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A b s t r a c t :  We study the conservative as well as the dissipative quanta] dynamics in 
a harmonically driven, quartic double-well potential. In the deep quanta] regime, we 
find coherent modifications of tunneling, including its complete suppression. In the 
semiclassical regime of the conservative system, the dynamics is dominated by the 
interplay of tunneling and chaotic diffusion. A strong correlation exists between the 
tunnel splittings and the overlaps of the associated doublet states with the chaotic 
layer. With weak dissipation, remnants of coherent behaviour occur as transients, such 
as the tunneling between symmetry-related pairs of limit cycles. The coherent suppres- 
sion of tunneling observed in the conservative case is stabilized by weak incoherence. 
The quanta] stationary states are broadened anisotropica]ly due to quantum noise, as 
compared to the corresponding classical attractors. 

1 I n t r o d u c t i o n  

During the last decades one observes a strong tendency, both in experimen- 
tal and theoretical physics, to shift focus from a global, macroscopic point of 
view towards the microscopic study of moderately small sys tems- -nanomete r -  
scale electronic devices, molecules, small metallic clusters. For such a system 
in a nonequilibrium environment,  there are typically three components  which 
together make up the essential physics: A coherent driving which represents the 
macroscopic energy source and can often be described classically, the microscopic 
system itself, with its dynamics characterized by the simultaneous presence of 
quantum effects and classical nonlinearity, and an environment comprising a 
large number  of weakly coupled degrees of freedom which serve as a sink both  
for energy and coherent information. 

In the present contribution we intend to give an overview over the interplay 
of these three components,  for a specific example: a bistable system driven by a 
harmonic force. Bistability is an elementary source of nonlinear behaviour [1-5]; 
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with a periodic driving, it enables an enormously rich dynamical repertoire [6-9]. 
At the same time, bistable systems provide a paradigm for quantum coherence: 
tunneling [i0]. A harmonic driving captures the essence of a ubiquitous energy 
source, electromagnetic irradiation, specifically of lasers and their relatives. 

We shall approach the complexity of weakly dissipative, semiclassical nonlin- 
ear behaviour in three steps: Following an introduction into the model in Sect. 2, 
its dynamics in the deep quantal regime is outlined in Sect. 3. Section 4 is de- 
voted to the semiclassical regime of the conservative dynamics. In Sect. 5, weak 
dissipation is brought into play. Section 6 contains a summary and an outlook. 

The present work forms a synopsis of results partially published elsewhere 
[11-18]. 

2 T h e  m o d e l  a n d  i t s  s y m m e t r i e s  

We formulate the harmonically driven bistable system as a quartic double well 
with a spatially homogeneous, classical sinusoidal driving force. It is described 
by the Hamiltonian 

p2 
lx2+a--~Dx4, Hl(X;t) = xSeoswt.  HDw(x ,p; t )= Ho+H1, H o ( x , p ) -  2 4 

(1) 
With the dimensionless variables used, the only parameter controlling the un- 
perturbed Hamiltonian H0(x, p) is the barrier height D. It approximately gives 
the number of doublets with energies below the top of the barrier. Accordingly, 
the classical limit amounts to D ---* cx~. 

The symmetry of the Hamiltonian under discrete time translations, t ---* 
t + 2~r/w, enables to use the Floquet formalism [19-22], which generalizes most 
of the conceptual tools of spectral analysis to the present context. Its basic ingre- 
dient is the Floquet operator, i.e., the unitary propagator that generates the time 
evolution over one period of the driving force, U = Texp ( - i  f2o'~/~ dt HDw(t)/h), 
where T effects time ordering. Its eigenvectors and eigenphases are referred to 
as Floquet states and quasienergies, respectively. Being phases, the quasiener- 
gies are organized in classes, ea,k = ea + kw, k = 0,+1,-t-2, . . .  , where each 
member corresponds to a physically equivalent solution. Therefore, all spectral 
information is contained in a single "Brillouin zone", - w / 2  <_ c < w/2. 

Besides invariance under time translation and time reversal, the unperturbed 
system possesses the spatial reflection symmetry x ---* - x ,  p --* p, t -* t. For the 
specific time dependence of a harmonic driving as it is used here, the symmetry 
f ( t  + 7r/w) = - f ( t )  restores a similar situation as in the unperturbed case: 
The system is now invariant against the operation [l l, 23] P : p --~ -p ,  x --~ 
- x ,  t ~ t + ~ which may be regarded as a generalized parity in the extended, 
three-dimensional phase space spanned by x, p, and time t mod(27r/w). As in 
the unperturbed ease, this enables to separate the eigenstates into an even and 
an odd subset. 
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3 D r i v e n  t u n n e l i n g  a n d  l o c a l i z a t i o n  

To give an impression of driven tunneling in the deep quantal regime, we study 
how a state, prepared as a coherent state centered in the left well, evolves in time 
under the external force. Since this state is approximately given by a superposi- 
tion of the two lowest unperturbed eigenstates, ]~(0) ) ~ (] ~1 ) + 1~2 ))/x/2, its 
time evolution is dominated by the Floquet-state doublet originating from I~1 ) 
and I ¢t2 ), and the splitting e2 - ex of its quasienergies. 

