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Abstract. We study the conservative as well as the dissipative quantal dynamics in a harmonically
driven, quartic double-well potential. Qur main tool is a numerical analysis of time evolution
and spectrum, based on the Floquet formalism. In the deep quantal regime, we find coherent
modifications of tunneling, including its complete suppression. In the semiclassical regime of the
conservative system, the dynamics is dominated by the competition of tunneling between symmetry-
related regular regions and chaotic diffusion along the separatrix. We demonstrate that there is a
strong correlation between each tunnel splitting and the overlap of the associated doublet states with
the chaotic layer. In the dissipative case, remnants of coherent behavior occur as transients, such
as the tunneling between distinct, coexisting limit cycles. In particular, the coherent suppression
of tunneling is stabilized by weak incoherence. The quantal stationary states are characterized
by an anisotropical broadening due to quantum noise, as compared to the corresponding classical
attractors.

1. Introduction

A good way to learn about the interplay of coherent and incoherent dynamics, of
stochasticity and deterministic chaos is to study specific systems where they occur
simultaneously. Bistable systems form an important paradigm: They contain the
essence of a wealth of nonlinear phenomena, from the microscopic to the macro-
scopic realm [1 — 5]. With a periodic driving added, their classical repertoire of
behavior ranges from limit cycles to several coexisting strange attractors [6 — 9].
On the quantum-mechanical level, bistable systems provide the standard example
of coherent tunneling [10].

In the present paper we investigate the nature of the transition from the simple
coherent quantal dynamics to the intricate complexity of the macroscopic behavior,
focussing on a few selected landmarks. This transition has two basic aspects: One
of them is the sheer increase in system size. In the formal description, it is reflected
in an increase of characteristic actions, compared to k, and thus corresponds to the
short-wavelength or semiclassical limit. The other aspect is the growing importance
of ambient and internal degrees of freedom, weakly coupled to the system in focus,
and usually modelled collectively as a reservoir.

The transition to short characteristic wavelengths lets classical phase-space struc-
tures emerge more and more clearly in the quantal dynamics. Specifically, in the
case of bistable systems, we shall ask how the onset of chaos on the classical level
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becomes manifest in the tunneling.

Incoherent processes induced by the ambient degrees of freedom, in turn, tend
to smooth out the fine interference patterns in phase space and time which encode
classical behavior on the quantal level, and thus render the semiclassical limit less
singular. We study the stationary states approached by the dissipative quantum
system—they correspond to the attractors of the classical flow—and the decay of
coherence in the transient behavior preceeding them.

We shall introduce our working model, the harmonically driven quartic double
well, and its symmetries in Section 2. Section 3 is devoted to the modifications of
tunneling, due to the driving, in the deep quantal regime. In Section 4, we discuss
driven tunneling in the semiclassical regime where it begins to exhibit the influence of
classical chaos. The consequences of incoherent processes, of damping and noise, are
addressed in Section 5. Section 6 summarizes our survey of coherent and incoherent
behavior in bistable systems.

The present work forms a synopsis of results partially published elsewhere {11 -
19].

2. The model and its symmetries
The harmonically driven quartic double well is described by the Hamiltonian

2
Hpw(z,p;t) = Ho+H,, Ho(z,p)= %—ixz-k a%x", H(z;t) = £ Scoswt. (1)
With the dimensionless variables used, the only parameter controlling the unper-
turbed Hamiltonian Ho(z,p) is the barrier height D. It can also be interpreted
as the (approximate) number of doublets with energies below the top of the bar-
rier. Accordingly, the classical limit amounts to letting D — co. The driving is
characterized by its amplitude S and frequency w.

