visual Languages, pages 137–144, Oct. 1994.

[36] I. A. W. Group. Recommended practice for architectural description. IEEE P1471/D5.2 Infor-

mation Technology Draft, December 1999.

[37] M. Hobelsberger. Vergleich der architekturbeschreibungssprachen east adl und sae adl sowie

ihrer beziehung zu autosar. Master’s thesis, Fachhochschule Regensburg, 2007.

[38] F. Jung, Martin; Saglietti. Supporting component and architectural re-usage by detection and

tolerance of integration faults.

[39] M. Jung. Modelbasierte Gnerierung von beherrschungsmechanismen für Inkonsistenzen in

komponentenbasierten Systemen. Dissertation, technical faculty of the unversity of erlangen-

nuernberg, 2006.

[40] R. Keshav and R. Gamble. Towards a taxonomy of architecture integration strategies. Founda-

tions of Software Engineering, 1:98–92, 1998.

[41] D. Luckham, J. Kenney, L. Augustin, J. Vera, D. Bryan, and W. Mann. Specification and analysis

of system architecture using rapide. In IEEE Trans. Software Eng., vol. 21, no. 4, pages 336–

355, Apr. 1995.

[42] J. Magee and J. Kramer. Dynamic structure in software architectures. In ACM SIGSOFT ’96:

Fourth Symp. Foundations of Software Eng. (FSE4), pages 3–14, Oct. 1996.

[43] L. Mariani. A fault taxonomy for component-based software. Electronic Notes in Theoretical

Computer Science, 82:55–56, 2003.

[44] N. Medvidovic, P. Oreizy, J. Robbins, and R. Taylor. Using object-oriented typing to support

architectural design in the c2 style. In ACM SIGSOFT ’96: Fourth Symp. Foundations Software

of Eng. (FSE4), pages 24–32, Oct. 1996.

[45] N. Medvidovic and R. N. Taylor. A classification and comparison framework for software archi-

tecture description languages. IEEE Trans. Softw. Eng., 26(1):70–93, 2000.

[46] M. Moriconi and R. Riemenschneider. Introduction to sadl 1.0: A language for specifying soft-

ware architecture hierarchies. Technical report, SRI-CSL-97-01, SRI Int’l, Mar. 1997.

[47] OASIS-UDDI-Specification-Technical-Committee. Uddi oasis standard. http://uddi.xml.org/.

192

http://www.anderson.ucla.edu/faculty/art.geoffrion/home/csts/index.htm
http://uddi.xml.org/

Appendix F. Bibliography

[48] OMG. Mof 2.0/ xmi mapping specification, v2.1.1. http://www.omg.org/technology/documents/formal/xmi.htm.

[49] OMG. Query/ view/ transformation, v1.0. http://www.omg.org/spec/QVT/1.0/.

[50] S. Overhage. Vereinheitlichte Spezifikation von Komponeneten: Grundlagen, UnSCom Spez-

ifikation und Anwendungen. PhD thesis, Unverisität Augsburg, Wirtschaftswissenschaftliche

Fakultät, 2006.

[51] S. Overhage and P. Thomas. Unscom: A standardized framework for the specification of soft-

ware components. Object-Oriented and Internet-Based Technologies: 5th Annual International

Conference on Object-Oriented and Internet-Based Technologies, Concepts, and Applications

for a Networked World, Net. ObjectDays 2004, Erfurt, Germany, pages 169–184, 2004.

[52] R. Racu, A. Hamann, R. Ernst, and K. Richter. Automotive software integration. In DAC ’07:

Proceedings of the 44th annual conference on Design automation, pages 545–550, New York,

NY, USA, 2007. ACM.

[53] C. Reichmann, D. Gebauer, and K. D. Müller-Glaser. Model level coupling of heterogeneous

embedded systems. RCBS/MODES04, 2004.