There are two regimes in the (w, S)-plane where tunneling is not qualita- 
tively altered by the external force: Both in the limits of slow (adiabatic) and of 
fast driving, the separation of the time scales of the inherent dynamics and of 
the external force effectively uncouples the two processes and results in a mere 
renormalization of the tunnel splitting A. Both an analytical treatment and nu- 
merical experiments show that the driving always reduces the effective barrier 
height and thus increases the tunneling rate in these two limits [11]. 

Qualitative changes in the tunneling behavior are expected as soon as the 
driving frequency becomes comparable to the internal frequencies of the double 
well, in particular, to the tunnel splitting and to the so-called resonances E3-E2 ,  
E4 -Ea ,  E 5 -  E2, . . . .  By spectral decomposition, the temporal complexity in this 
regime is immediately related to the "landscape" of quasienergy planes e~,k(w, S) 
in parameter space. Features of particular significance are close encounters of 
quasienergies: Two quasienergies cross one another without disturbance if they 
belong to different parity classes, otherwise they form an avoided crossing. 

The transition at w = /£3 - E2, a single-photon transition in the terminol- 
ogy of quantum optics, is called fundamental resonance. For S > 0, the cor- 
responding quasienergies ~2,k and ¢3,k-a form an avoided crossing, since they 
have equal parity. Fig. la shows the time evolution of the probability to return, 
P¢(tn)  = I(~(0) I q~(t,~) )12 at the fundamental resonance. The monochromatic 
oscillation of P¢(tn) characteristic of unperturbed tunneling has given way to 
a more complex beat pattern. Its Fourier transform reveals that  it is composed 
mainly of two groups of three frequencies each (Fig. lb), which can be associ- 
ated with the allowed transitions among the Floquet states pertaining to the 
two lowest doublets. 

In contrast, a two-photon transition that  bridges the tunnel splitting A is 
"parity forbidden", and thus the quasienergies e2,k-1 and el,k+1 can form ex- 
act crossings. A vanishing of the difference e2,-1 - ea,a will have a remarkable 
consequence: For a state prepared as a superposition of the corresponding two 
Floquet eigenstates only, PC(t) and all other observables become constants, at 
least at the discrete times tn, and thus it is possible that tunneling comes to a 
standstill. According to an argument going back to von Neumann and Wigner 
[24], exact crossings should occur along one-dimensional manifolds in the (w, S) 
plane. In the present case, there is one such manifold Sio~,k(w) for each condition 
e2,-k = el,k. Fig. 2a shows Slo¢,0(w): a closed curve, reflection-symmetric with 
respect to the line S = 0. A typical time evolution of P~(tn) for a parame- 
ter point on the linear part of that manifold is presented in Fig. 2b. It clearly 
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Fig.  1. Driven tunneling at the fundamental resonance ,~ = E a - E 2 .  (a) Time evolution 
of P~(tn) over the first 2 × 10 ~ time steps; (b) local spectral two-point correlation 
function P~(,/) obtained from (a). The parameter values are D = 2, S = 2 × 10 -3, and 
w = 0.876. 
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Fig.  2. Suppression of tunneling at an exact crossing e2,-t = c1,1. (a) The manifold 
S~oc,0(w) in the (w, S) plane where this crossing occurs (data obtained by diagonaliza- 
tion of the full Floquet operator are indicated by crosses, the full line is based on a 
two-state approximation [13, 25, 26], the arrow indicates the parameter point to which 
part (b) refers); (b) time evolution of P#(t,) over the first 103 time steps, at D = 2, 
S = 3.171 × 10 -3, ¢0 ---- 0.01. 

demons t ra tes  tha t  t unne l ing  is a lmost  completely suppressed. The r emain ing  
oscil lations of smal l  ampl i tude  can be ascribed to an admix tu re  of higher-lying 
quasienergy states to the ini t ia l  state.  The  suppression of tunne l ing  is an ele- 
m e n t a r y  quantum-in te r fe rence  effect, much of which can be unders tood  on basis 
of a two-state  approx ima t ion  [13, 25, 26]. 
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4 T u n n e l  s p l i t t i n g s  a n d  t h e  o n s e t  o f  c h a o s  