The symmetry of the Hamiltonian under discrete time translations, t — ¢ +
27 /w, enables to use the Floquet formalism [20 - 23], which generalizes most of the
conceptual tools of spectral analysis to the present context. Its basic ingredient is
the Floquet operator, i.e., the unitary propagator that generates the time evolution
over one period of the driving force,

U = Texp (—%— /2'/‘” dt HDw(i)) , 2)

where T effects time ordering. Its eigenvectors and eigenphases, referred to as Floquet
states and quasienergits, respectively, can be written in the form

[$a(t)) = e[ $a(t)), with |a(t +27/w)) = |$a(t)). (3)

From a Fourier expansion of the | ¢,(t)),

. w 27 fw )
1600)) = T Idur )™, [gar) = 5= [ dtlga®)™, (1
* 0
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it is obvious that the quasienergies are organized in classes, €ak = €q + kw, k =

0,%£1,4£2,... , where each member corresponds to a physically equivalent solution.
Therefore, all spectral information is contained in a single “Brillouin zone”, —w /2 <
€< wf2.

Besides invariance under time translation and time reversal, the unperturbed sys-
tem possesses the spatial reflection symmetry ¢ — —z, p — p, t — t. For a general
driving, this symmetry is destroyed. For the specific time dependence of a harmonic
driving, however, the symmetry f(t + 7/w) = —f(t) restores a similar situation as
in the unperturbed case: The system is now invariant against the operation [11 —
13, 24)

P:p——-p, z—-—z t—>t+§, (5)

which may be regarded as a generalized parity in the extended phase space spanned
by z, p, and phase, i.e., time t mod(27 /w). As in the unperturbed case, this enables
to separate the eigenstates into an even and an odd subset.

3. Driven tunneling and localization

To give an impression of driven tunneling in the deep quantal regime, we study in
the following how a state, prepared as a coherent state centered in the left well,
evolves in time under the external force. Since this state is approximately given
by a superposition of the two lowest unperturbed eigenstates, |®(0)) ~ (| ¥, ) +
| ¥4 ))/V2, its time evolution is dominated by the Floquet-state doublet originating
from | ¥, ) and | ¥, ), and the splitting €3 — €; of its quasienergies.

There are two regimes in the (w,S)-plane where tunneling is not qualitatively
altered by the external force: Both in the limits of slow (adiabatic) and of fast
driving, the separation of the time scales of the inherent dynamics and of the external
force effectively uncouples these two processes and results in a mere renormalization
of the tunnel splitting A. Specifically, as both an analytical treatment and numerical
experiments show, the driving always reduces the effective barrier height and thus
increases the tunneling rate in these two limits 11].

Qualitative changes in the tunneling behavior are expected as soon as the driving
frequency becomes comparable to the internal frequencies of the double well, in
particular, to the tunnel splitting and to the so-called resonances E3 — F,, £y — Ey,
Es — E3, ... . By spectral decomposition, the temporal complexity in this regime is
immediately related to the “landscape” of quasienergy planes ¢, k(w, S) in parameter
space. Features of particular significance are close encounters of quasienergies: Two
quasienergies cross one another without disturbance if they belong to different parity
classes, otherwise they form an avoided crossing.

A quantity well suited to study the relationship between dynamics and quasi-
energy spectrum is the probability to return {25, 26],

2
P2(ta) = [(8(0) | #(ta)) = [(8(0)| U™ | #O))F, ta = 22, n=0,21,%2, ...,

(6)
defined with respect to some initial state |®(0)), and with time restricted to the
instances of zero phase of the driving. By expanding P®(t,) in the basis provided
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Fig. 1. Driven tunneling at the fundamental resonance w = E3 — E2. (a) Time evolution of
P?®(tn) over the first 2 x 10° time steps; (b) local spectral two-point correlation function P#(n)
obtained from (a). The parameter values are D = 2, S = 2 x 1073, and w = 0.876.

by the quasienergy eigenstates,

PY(ta) = €7 + Y expli(ea — €5)tn] 1{ $a(0) | 2(0))* [( #5(0) | B(0))%,  (7)
af

the réle of the quasienergies for the time evolution becomes explicit. Here, £~!
stands for the time-independent diagonal part excluded from the double sum in
Eq. (7). It gives the long-time average of P®(t,). The Fourier transform Pg (n) of
the probability to return is the two-point correlation function of the {ocal quasienergy
spectrum, i.e., the spectrum weighted according to the relative significance of each
quasienergy for the specific dynamics starting from |®(0)). Below, we use these
concepts to discuss driven tunneling at two parameter points, one of them featuring
an avoided quasienergy crossing, the other an exact one [11 - 14}.

