Surmounting Fluctuating Barriers

PETER HANGGI

Abstract. Escape over fluctuating barriers in the presence of thermal white noise is addressed.
Several general results are established, for stochastic barrier fluctuations being controlled
by colored Gaussian noise. Qur findings are exact in the limit of white noise sources and
(partially) in the limit of extreme large noise color, and are approximate for intermediate noise
color. As one main result we find that the escape time can generically exhibit a minimum
resonant activation, whenever the colored noise intensity is an increasing function of the noise
correlation time. The effects induced by correlated noise sources and the influence of quantum
tunneling are addressed as well.

1. Introduction

Ever since the seminal achievements by Svante Arrhenius and Hendrik
Antonie Kramers, the problem of escape from metastable states continues
to attract ever growing interest, e.g. see [1, 2]. In particular, interesting vari-
ations of this topic arise when studying transport in complex systems, such
as in glasses [3] and in proteins [4]. In this context the problem of escape
over stochastic barriers has moved into the limelight within several scientific
communities [5-12].! The interest in this concept of noise-assisted escape
over fluctuating barriers has germinated when describing complex nonequi-
librium systems such as the migration of ligands in proteins [4], molecular
dissociation in strongly coupled chemical systems [5], or electron transport in
a quantum double well structure [13], which is subjected to an external fluc-
tuating voltage-bias, to name only a few examples. The problem area is also
closely related to noise-assisted escape in systems with fluctuating potential
parameters [8—10]. A characteristic feature of all these cases is that these are
open systems, being in contact with one or more fluctuating environments,
i.e. we deal with complex nonequilibrium systems, in which the fluctuations
are generally not related to a fluctuation-dissipation theorem of the Einstein—
Nyquist type. It must further be emphasized that — although related — the
fluctuating barrier concept is different from the phenomenon of stochastic
resonance [14, 15], with the latter being characterized by time-dependent,

! In particular note the News and Views contribution in [5].
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but deterministic barrier modulations; i.e. the continuous time-translation
symmetry is broken, thereby rendering these latter systems nonstationary
nonequilibrium systems.

As correctly emphasized already in [6], noise-assisted escape over fluctu-
ating barriers involves several relevant time-scales. In particular the typical
fluctuating barrier time-scale can be either very small, comparable to, or even
be much larger than the average molecular time-scale characterizing local
relaxation within metastable states. Therefore, the escape dynamics for the
reaction coordinate z(t) is generally governed by a non-Markovian process
driven by both, white environmental noise £(t), and colored, generally mul-
tiplicative barrier fluctuations ((t). The problem of obtaining the average
escape time over fluctuating barriers thus becomes a challenging problem,
because generally even the stationary probability is not known. Indeed, in all
previous studies [6—12], one has been forced to impose severe limitations.
These constitute either the restriction to the white or almost white noise limit
(i.e. small colored noise limit) for the barrier-fluctuations [8—12], or the dis-
cussion had been restricted to both, the use of a very simple colored noise
structure, such as exponentially correlated two-state noise, driving the barrier
fluctuations (i.e. dichotomic noise ((t)) together with a stylized metastable
potential composed of a piecewise linear barrier and piecewise linear wells
[6, 7]. Even in this case the analytical analysis is already very complex so
that Monte-Carlo simulations had been invoked [6, 7]. Nevertheless, Doering
and Gadoua [6] discovered within these latter limitations a most interesting
resonance — like phenomenon for the behavior of the average escape time;
i.e. the escape time in their study did not grow monotonically with increasing
noise color 7, but instead did exhibit a minimum near a ‘resonant’ barrier
fluctuation rate 7,~!. Clearly, the question then arises if this phenomenon is
universal, i.e. if it still holds for realistic potential shapes and/or more realistic
colored noise sources ((t).

The task to answer these open challenges stimulated the present work,
Here, I have succeeded to obtain several results, which describe a variety of
general phenomena for noise-assisted escape over fluctuating barriers. Most
importantly, one finds that the resonance-phenomenon can occur generically,
whenever the colored noise intensity, @ = [;° |(¢(t)¢(0))| dt increases with
increasing noise-correlation time 7.

