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Abstract-We investigate cooperative effects of noise and periodic forcing in an optical bistable
system. It has been demonstrated in a recent experiment by Grohs et al. that noise induced switching
between low and high output intensity can be synchronized via the stochastic resonance effect by a
small periodic modulation of the input intensity. Here we present theoretical results for stochastic
resonance in optical bistable systems.

1. MODEL AND BASIC EQUATIONS

A model for optical bistability was introduced by Bonifacio and Lugiato [l]. For the
amplitude y of the input light and the transmitted amplitude X, they have derived the
equation of motion

xR=y-x-2cp
1 + x2

+j/D ’-r(t),
1 + x2

(1)

where P represents &correlated, Gaussian distributed noise with zero mean. A weak
periodic modulation of the input intensity is taken into account by adding a periodic term
to y, i.e. y + y(t) = y. + A cos(S2t + W). For the probability density of the transmitted
amplitude, P(x, t), we find the Fokker-Planck equation

+x, t) = 2cx yo - x - - + Dx@ - x2>
1 + x2 (1 + x2)3

+ Acos(Qt + ‘4’) 1 P(x, t)

+ *D x2 P(x, t).
(2)

ax2 (1 + x2)2

The spectral density of the transmitted amplitude has &spikes at multiples nQ of the
driving frequency [2] with the corresponding weights W, being a measure for the output
power at the frequency n&2. They can be expressed in terms of the Fourier coefficients of
the time periodic, asymptotic mean value [3]

(3)

w, = 27rp4,12. (4)
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2. AMPLIFICATION OF THE OPTICAL SIGNAL

The amplification of the periodic signal is given by the ratio of the transmitted power at
the driving frequency and the input power [3]

IW12q,(rz) = 4-.
A2

(5)

We can solve the Fokker-Planck equation (2) nume~c:ally for the asymptotic mean value
(~(t))~ by using the method of matrix continued fractions [4]. In doing so we follow the
reasoning put forward in refs [2 and 31 where the stochastic resonance in a symmetric
double well has been investigated. The numerical results for rh are shown in Fig. 1 for
various frequencies by the solid lines. Figure l(a) corresponds to choosing y. such that
P(x, t) shows two peaks of nearly equal height in the limit D -+ 0 what we call the
‘symmetric case’, and Fig. l(b) corresponds to an ‘asymmetric case’, where the peaks of the
stationary probability have different probabilistic weights in the limit D + 0.

In the symmetric case we observe stochastic resonance [S] very much like in the quartic
double well potential, i.e. a peak in the amplification of the modulation as a function of
the noise intensity when the sum of the mean sojourn times in both stable states equals the
period of the driving (these values of D are indicated as vertical dashed lines in Fig. 1).

In the asymmetric case, the peak of the amplification is suppressed, because-in contrast
to the symmetric case-the corresponding contribution (i.e. the weight g, in (8)) of
hopping motion to the response of the system disappears exponentially for small noise [6].
The remaining maximum is only the tail of the amplification by synchronization at large
noise.

The numerical results are compared in Fig. 1 with those obtained within linear response
approximation f3] (dotted lines). In this approximation we find in terms of the response
function R(t)

bwL - --05 (x),, = I^ R(t - t’)Acos(Qt’ f Y)dt’ - (o;P,(x)dx, (6)

with the stationary solution P,,(x) of the undriven system. The response function R(t) is
expressed via a fluctuation theorem by a correlation function K(t) of the undriven system

R(t) = ~{~(t)h(~(O))} = ;K(t)

with h(x) = (l/D)(-x-r + 2x + :x3). K(t) is approximated by
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(7)

a sum of exponentials with
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Fig. 1. Spectral ampli~cation ql at c = 6, A = 10e4 for yo = 6.722~84 (a} and yo = 6.8 (b). Curves with label n
correspond to 52 = lo-“. The dotted lines correspond to results within linear response approximation ((6)-(S)).
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the typical time scales of the system Ar and &-stemming from hopping and local motion
in the potential wells respectively, i.e. [3, 61

K(t) = C giedit. (8)
i=l.Z,T

The weights gj are determined by the correlation function K(t) and its derivatives at t = 0.

3. GENERATION OF HIGHER HARMONICS

The generation of the nth harmonic in the output due to the nonlinearities is
characterized by the ratio

q,(Q) = 4y. (9)

The second harmonic depends on the noise strength as shown for the symmetric and
asymmetric case in Fig. 2. In the symmetric case (Fig. 2(a)) a ‘dip’ appears which becomes
sharper with decreasing frequencies. In the asymmetric case (Fig. 2(b)) we do not observe
such behaviour.

For the third harmonic, q3, we find a smooth curve in the symmetric case and a dip in
the asymmetric case.

We have confirmed the results for the higher harmonics within an adiabatic approxima-
tion, valid for small driving frequencies.

4. PHASE SHIFT OF THE OUTPUT SIGNAL

We note that the periodic asymptotic mean value in (3) involves complex-valued Fourier
coefficients M,. It is of interest to investigate the behaviour of the corresponding phases,
{q,}, of (3)- h’ h * d w ic m uce a characteristic lag of the deterministic phase (Qt + Y) -as a
function of the parameters characterizing the stochastic resonance. In the following we
have numerically studied the behaviour of the phases cpl and cp, as a function of increasing
noise intensity D, with all other parameters kept fixed at values denoted in Fig. 1. In
Fig. 3, the phase shifts cp,, defined in (3), are shown for the first and second harmonic
of the asymptotic mean value (~(t))~. We again distinguish between the symmetric
(Fig. 3(a), (c)) and asymmetric case (Fig. 3(b), (d)). Th e results within linear response
theory are shown by dotted lines. The phase shift q1 in the symmetric case looks like in the
quartic model: the extremum results from the competition between internal motion and
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D D
Fig. 2. Higher harmonic R, parameters as in Fig. 1.
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Fig. 3. Phase shifts, parameters as in Fig. 1. In (b), line 4 (S2 = 10s4) coincides with the axes Q = 0.

hopping processes. In the asymmetric case the extremum is suppressed for small frequen-
cies because the hopping disappears at small noise strength.

At values of D, for which a dip in a higher harmonic appears, the corresponding phase
shift approaches a step function for small driving frequencies Q. This characteristic
behaviour, which cannot be explained on a pure deterministic level (i.e. D = 0)) still awaits
a simple physical intuitive explanation. We hope to be able to shed light onto this open
problem in future work.
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