The “single-photon transition” at w = E3 — Ey is called fundamental resonance.
At S = 0, it is reflected in a crossing between the quasienergies €z and €3 ;.
For S > 0, it becomes an avoided crossing, since the corresponding eigenstates
have equal parity. Fig. la shows the time evolution of P%®(t,) at the fundamental
resonance (D = 2, § = 2 x 1073, w = 0.876). The monochromatic oscillation
of P®(t,) characteristic of unperturbed tunneling has given way to a more complex
beat pattern. The Fourier transform of P®(t,) reveals that these beats are composed
mainly of two groups of three frequencies each (Fig. 1b), which can be identified,
in turn, as the quasienergy differences ez _y — €20, €20 — €1,0, €3,-1 — €1,0, and
€4,-1 — €31, €41 — €20, €41 — €1,0, at the avoided crossing.

In contrast, a two-photon transition that bridges the tunnel splitting A is “parity
forbidden”, and thus the quasienergies €5 x_y and € x4) form an exact crossing.
Eq. (7) indicates that a vanishing of the difference €3 _; —¢;,; will have a remarkable
consequence: For a state prepared as an exact superposition of the corresponding
two Floquet eigenstates only, P®(t) and all other observables become constants,
at least at the discrete times t,, and thus it is possible that tunneling comes to
a standstill! According to an argument going back to von Neumann and Wigner
[27, 28], exact crossings should occur along one-dimensional manifolds in the (w, S)
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Fig. 2. Suppression of tunneling at an exact crossing ¢z,—1 = ¢3,1. (a) The manifold Sjoc 0(w) in
the (w,S) plane where this crossing occurs (data obtained by diagonalization of the full Floquet
operator for the driven double well are indicated by crosses, the full line has been derived from a
two-state approximation {15, 29], the arrow indicates the parameter point to which part (b) refers);
(b) time evolution of P®(t,,) over the first 10° time steps.

plane. In the present case, there is one such manifolds Sioc i (w) for each condition
€2k = €1 . Fig. 2a shows Sioc o(w): It is a closed curve, reflection-symmetric with
respect to the line S = 0, with an approximately linear frequency dependence for
ASwX Es— E,. A typical time evolution of P®(t,,) for a parameter point (D = 2,
S = 3.171 x 1073, w = 0.01) on the linear part of that manifold is presented in
Fig. 2b. It clearly indicates that tunneling is almost completely suppressed. The
remaining oscillations of small amplitude can be ascribed to an admixture of higher-
lying quasienergy states to the initial state. An additional time dependence faster
than the driving—it would not show up in a stroboscopic plot like Fig. 2b—does
indeed exist, but with an amplitude comparable to that appearing in Fig. 2b (not
shown, see refs. [11 - 14].

The suppression of tunneling is an elementary quantum-interference effect. In
fact, much of it can be understood on basis of a two-state approximation [15, 29].
It is achieved by solving the equations of motion for the expansion coefficients of a
localized initial state in the Hilbert space spanned by the unperturbed ground-state
doublet |¥; ), | ¥5). The two-state approximation yields an analytical expression
for each Sjoc k(w).