2. The approach

The starting point for our considerations is an arbitrary bistable flow for
the reaction coordinate x. Explicitly, with the static metastable potential
denoted by U(z), we have & = —U'(x) = f(z), which possesses two stable
deterministic fixed points f(z4), with f'(z+) < 0, and one unstable fixed
point f(z*) = 0, with f'(z*) > 0, see Figure 1. The barrier fluctuations
are governed by a fluctuating potential W (z,{) = —((t) [* g(y) dy, with
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Fig. 1. Escape over a fluctuating barrier. The solid line depicts the static potential with z 4
denoting the stable states and z* the unstable, activated state. The thin gray lines present two
realizations for the fluctuating barrier. The dashed line shows a slight modification of the static
potential away from barrier top which in turn changes the corresponding value for the resonant
noise color 7, see text below Equation (18).

¢(t) a colored noise source. The function g(z) = —W'(z,{ = 1) denotes
the corresponding force-profile, which up to the condition —g(f/g)’ > 0
within the bistable region (x_,x,), can be chosen arbitrarily. Throughout
this work, the prime denotes a differentiation with respect to x. The escape
over a fluctuating barrier is then governed by the nonlinear non-Markovian
Langevin equation

& = f(z) +g(z)((t) + V2T £(3), )

where £(t) is white Gaussian noise of vanishing mean and correlation (£(t)
&(s)) = 8(t — s), reflecting environmental (thermal) noise, while the colored
noise ((¢) controls the barrier fluctuations. A common example for f(z) is
the archetypal Landau flow f(z) = az — b23, a > 0, b > 0; while g(x)
could be Gaussian, i.e. W(z,() = ~([20)~! exp(—ax?), yielding g(z) =
x exp(—ax?).2 Note, that for o = 0 we have g(x) = x, which corresponds
to a fluctuating barrier curvature (8],1.e. ¢ — a + {(t). In order to define the
stochastic process in Equation (1) completely it is necessary to specify both
the individual and the joint statistical properties of ((t) and £(t). Bearing
in mind the central limit theorem, we use for ((t) a Gaussian statistics. For
the sake of simplicity only, we choose an exponentially correlated Gaussian

2 Inthis case —g(f/g)' = 2ba”® — 2az®(a — bz?), being nonnegative within [z = —4/a /b,
z4 = +4/a/b] for a < bfa, see also [22].
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noise (Ornstein—~Uhlenbeck process) of vanishing mean and the correlation,

_Q ( |t~ Sl)

(C(6)C(s)) = — exp — - 2
Moreover, to start with we make here the assumption that {(t) and £(t) are
independent, i.e. (C(¢)¢(s)) = O for all ¢, s; see however Section 4.3 below.
The non-Markovian, multiplicative Langevin equation in Equation (1) is then
equivalently recast as a two-dimensional (Stratonovitch—)Langevin equation,
reading

& = f(x) + g(z)C(t) + V2T £(t) 3)
é:—}<+‘/—f—@n(t), @

where 7(t) is again Gaussian white noise, obeying (n(t)n(s)) = 6(t —s), and
(n(t)€(s)) = 0. The white noise limit then emerges naturally by observing
that lim_o = ({(£)¢(0)) = 2Q45(2).

The idea underlying our approach is as follows: In realistic situations the
(dimensionless) noise intensities 7" and @ are ‘small’. With T < 1, Q <« 1,
but with the ratio R = /T finite, we encounter escape times which are
exponentially large. Put differently, the (forward: x_ — x.) escape time 7
exhibits an Arrhenius-like behavior, which is dominated by the ratio of the
stationary probability 5(z, 7) at the stable state 2_ and the unstable state z*.
Setting p(x,7) = h(z,7)exp[—P(z, 7, R)/T] one has within exponential
accuracy

)