In the classical double well, the most significant consequence of the periodic driv- 
ing is the onset of deterministic chaos [27]. It develops around the hyperbolic 
fixed point at the top of the barrier and along the separatrix originating there. 
For sufficiently high S, deterministic diffusion along the separatrix becomes a 
significant contribution to the classical phase-space transport. Quantum me- 
chanically, it competes with tunneling [28-33]. Applying ideas from Einstein- 
Brillouin-Keller (EBK) quantization for periodically driven systems [34] and 
from random-matrix theory for mixed (regular and chaotic) systems [35] to 
the present context, one obtains the following crude picture of the impact of 
the chaotic layer on tunneling [29-31]: Even with the driving, the two isolated 
regular regions within the wells remain related by the generalized parity P. Ac- 
cordingly, Floquet states residing within these regions form a ladder of tunnel- 
splitted doublets. For states mainly residing within the chaotic layer, in contrast, 
random-matrix theory predicts level repulsion. We therefore expect that, as soon 
as one of the pairs of quantizing tori pertaining to the symmetry-related regular 
regions resolves in the spreading chaotic layer, the exponentially small splitting 
of the corresponding doublet breaks up and eventually reaches a size of the order 
of the mean level separation. As a consequence, the coherent tunneling on an 
extremely long time scale will give way to a more irregular dynamics on shorter 
time scales, forming the quantal counterpart of deterministic diffusion along the 
separatrix. The breakup of the tunnel doublets in the chaotic layer is not a direct 
consequence of the Lyapunov exponent of the classical dynamics being positive 
there, but rests on the global condition that diffusive spreading connects all parts 
of the chaotic layer, bridging the symmetry plane. 
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Fig. 3. Husimi distributions (in gray-scale representation) for the quasienergy state 
1~7(0) ), compared with the corresponding classical phase-space portraits, at (a) S = 
10 -5 and (b) S = 0.2. 

In order to allow for a numerical check, we quantify the distinction between 
"regular" and "chaotic" eigenstates on the basis of the overlap of the Husimi 
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Fig. 4. Tunnel splittings (a) and overlaps with the chaotic layer (b) for the seven lowest 
tunnel doublets, as functions of the amplitude of the driving. 

representation [36] of an eigenstate with the chaotic layer in phase space [17, 18]. 
To illustrate these concepts, the Husimi distribution for the quasienergy state 
1¢7) is superposed, in Fig. 3, with the corresponding classical phase space por- 
trait, for (a) S = l0 -5 and for (b) S = 0.2, at phase 0 of the driving. In Fig. 4, 
we compare the S dependencies of the tunnel splittings and the overlaps for the 
seven quasienergy doublets from lea ), 1¢2) to [ ¢13), 1¢14) [17, 18]. Qualita- 
tively, they are strikingly similar: There is only a weak S dependence, reflecting 
the influence of the growing first resonance, for S ~ l0 -3. For S ~ 10 -3, both 
the tunnel splittings and the overlaps start to grow exponentially, one by one, 
starting from the lowest doublet, so that the range of these quantities reduces 
by several orders of magnitude. The S regime of this steep increase coincides 
with that  of the onset of chaotic motion in the classical dynamics. Insofar, the 
picture sketched above is confirmed. Details, however, need to be revised. 

The notion that each splitting widens individually as the corresponding quan- 
tizing torus resolves, is not unambiguously corroborated by the data. It would 
imply that  the transitions to a large splitting occur "from top to bottom", i.e., 
first for the doublet localized on the outermost torus pair within the separa- 
trix. If this transition is assessed from the splittings passing a certain absolute 
threshold, e.g., A:~ = 10 -4, that order is roughly obeyed. If, however, the point of 
onset of exponential growth, visible in a logarithmic plot like Fig. 4a, is taken as 
the criterion, the order is reversed. Another noticeable fact is that the widening 
of the splittings and the concomitant change in character of the eigenstates, as 
functions of S, are continuous processes that can only roughly be associated with 
the decay of a KAM torus, taken as a discrete event. Even doublet states over- 
lapping by 70% with the chaotic layer may still show a relatively small splitting 
and exhibit the signature of a regular state in their spatial structure and time 
dependence. It is not clear whether this retarded decay of the tunnel doublets 
corresponds to the gradual disintegration of classical tori via canlori [37] and 
vague tori [38]. 
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5 Driven tunneling with dissipation 