4. Tunnel splittings and the onset of chaos

In the classical double well, the most significant consequence of the periodic driving
is the onset of deterministic chaos [30], see Fig. 3. It develops around the hyperbolic
fixed point at the top of the barrier: As the perturbation is switched on, the stable
and the unstable manifold intersecting at this fixed point start to fold and form a
homoclinic tangle [31], which extends all along the two lobes of the separatrix and
forms a narrow layer of chaotic motion. With S increasing further, this chaotic layer
grows in width, at the expense of the two regular zones within the wells, so that
the deterministic diffusion between the wells becomes a significant contribution to
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Fig. 3. Classical phase-space portraits of the periodically driven double well at phase O of the
driving, for various values of the driving amplitude. The parameter values are D = 8, w = 0.95,
and (a) S =0, (b) S =103, (c) S =102, (d) § =0.2.

the classical phase-space transport. There is another conspicuous modification of the
phase-space structure, the growth of the regular zone generated by the first resonance
of the driving with the unperturbed oscillation [30], which does not, however, affect
the coherent dynamics as substantially as the onset of chaos does.

Quantum mechanically, phase-space transport by chaotic diffusion competes with
tunneling {32 - 37). In the present section we investigate how these two processes
influence each other. Applying ideas from Einstein-Brillouin-Keller (EBK) quanti-
zation for periodically driven systems [38], as well as from random-matrix theory for
mixed (regular and chaotic) systems {39], to the present context, we arrive at the fol-
lowing simple expectation [33 — 35]: Even with the driving, the two isolated regular
regions within the wells remain related by a discrete symmetry, the generalized par-
ity P (see Eq. 5). Accordingly, Floquet states residing within these regions should
form a more or less regular ladder of tunnel-splitted doublets. For states mainly
residing within the chaotic layer, in contrast, random-matrix theory predicts level
repulsion. We therefore expect that, as soon as one of the pairs of quantizing tori
pertaining to the symmetry-related regular regions resolves in the spreading chaotic
layer, the exponentially small splitting of the corresponding doublet widens until
it reaches a size of the order of the mean level separation. As a consequence, the
coherent tunneling on an extremely long time scale will give way to a more irregular
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Fig. 4. Husimi distributions (in gray-scale representation) for the quasienergy state | #7(0)}),
compared with the corresponding classical phase-space portraits, at (a) S = 10~% and (b) § = 0.2.

dynamics on shorter time scales, forming the quantal counterpart of deterministic
diffusion along the separatrix.

We emphasize that the breakup of the tunnel doublets in the chaotic layer is not
a direct consequence of a local property, the positive Lyapunov exponent. Rather,
it depends on the fact that diffusive spreading connects all parts of the chaotic
layer, even across the symmetry plane. Furthermore, one should keep in mind that
the disintegration of a classical torus, looked at closely, is not an abrupt event but
proceeds through an intermediate “leaky” stage with fractal dimension (“cantorus”)
[40]. Even after the cantorus has disappeared, a distinct repelling structure remains
within the chaotic layer (“vague torus”) [41].

In order to check our hypothesis numerically, we have to quantify the distinction
between “regular” and “chaotic” eigenstates, i.e., states located mainly in regions
of a corresponding nature in classical phase space. We base this quantification on
a quantum-mechanical probability density in phase space, the Husimi distribution
(42, 43]. The overlap of the Husimi representation Qq(z,p;t) of a Fquuet state
|1q(t)) with the chaotic layer [18, 19],

= w

2x fw oo 00
To=— dt/ dz/ dpQo(z,p; )L (2, i), (8)
27 -0 Jeoo

can be used as a measure of “how chaotic that state is”. Here, I'(z,p;t) denotes
the characteristic function for the chaotic region. It can be determined numerically,
e.g., by letting a trajectory started anywhere in this chaotic region “tick” boxes in a
coarse-grained phase space of the desired resolution. Since the Husimi distribution
forms a normalized probability distribution over phase space, we have 0 < Ty < 1.
As an illustration of these concepts, we compare, in Fig. 4, the Husimi distribution
for the quasienergy state | #7 ) with the corresponding classical phase space portrait,
for (a) $ = 1075 and for (b) S = 0.2, at phase 0 of the driving.