T(R,T) < exp (%ﬂ) ,

T

where in terms of the effective potential ® the barrier height equals A® =
®(x*) — ®(x_). Thus, we are not interested in obtaining an accurate approx-
imation of the non-Markovian Langevin dynamics in Equation (1) on all
time-scales, but rather are interested in the long-time dynamical properties
only. Indeed, if one studies the limit of small noise color by expanding Equa-
tion (1), via the functional derivative method [16], around the 7 = O limit
one finds — in agreement with the general theory [17] — that there exists to
leading order in 7 no small —7 effective Fokker—Planck equation. With ¢ (¢)
colored, the flow in Equation (1) can thus never be transformed into purely
additive noise alone. This fact in turn implies a third order Kramers—Moyal-
type contribution for the rate of change p;(x, 7), being of order 7. Moreover,
it is of interest to establish whether novel phenomena such as the resonant-
like behavior of Doering and Gadoua [6] persist under realistic conditions; in
particular, that they are not the mere result of some ‘prefactor-effect’ appear-
ing only at strong noise intensities Q and/or T within a stylized metastable
potential form.
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In the presence of a single colored noise source ((t) only, the unified
colored noise approximation (UCNA) [18] has proven to accurately model
the stationary dynamics of colored noise driven flows [18, 19]. Borrowing
the reasoning underlying [18], one can similarly implement this long-time
approximation scheme for the flow in Equations (3, 4). In terms of the process
u(t), i.e. ug(z) = f(z) + (g(z), Equations (3, 4) can be recast as

i=ug+V2T¢ (6a)

i = = 2= ot/ |us ' (H19)
+77'V2Q 0+ (f/9)' V2T €. (6b)

By use of the time-scale £ = t7—!/2 [18], the deterministic equation corre-
sponding to Equation (6b) reads

u
% = —{r72 = P2g(f/g) }u+772(f/9). (7)
With the nonlinear friction obeying v(z,7) = 7712 — 7=Y24(f/g)’ > 0
for all 7 when —g(f/g)' > 0 we note that y(z,7) > 1 both for 7 — 0 and
7 — oo. An adiabatic elimination of u thus renders the generalized UCNA for
Equation (1), i.e. the (Stratonovitch—-)Markovian—-Langevin approximation
reads in the original time-scale ¢

&= [1-19(f/9))"Hf +9v2Qn+ V2T ¢}. (8)

which possesses a corresponding Fokker-Planck equation. In passing, we
note that the same (Stratonovitch—)Fokker—Planck equation corresponding
to Equation (8) results if one performs within the configuration-state path
integral representation for the non-Markovian process in Equation (1) a
self-consistent Markovian approximation in the non-Markovian—Onsager—
Machlup functional, cf. [20]. The stationary probability (up to a normalization
constant) thus reads

o {U=rg(f)e)| [ flL=Tg(f/g)]
D S T ReEE P T R

€))

The result Equation (9) approximates generally (i.e. 7 not very large)
accurately the stationary non-Markovian probability over the bistable region
(z_,z4) within its support, i.e. in z-regions obeying [1 — 79(f/g)'] > O,
see the reported results in [18, 19]. It should not go unnoticed, however, that
the generalized UCNA in Equation (8) exhibits some troublesome difficulties
for R = (Q/D) — 0, i.e. for ‘small’ colored noise in presence of white
noise £(t). Indeed, setting Q@ = 0 in Equation (8) leaves us — via the term
(1 — 79(f/g)'|~! — with a dependence on noise color 7, which also impacts
the stationary behavior in Equation (9). Note, that p(z,7) in Equation (9)



98

is still dependent on 7 if we let R — 0, with 7 held fixed. Thus, the limit
R — 0, with 7 not very small, is problematic for the generalized UCNA in
Equation (8). This shortcoming is due to the presence of the additional fast
time-scale represented by the (additional) white noise source £(t) of strength
D [18b] (cf. also the remark stated by Reimann in [7d]); it is being increasingly
cured with increasing strength @ of the noise color. The shortcoming can be
remedied if we consider the more complicated, auxiliary process © — u =
C+(f/g) - {1 +(T/Qg®[1 — 79(f/9)']}~". An adiabatic elimination of
u(t), i.e. u(t) = O, then provides a generalized UCNA with the correct
behavior as 7 — 0, and which with u(t) — 0 as 7 — oo is correct also for
T — oo (independent of the strength of the noise intensity Q). As a result
the denominator in the exponential in Equation (9) becomes substituted by
[1 4+ Rg% — [1+ Rg* — 79(f/g)'], see in [22].