In this section, we extend our working model (1), such as to include the influence 
of dissipation and noise on the microscopic level, following the usual procedure 
of coupling the central system to a heat bath [39, 40]. Proceeding in a similar 
way as in Ref. [41], we use the density operator in the Floquet basis, reduced to 
the double-well degree of freedom, as the basis of our description, and resort to 
the usual rotating-wave and Markov approximations. This allows us to derive 
the equation of motion for the density matrix ~ (in the interaction picture with 
respect to HI) in the form of the master equation [41] 

:,~,~(t) =~,~,~ ~_,(W~,,~5~,v(O- Wv,~5o,o(t))+ 
12 (2) 

1 ( 1 - ~ , , Z )  ~-'~(W,,~ + W,,~)5,,~(t). 
y 

It comprises a closed subset of equations for the evolution of the diagonal ele- 
ments towards a steady state, and another subset describing the decay of the 
non-diagonal elements. The coefficients W~,Z depend on the coupling constants 
and on the quasienergies; they are given elsewhere [16]. The classical limit of the 
dissipative quantal dynamics (specifying a linear frequency dependence of the 
coupling strength with cutoff) leads to a Langevin equation describing a bistable 
Duffing oscillator [6-9] showing Ohmic damping, with a macroscopic damping 
constant 7, and fluctuations. 

A particularly interesting question is whether the coherent suppression of 
tunneling observed in the conservative case will survive in the presence of dissi- 
pation. In order to obtain an adequate description of this phenomenon on basis 
of a master equation like (2), the rotating-wave approximation must be avoided. 
It is valid only if the time scales of the classical relaxation and of the conservative 
quantal dynamics are clearly separated. However, in the vicinity of the mani- 
folds S~o¢,k(w) where the tunnel splitting vanishes (see Fig. 2a), exceedingly small 
energy scales and correspondingly large time scales occur in the undamped dy- 
namics. This necessitates to take also quasienergy transitions into account that 
virtually violate energy conservation. Details of this refinement of the master 
equation are given in Refs. [16, 42]. 

Fig. 5a shows the time evolution of P~(tn) = tr[e(tn)~(0)] (the analogue 
of PO(tn) for a density-matrix representation) at a parameter point very close 
to, but not exactly on Sloc,0(w), for 7 = 10-6 and various values of T. For 
low temperature, P~'(tn) exhibits a slowly decaying coherent oscillation with a 
very long period, due to the slight offset from SIoc,0(w) [16]. Asymptotically, 
the distribution among the wells is completely thermalized. With increasing 
temperature, the decay time of the slow coherent oscillation first decreases until 
this oscillation is suppressed from the beginning (the corresponding part of the 
graph is not shown in Fig. 5b). After going through a minimum, however, the 
thermalization time increases again. At a characteristic temperature T*, this 
time scale reaches a resonance-like maximum where the incoherent processes 
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Fig. 5. Coherent suppression of tunneling in the presence of weak dissipation. (a) Time 
evolution of P*(tn) over the first 107 time steps, at a parameter point (D = 2, w = 0.01, 
and S -----3.171 × 10 -a) close to Slo¢,0(w) (see Fig. 2a), for 7 = 10-6 and various values 
of T, starting from a pure, minimum-uncertainty state centered in one of the wells; 
(b) temperature dependence of the decay time r of P"(I,) for three values of the 
detuning Aw from the manifold S~oc,0(w) (graph 1: zS~ = -1.4 × 10 - r ,  as in part (a), 
2: A~ = 5.0 x 10 - r  at S = 3.1712 × 10 -3, 3: AO~ = 1.4 × 10 -6 at S = 3.1715 × 10-3). 
The other parameters are as in part (a). The data shown do not extend down to T = 0, 
where r(T) diverges, but start only with the rising part of this function. 

induced by the reservoir stabilize the localization of the wave packet and thus 
compensate for the detuning introduced deliberately. In Fig. 5b, we present the 
tempera ture  dependence of the decay t ime r (defined by Pa(tn) ~ exp ( -n / r ) )  
for three values of the detuning A~ from the manifold Sloc,0(¢v). A variation of 7 
reveals that  the dependence on the damping constant has a similar resonance-like 
form [42]. 

This stabilization of the coherent suppression of tunneling by noise is to be 
distinguished from the trivial localization by strong damping. In fact, it has 
already been observed in a model analogous to (1), but with the deterministic 
harmonic driving of the double well replaced by a noisy one, so that  the t ime 
evolution remained unitary and a damping could not occur [14]. Rather,  this 
phenomenon bears some resemblance to the quantum zeno effect in a bistable 
system [43], and to the classical stabilization of instable equilibrium states by 
multiplicative noise [44, 45]. 