The simple picture sketched above clearly implies a strong relatlonshlp between
the tunnel splittings Ay = leaax — €2a-1,%| and the overlaps Tzaq &~ Tox. In
Fig. 5, we compare the S dependences of these two sets of quantities for the seven
quasienergy doublets from |, ), |2} to |é13), |#14) [18, 19]. Qualitatively, we
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Fig. 5. Tunnel splittings (a) and overlaps with the chaotic layer (b) for the seven lowest tunnel
doublets, as functions of the amplitude of the driving.
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Fig. 6. Contour plot of the Husimi distribution for the quasienergy state | $13(0) ), at S = 0.2.

observe a striking similarity: There is only a weak S dependence, reflecting the
influence of the growing first resonance, for $ <10~3. For S 210~3, both the tunnel
splittings and the overlaps start to grow exponentially, one by one, starting from
the lowest doublet, so that the range of these quantities reduces by several orders
of magnitude. The regime, on the S axis, of this steep increase coincides with that
of the onset of chaotic motion in the classical dynamics. Insofar, the simple picture
sketched in the Introduction is confirmed. Details of our expectation, however, need
to be revised.

In particular, the notion that each splitting widens individually as the corre-
sponding quantizing torus resolves, is not unambiguously corroborated by the data.
It would imply that the transitions to a large splitting occur “from top to bottom”,
i.e., first for the doublet localized on the outermost torus pair within the separatrix.
Indeed, if this transition is assessed from the splittings passing a certain absolute
threshold, say Ay = 107%, that order is roughly obeyed. If, however, the point of
onset of exponential growth, visible in a logarithmic plot like Fig. 5a, is taken as the
criterion, the order is reversed.

Another remarkable fact is that the widening of the splittings and the concomi-
tant change in character of the eigenstates, as functions of S, are continuous pro-
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cesses that can only roughly be associated with the decay of a KAM torus, taken
as a discrete event. Even doublet states overlapping by 70% with the chaotic layer
may still show a relatively small splitting and exhibit the signature of a regular state
in their spatial structure and time dependence (see Fig. 6). It remains to be clari-
fied whether this retardation of the decay of the tunnel doublets corresponds to the
gradual disintegration of classical tori via cantori and vague tori.

5. Driven tunneling with dissipation

In this section, we are going to extend our working model, Eq. (1), in such a way
that it allows to describe the influence of dissipation and noise on the microscopic
level. We follow the usual procedure of coupling the central system to a heat bath
(44, 45], by adding two terms to the Hamiltonian (1), representing, respectively, the
reservoir and its interaction with the double well,

H(t)= How(t) + Hi+ Hr, Hi=)_ z(gibi +g;b}), Hr =) wi(blb; + %). (9)
1 ]

Here, b;, b! are annihilation and creation operators, respectively, for a boson mode

of frequency w;, and g; is the corresponding coupling constant.

Proceeding in a similar way as in ref. [46], we use the density operator in the
Floquet basis, reduced to the double-well degree of freedom, as the basis of our
description, and resort to the usual rotating-wave and Markov approximations. This
allows to derive the equation of motion for the density matrix & (in the interaction
picture with respect to Hj), in the form of the master equation [46]

508(1) = bap 3 (WasBus ()~ Woaa a(t) +5(1—b0.6) Y (Woa 4 Wig) 50,6 (1),
14 14 (10)

comprising a closed subset of equations for the approach of the diagonal elements
towards a steady state, and another subset describing the decay of the non-diagonal
elements. The coefficients W, s depend on the coupling constants and on the
quasienergies; they are given elsewhere [17].

The classical limit of the quantal dynamics generated by Eq. (10) can be obtained,
e.g., by switching from the density operator to a probability distribution in phase
space, such as the Husimi distribution, and expanding with respect to 1/D. Specify-
ing the frequency dependence of the coupling strength as [g(w)]? = yw/m(1+w?/w?),
where w, is a cutoff frequency, we arrive at the Langevin equation [16, 17]

1 3
i+ 7wc/ dt’'z(t Jexp (—we(t = ') — £(1 + 2ywe) + 2 4+ Scoswt = F(). (11)
—o0 2 16D

Here, f(t) is a random force with the autocorrelation function (f(t)f(t')) = yksTwc

exp(—wc|t — t'|). Eq. (11) describes a bistable Duffing oscillator {6 — 9] with Ohmic
damping and fluctuations.