3. Average escape time over fluctuating barriers

With the long-time approximation to Equation (1) in hand, it is smooth sailing
towards obtaining the average escape time 7. This can be estimated by the
mean first passage time (MFPT) expression for the one-dimensional Fokker—
Planck process in Equation (8), i.e. Typpr(z— — z4+) = T(R, 7) is given by
the two quadratures

T4 z
P dz _
TR =T [ Gt | P @ (10)

where z = x has been chosen to be an absorbing boundary, and Deg(z,7) =
(1 + Rg®)[1 — 79(f/9)']~% > 0. With weak noise, the steepest descent
approximation to Equation (10) explicitly reads

2m
|f’(x#)f’(x_)|1/2
x {[1 = 79(f/9) lomatlt = 79(F/9)|a=s_}""?

AD(R,T)
X €xp (—T—> 1)

T(Ra T) =

with the effective barrier height given by

O(R,7) = 7 1)1 - rg)(F @)/ 9w))} dy
[1+ Rg*(y)]

> A<I>(R,7') =0). (12a)
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An improved approximation A®"™P™¥ed for large noise color follows with
help of the substitution mentioned below Equation (9); i.e.

ot 1 | S0 = @) ()o@} dy
AR = = | [+ RAG) - re) () /9w

= [ . (12b)

We remark that A®™P¥ed becomes with g = const and with f(z) piecewise
linear an exact result [7¢,22].

Here, Equations (11, 12b) present a most accurate approximation to the
exact non-Markovian escape time for 7 — oo, and 7 — 0, i.e. y(z, T) — oo.
For other values of noise color, the result in Equation (11) implicitly presents
a crossover result, bridging smoothly between the limits of small and large
noise color.

We remark that the condition —g(f/g)’ > 0 in (z_,z4) can be relaxed
without changing the qualitative features of our results (see also in [22]):
With 25 (), ie. (1 —7g(f/g)) =0atz®,z_ < z° (1) < x*, the effective
diffusion becomes singular at z* (7). Escape then predominantly occurs near
x* (7), i.e. the upper integration limit in Equation (12) is substituted by z* (7).
The fact that the diffusion is singular at z° (1) — just as is also the case for
the action-diffusion for the Kramers time at weak friction [1] — nevertheless
yields with smooth A®(R, 1) a well-defined escape time. We also like to
point out that the use of z*° (), rather than z¢ = z° (1 — o0) < z°(7),
also considerably improves the result for colored noise driven escape at finite
T-values, cf. [18c].

4. Results

From Equations (9-12) we can now establish a variety of general findings.
First we shall consider the limit of white noise for both the barrier fluctuations
¢(t) and the internal thermal noise £(¢).

4.1. The limit of white noise

For zero noise color 7 = 0, the above results in Equations (7-12) become
exact. The MFPT in Equation (10) can be evaluated at weak noise up to order
O(T?) to give:

2w
(|2" (%)@ (z-))"/2

T(R,7 =0) =T(R) = exp(A®(R)/T)
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8 |2 (z*)|? (2"(z-))?
5 Mahh(z_)(@" () | Ma*)h(z_)(2"(x-))?
24 ( @A ()] )] } - (19
where ®(z) is the effective potential
3(x) = [ 11+ R dy. (142)
and h(z) is a state-dependent form function given by
h(z) = (1+ Rg*(z))~"/?, (14b)

which is assumed to be smoothly varying.

The third (1/8 . . . ) and fourth term (5/24 . . . ) within the squared brackets in
Equation (13) describe the well-known [21] steepest-descent correction to the
Smoluchowski escape time, while the additional first and second contribution
emerge due to the multiplicative character of the white noise sources, cf.
Equation (1).

From Equation (12) we further find

AP(R) < AP(R =0). (15)
Moreover, from Equations (11) and (15) the escape time 7 (R) is monotoni-
cally decreasing with increasing R = Q/T, i.e.