Besides discussing the influence of dissipation on coherence effects, one may  
conversely ask how the classical dynamics of the driven damped Dufling oscillator 
[6-9] is modified by quantal interference. A hallmark of the classical dynamics is 
the existence of at tractors of various degrees of complexity, as a function o f~ ,  S, 
or 7. In Fig. 6 [42], we choose parameter  values where classically, there exist five 
limit cycles, with the frequency of the driving: two symmetry-rela ted pairs with 
.one par tner  within each well, and a single one encircling the wells. The Husimi 
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distribution in the stationary state at phase 0 is overlayed with the phase-space 
portrait of the corresponding conservative classical system (in a periodically 
driven system, the stationary state may still possess a time dependence with 
the period of the driving, which however is invisible in a stroboscopic plot like 
this). Both the classical attractors and the maxima of the quantal stationary 
distribution, while not coinciding exactly, are located near elliptic fixed points 
of the conservative dynamics and can be associated with the regular regions 
around the potential minima and the first resonance, respectively (the fifth limit 
cycle outside the wells is not significantly populated in the quantal stationary 
state). The quantum noise preferentially broadens the stationary distribution 
along the limit cycle to which the corresponding classical attractor belongs, the 
direction in which the classical phase-space flow is least contractive [46]. 

While the smoothing due to quantum noise is the only quantum effect left in 
the stationary state, a remnant of coherent tunneling survives in the transient 
behavior [42]. Fig. 7 shows the time evolution of Pa(t,,) for the same parameter 
values as above, with the initial states prepared as coherent states at the location 
of either one of the maxima of the asymptotic distribution (see Fig. 6) within the 
left well, corresponding to nonresonant motion (a) and to the first resonance (b), 
respectively. In both cases, we observe a coherent oscillation decaying as the sta- 
tionary state is approached. Fig. 8 reveals that these oscillations form a remnant 
of tunneling between the partners of each of the two symmetry-related pairs of 
regular regions, i.e., tunneling between limit cycles. Thermalization within each 
pair, and subsequently among the pairs, is reached only on longer time scales of 
the order of the classical relaxation time. 

6 S u m m a r y  

The present paper is intended to highlight a number of facettes of a generic 
nonequilibrium system: The nonlinear quantum dynamics in a periodically 
driven double-well potential, at different stages of the transition from micro- 
scopic, coherent to macroscopic, incoherent behavior. (For the effects of periodic 
driving on the tunneling decay out of a single metastable state, see Ref. [47].) In 
the deep quantal regime, we find modifications, due to the driving, of the familiar 
tunneling. They range from a mere acceleration of its rate, in the two extremes 
of slow and of fast driving, through complex quantum beats near resonances 
with the unperturbed system frequencies, to an almost complete suppression of 
tunneling by a coherent mechanism. 

Towards the semiclassical limit of the conservative system, we addressed the 
interplay between coherent transport by tunneling and diffusive transport along 
the chaotic layer which develops in the vicinity of the separatrix of the undriven 
system. Eigenstate doublets residing within the symmetry-related pair of regular 
regions of the classical phase space exhibit exponentially small splittings and thus 
support tunneling. As the pair of quantizing tori pertaining to such a doublet 
resolves in the chaotic sea, the splitting widens and tunneling gives way to a more 
complex dynamics contributing to the quantal counterpart of chaotic diffusion. 
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The disturbing effects of the ambient degrees of freedom render the coherence 
effects observed in the deep quantal regime transients. Surprisingly, the coherent 
suppression of tunneling is stabilized if damping constant and temperature take 
specific values, a result akin to the quantum zeno effect and to the classical 
stabilization of instable equilibria by multiplicative noise. On the time scale of 
classical relaxation, the dissipative quantum dynamics approaches a s tat ionary 
state which forms the analogue of the attractors of the corresponding classical 
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dynamics. These stationary states are broadened by quantum noise which is 
not isotropic, but acts preferentially in the direction where the classical phase- 
space flow is least contractive, e.g., stronger along limit cycles than transverse 
to them. On time scales shorter than the classical relaxation, coherence effects 
such as the tunneling between the basins of attraction of symmetry-related pairs 
of attractors remain visible. 

Many questions have been left open. In the conservative case, an analytical 
description, in germs of semiclassical concepts, of tunneling in the presence of 
chaos is not yet available. In the parameter  regime of the dissipative system 
where several strange attractors coexist, both transient tunneling between their 
basins of attraction, and the quantal smoothing of the fractal basin boundaries 
[48] should be studied. Finally, it is possible that the phenomenon of stochastic 
resonance, generated by external classical noise in periodically driven bistable 
systems [49], can be induced by the inherent quantum noise addressed in Sect. 5 
as well. 
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