The master equation (10) can now serve to investigate the influence of dissipation

on the coherence effects characterizing driven tunneling, as discussed in Section 3
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Fig. 7. Driven tunneling with dissipation. (a) Time evolution of P (t,) over the first 2 x 10° time
steps; (b) local spectral two-point correlation function P{ (1) as obtained from (a). The parameter
values are as in the corresponding conservative case shown in Fig. 1 (repeated here in dashed lines),
but with a finite damping constant, ¥ = 4 x 1075, at zero temperature.
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Fig. 8. Coherent suppression of tunneling in the presence of dissipation. (a) Time evolution of
P%(tn) over the first 107 time steps, at a parameter point (D = 2, w = 0.01, and S = 3.171 X 10~3)
close to Sj,c o(w) (see Fig. 2a), for v = 10~% and various values of T, starting from a pure,
minimum-uncertainty state centered in one of the wells (inset: the first 2 x 10* time steps on an
enlarged time scale); (b) temperature dependence of the decay time 7 of P?(tn) for three values
of the detuning Aw from the manifold Sioc o(w) (graph 1: Aw = —1.4 x 1077, as in part (a), 2:
Aw=50x10"T at S = 3.1712 x 1073, 3: Aw = 1.4 x 10~% at S = 3.1715 x 10~3). The other
parameters are as in part (a). The data shown do not extend down to T = 0, where 7(T') diverges,
but start only with the rising part of this function.

[16, 17]). Fig. Ta shows the time evolution of P?(t,) = tr[o(¢,)c(0)] (the analogue
of P%(t,), see Eq. (6)) with an initial state o(0) = | ¢(0)) ( #(0) | and parameters
of Hpw as in Fig. 1, but with a finite damping constant y = 4 x 10-5, at zero
temperature. The complex quantum beats characteristic of the corresponding con-
servative system (dashed line) die out and give way to a steady state with a finite
constant value of P?(t,) (in a periodically driven system, the stationary state may
still possess a time dependence, with the period of the driving, which however is
invisible in a stroboscopic plot like this). The broadening of the quasienergy levels,
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due to the incoherent transitions described by Eq. (10), can be read off the Fourier
transform of P?(t,), Fig. Tb.

A particularly interesting question is whether the coherent suppression of tun-
neling observed in the conservative case (see Section 3), will survive in the presence
of dissipation: In order to obtain an adequate description also of this phenomenon
on basis of a master equation like Eq. (10), we have to avoid part of the rotating-
wave approximation used in its derivation. This approximation is valid only if the
time scales of the classical relaxation and of the conservative quantal dynamics are
clearly separated. However, in the vicinity of the manifolds Sioc x(w) where the
tunnel splitting vanishes (see Fig. 2a), exceedingly small energy scales and corre-
spondingly large time scales occur in the undamped dynamics. This necessitates to
take also quasienergy transitions into account that virtually violate energy conser-
vation. Details of this refinement of the master equation are given in refs. {17, 47].