[54] W. Reif. Lecture: Software engineering. http://www.informatik.uni-

augsburg.de/lehrstuehle/swt/se/teaching/.

[55] W. Reisig. Petri nets: an introduction. Springer-Verlag New York, Inc., New York, NY, USA,

1985.

[56] M. Shaw, R. DeLine, and G. Zelesnik. Abstractions and implementations for architectural con-

nections. In Third Int’l Conf. Configurable Distributed Systems, May 1996.

[57] A. Terry, R. London, G. Papanagopoulos, and M. Devito. The ardec/teknowledge architecture

description language (artek), version 4.0. Technical report, Teknowledge Federal Syst., and

U.S. Army Armament Research, Development, and Eng. Center, July 1995.

[58] W. Tracz. Lileanna: A parameterized programming language . In Second Int’l Workshop Soft-

ware Reuse, pages 66–78, Mar. 1993.

[59] K. van Heen, N. Sidorova, L. Somers, and M. Voorhoeve. Consistency in model integration. In

Business Process Management:, 2004.

[60] S. Vestal. Metah programmer’s manual, version 1.09. Technical report, Honeywell Technology

Center, Apr. 1996.

193

http://www.omg.org/technology/documents/formal/xmi.htm
http://www.omg.org/spec/QVT/1.0/
http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/teaching/
http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/teaching/

	1 Introduction
	1.1 Motivation
	1.2 Problems and Challenges
	1.3 Outline

	2 Background and Basics
	2.1 AUTOSAR
	2.1.1 AUTOSAR Architecture
	2.1.2 Meta Model and Templates
	2.1.3 Methodology

	2.2 Architecture Description Languages
	2.2.1 ADL Concept
	2.2.2 EAST-ADL2
	2.2.3 EAST-ADL2 vs. SEA-AADL and other approaches

	2.3 Integration
	2.3.1 Integration in general
	2.3.2 Integration in an automotive environment
	2.3.3 Special kinds of integration concerning models and views
	2.3.4 AUTOSAR integration from a practical point of view

	2.4 Inconsistency
	2.4.1 Reasons for inconsistencies: Basic Conditions of Development
	2.4.2 Categories of Inconsistencies between Software Components
	2.4.3 Consequences of inconsistencies for integration

	2.5 Related Work
	2.5.1 CCI
	2.5.2 UnSCom
	2.5.3 Other integration platforms

	3 Discovering mistakes of integration in practice
	3.1 A Survey to find out current problems
	3.1.1 Structure and goals of the survey
	3.1.2 Interpretation of the surveys' answers

	3.2 Results of the whole survey and further course
	3.2.1 Reasons for inconsistencies
	3.2.2 Concrete inconsistencies

	4 Solving the actual problems using AUTOSAR, EAST-ADL2 and additional concepts
	4.1 Analysis of the surveys' results
	4.1.1 Why are models better than textual documents or executable code?
	4.1.2 Basic Conditions & AUTOSAR
	4.1.3 Concrete Inconsistencies & AUTOSAR
	4.1.4 Basic Conditions & EAST-ADL2.0
	4.1.5 Concrete Inconsistencies & EAST-ADL2.0
	4.1.6 Conclusion

	4.2 Extension of AUTOSAR and EAST-ADL2 by Semantics
	4.2.1 Separation UnSCom from AUTOSAR and EAST-ADL2
	4.2.2 Demonstration and Concretion of AUTOSARs' and EAST-ADL2s' semantical drawback
	4.2.3 Linguistic Meta Model and Benefits
	4.2.4 Application & Case Study

	5 Conclusion and Outlook
	5.1 Summary
	5.2 Outlook

	A Acronyms
	B Survey
	C Analysis of the survey
	D Summary: Analysis' Results
	E Case Study: Memory Stack
	E.1 Statement Collection: textual representation
	E.1.1 Information Objects
	E.1.2 Functions
	E.1.3 Process

	E.2 Statement Collection: graphical representation

	F Bibliography

