











invariant subset, and its maximal eigenvalue is
negative, hence x < 0. O

Remark. Some local stabilization strategies for homo-
geneous systems (they include systems of the form (3)
as special cases) are based on the idea that one first
chooses a feedback to obtain a 1-point invariant set of
the projected system on the projective space, and then
stabilizes the system in this direction. Note that for
perturbed systems of the form (3) is strategy is not
applicable, because 1-point invariant sets for (7) exist
only if g3 = 0, i.e. if the perturbation in (1) does not
show up in the linearization. In this case, optimal sta-
bilizing feedbacks can be computed as in Colonius et
al. (1993).

Theorem 2. covers only the situations, in which the
existence of a robust stabilizing feedback can be de-
cided by considering the real eigenvalues of the rhs.
of the linearized system (3). In these cases, if the sys-
tem is stabilizable, then a constant feedback suffices.
I.e. optimal robust stabilization even in the presence
of time varying excitations boils down to the appropri-
ate tuning of the system parameter u € U. In all other
cases, time varying perturbations and non- constant
feedback laws have to be considered. In general, this
can only be done numerically by exploring the char-
acterizations (a) and (b) above. The next section dis-
cusses an example along these lines.

V. The Van-der-Pol oscillator

In this section we discuss the van-der-Pol oscillator
with controlled damping and uncertain restoring force.
Other nonlinear oscillators can be treated in a similar
fashion.

Consider the equation

(9 Fru® + )+ (1+wy=0

Linearizing this equation around the fixed point (y,y) =
(0,0} yields
(10)
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For the control, and the excitation range, respectively,
we use the families of sets U = [~0,0],0 > 0, and
We = ["P\P]»P > 0.
First we consider this system with constant u € U?,
.. treating the damping as a tuning parameter, but

time varying excitations w € W”?. Figure 1. shows
the level curves of the optimal x for this case in the

o — p plane, for o € [0, 3] and p € [0,2]. Note that the
line x = 0 separates unstable systems from those that
are exponentially stable for the corresponding o — p
combination, compare Colonius et al. (1993).
Next, we discuss the consequences of Theorem 2.
for the van-der-Pol oscillator:
(i) If p > 1, then the system is not stabilizable by
any feedback u € F.
(i) If p <1 and o2 > 4(1 + p), then the system is
stabilizable via the constant feedback F = 0.
Figure 2. shows the corresponding stability and insta-
bility regions in the ¢ = p plane.

Figure 1. Level curves of the optimal Lyapunov expo-
nent x for the system (10).

Comparing Figures 1. and 2. we see that an im-
provement of stability via nonstant feedbacks can only
be expected in the ¢ — p parameter region [0,0.81] x
{0,1), where o ~ 0.81 corresponds to the point, where
the x = 0 level curve in Figure 1. meets the p = 1
line. In this region, the optimal Lyapunov exponent x
and the corresponding excitation w € W and feedback
u € Fp have to be computed numerically.

This is done using the alternatives (a) and (b) in
Section I, where in case (b) the formula (8) is used
for periodic solutions on [0, r) in the following way:
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with T = { md% i.e. by converting the time

into the space variable on the projective space P.
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