Fig. 8a shows the time evolution of the autocorrelation P?(t,) at a parameter
point (D = 2, w = 001, S = 3.171 x 10™3) very close to, but not exactly on,
Sioc,0(w), for ¥ = 10=¢ and various values of T. For low temperature, P?(t,) ex-
hibits a slowly decaying coherent oscillation with a very long period, due to the
slight offset from Sioco(w). Also here, there exist superposed oscillations reflect-
ing the admixture of other quasienergy states. Their decay is visible only on an
enlarged time scale (inset in Fig. 8a). Asymptotically, the distribution among the
wells is completely thermalized. With increasing temperature, the decay time of
the slow coherent oscillation first decreases until this oscillation is suppressed from
the beginning (the corresponding part of the graph is not shown in Fig. 8b). After
going through a minimum, however, the thermalization time increases again. At
a characteristic temperature T™, this time scale reaches a resonance-like mazimum
where the incoherent processes induced by the reservoir stabilize the localization of
the wave packet in one of the wells and thus compensate for the detuning introduced
deliberately. In Fig. 8b, we present the temperature dependence of the decay time
7 (defined by P°(tn) ~ exp(—n/7)) for three values of the detuning Aw from the
manifold Sioc o(w): With increasing Aw, the maximum is shifted towards higher
temperatures and decreases in height. A variation of 7 reveals that there exists a
similar, resonance-like dependence also on the damping constant {47). .

We emphasize that this stabilization of the coherent suppression of tunneling
by noise is distinct from the trivial localization by strong damping. In fact, it has
already been observed in a model simpler than the present one, where the determin-
istic harmonic driving of the double well was replaced by a noisy one, so that the
time evolution remained unitary and a damping could not occur [12]. Rather, this
phenomenon bears some resemblance to the quantum Zeno effect in a bistable system
[48), and to the classical stabilization of instable equilibrium states by multiplicative
noise [49, 50).

Up to now, we discussed the influence of dissipation on coherence effects. Con-
versely, one may also ask how the classical dynamics of the driven damped Duffing
oscillator [6 - 9] is modified by quantal interference. A hallmark of the classical dy-
namics 1s the existence of attractors of various degrees of complexity, as a function
of w, S, or 7. In Figs. 9, 10 [47], we choose parameter values (D = 6, 5 = 0.0849,
w =09, v = 1073 and T = 0) where classically, there exist five limit cycles, with
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Fig. 9. Quantal stationary state. Asymptotic Husimi distribution at D = 6, § = 0.0849, w = 0.9,
¥ =10"%,and T = 0, at phases (a) 0 and (b) /2.

the frequency of the driving: two symmetry-related pairs with one partner within
each well, and a single one encircling the wells. Fig. 9 shows the Husimi distribution
in the stationary state at phases (a) 0 and (b) #/2. The broadening by quantal noise,
compared to the corresponding classical, delta-like asymptotic distributions is obvi-
ous. In Fig. 10, we compare the distributions of Fig. 9a to the phase-space portrait
of the corresponding conservative classical system. Both the classical attractors and
the maxima of the quantal stationary distribution, while not coinciding exactly, are
located near elliptic fixed points of the conservative dynamics and can be associated
with the regular regions around the potential minima and the first resonance, re-
spectively (the fifth limit cycle outside the wells is not significantly populated in the
quantal stationary state). Furthermore, we see that the quantum noise preferentially
broadens the stationary distribution along the limit cycle to which the corresponding
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Fig. 10.
S = 0.0849, w = 0.9, v = 10~%, and T = 0, compared to the limit cycles of the corresponding
classical system (the positions on the cycles at phase 0 are indicated by asteriscs), and to the

phase-space portrait of the corresponding conservative dynamics.
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Fig. 11.
3 x 10° time steps, at paramater values as in Figs. 9, 10, but with v = 5 x 107¢, for initial
states prepared as coherent states located at either one of the maxima of the stationary Husimi
distribution in the left well, i.e., at p =0 and (a) ¢ = —7.5, (b) z = —-4.2.
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Fig. 12. Transient tunneling between limit cycles. Husimi distribution at various times, for initial
states prepared as coherent states located at either one of the maxima of the stationary Husimi
distribution in the left well,i.e. at p=0and (a - c) z = 7.5, (d - f) £ = —4.2. The positions, at
phase 0, on the limit cycles of the corresponding classical dynamics are indicated by asteriscs.

classical attractor belongs. This is the direction in which the classical phase-space
flow is least contractive [51].

While the smoothing due to quantum noise is the only quantum effect left in the
stationary state, a remnant of coherent tunneling survives in the transient behavior
[47]. Fig. 11 shows the time evolution of P?(t,) for the same parameter values as
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above, with the initial states prepared as coherent states at the location of either
one of the maxima of the asymptotic distribution (see Fig. 10) within the left well,
corresponding to nonresonant motion (a) and to the first resonance (b), respectively.
In both cases, we observe a coherent oscillation decaying as the stationary state
is approached. Fig. 12 reveals that these oscillations indeed form a remnant of
tunneling within each the symmetry-related pairs of regular regions. The stationary
distribution among both pairs is reached only on the longer time scale of the classical
relaxation. Clearly, we here observe tunneling between limit cycles.

6. Summary

The present paper is intended to highlight a number of facettes of the nonlinear
dynamics in a periodically driven double-well potential, at different stages of the
transition from microscopic, coherent to macroscopic, incoherent behavior. Our
main tool has been a numerical analysis on basis of the Floquet formalism, which
allows to speak of quasienergies and quasienergy eigenstates of the driven system,
in analogy to eigenenergies and eigenstates in the undriven case.

In the deep quantal regime, we find modifications, due to the driving, of the
familiar tunneling. They range from a mere acceleration of its rate, in the two
extremes of slow and of fast driving, through complex quantum beats near resonances
with the unperturbed system frequencies, to an almost complete suppression of
tunneling by a coherent mechanism effective along one-dimensional manifolds in the
parameter space spanned by amplitude and frequency of the driving.

Towards the semiclassical limit of the conservative system, the quantal behavior
begins to exhibit clear traces of the classical dynamics. Specifically, we addressed
the interplay between coherent transport by tunneling and diffusive transport along
the chaotic layer developing in the vicinity of the separatrix of the undriven system.
Eigenstate doublets residing within the paired, symmetry-related regular regions
of the classical phase space exhibit exponentially small splittings and thus support
tunneling. As the pair of quantizing tori pertaining to such a doublet resolves in
the chaotic sea, the splitting widens and tunneling gives way to a more complex
dynamics contributing to the quantal counterpart of chaotic diffusion. On a closer
look, however, the scenario turns out to be less simple. For example, classical tori
disintegrate only via intermediate steps, dubbed “cantori” and “vague tori”, with the
consequence that the transition from a regular to a chaotic nature of a quasienergy
eigenstate is not sharply defined, but rather proceeds in a smooth and retarded
manner. Accordingly, a strict distinction between regular and chaotic regions is
inadequate on the quantum-mechanical level.

The other principal ingredient of the crossover to macroscopic behavior, besides a
small relative &, is the coherence-disturbing effect of the ambient degrees of freedom,
modelled microscopically as a coupling to a quasicontinuous reservoir. As an imme-
diate consequence, the incoherent processes render the coherence effects observed in
the deep quantal regime transients. Surprisingly, however, the coherent suppression
of tunneling is stabilized if damping constant and reservoir temperature are in a
specific regime, a result akin to the quantum zeno effect and to the classical stabi-
lization of instable equilibria by multiplicative noise. On the time scale of classical
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relaxation, the dissipative quantum dynamics approaches a stationary state which
forms the analogue of the attractors of the corresponding classical dynamics. The
most conspicuous quantum effect left in these stationary states is a broadening due
to quantum noise. It is not isotropic, but acts preferentially in the direction where
the classical phase-space flow is least contractive, that is for example, stronger along
limit cycles than transverse to them.

Quite a number of questions have been left open. In the conservative case, they
concern, e.g., an analytical description, in terms of semiclassical concepts, of tunnel-
ing in the presence of chaos. In the parameter regime of the dissipative system where
several strange attractors coexist, both transient tunneling between their basins of
attraction, and the quantal smoothing of the fractal basin boundaries [52] could be
addressed. Finally, it should be checked whether the phenomenon of stochastic res-
onance, generated by external classical noise in periodically driven bistable systems
[563], can be induced by the inherent quantum noise as well.
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