T(R)<T(R=0). (16)
The result in Equation (16) is in agreement with prior studies investigating
white noise driven escape over fluctuating barriers (8, 11, 12].

4.2. Case with colored noise

‘We now turn to the main focus of our work, namely the escape over fluctuating
barriers which are modulated by colored noise of weak-to-moderate-to-strong
noise correlation time 7.

(1) Fixed colored noise intensity. With 7" < 1, Q@ < 1 let us keep fixed
the ratio R = @/T. The colored noise assisted escape time over a fluctuating
barrier is then always enhanced, i.e.

T(R,7) > T(R,7=0), with
T(R,7)—>T(R=0), as 7 — oco. 17
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We note from Equation (12b) that this increase is Arrhenius-like, and it occurs
monotonically.

The characteristic behavior in Equations (16, 17) can be made plausible if
we observe that in the white noise limit the escape is driven by an enhanced
state-dependent temperature T(z, R) = T(1 + Rg*(z)) > T, while from
Equations (9, 11) colored noise driven escape (at R fixed) is governed by a
lower, effective temperature T'(z,7) = T/(1 — 79(f/9)') < T.

(ii) Resonant activation. If one notes the two inequalities in Equations (16,
17), which are obeyed monotonically, one finds that the overall effective
temperature in Equations (9, 11), i.e.

T(z,m) = T(1 + Rg*(x)){1 - r9(x)(f(2)/9(2))'} '
= T7'T(z, R)T(z,7)

— which in turn controls the escape process — can be either smaller or
larger than T. Therefore, with R not held fixed, but being a function of
noise color 7, such that R(7) increases with increasing noise color, a com-
petition between the monotonic decrease in Equation (16) and the mono-
tonic increase in Equation (17) becomes possible. With R = R(7) being
increasing with 7, the escape time 7 (R(7),7) can thus attain a minimum
at a ‘resonant’ noise correlation time 7, for which the effective barrier
height A®(R(7), ) assumes a minimum value! Setting from Equation (11)
T(R,7) = A(r)exp[A®(R,7)/T), with A®(R(7),7) given by Equa-
tion (12b), the resonant value (or values) 7, obeying d7 (R(r),7)/dT = 0
can, with A(7) = const, be estimated from the minimum of A®(R(7),7),
i.e. from (12b)

7‘f {®RM))9(f 1) + (&) (1 = 79(f/9)")}
J [1+ R(r)g* —79(f/g)']?

which with f < 0,¢(f/g)’ < Owithin (z_, z*)and (dR/dT) > Oalways pos-
sesses, with sufficiently strongly increasing R(7), a solution for 7,.. The width
of the ‘resonance’ can further be estimated from the inverse of (d2A®(R(7),
7)/d7?). Most importantly, we note that the value of the ‘resonant’-color
time 7, is not attained at the adiabatic minimum of the fluctuating barrier, but
depends globally on both the static metastable potential shape (or its force
f(x)) and the barrier-modulation function g(x). Put differently, modifying
slightly the potential away from the barrier top dictates already a differ-
ent ‘resonant’ noise color value 7., cf. Figure 1. This resembles very much
quantum tunneling where the Gamow-factor for barrier transmission depends
globally on the potential shape and not just on the barrier height, as is the case
for thermally activated escape [1]. Within the piecewise linear barrier model
driven by two-state noise in [6] the authors implicitly used Q/7 = const=C',
i.e. R(7) = Q/T = Cr/T indeed increases with increasing noise color 7.
Thus, upon inspecting Equation (11) with R(7) being a function of noise
color 7, the effective barrier A®( R, 7) in Equation (12b) exhibits one amongst

dy =0, (18)
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Fig. 2. Deterministic trajectories for the archetypal Landau flow: ¢ = z —z3 4z ;{ = —(/7,
for the noise correlation time 7 = 15. The dotted line depicts the line of turning points
e(z) = x? — 1. The separatrix is given by the line z = 0.

the following three characteristic behaviors: (I) with a solution of Equa-
tion (18) at finite 7, the effective barrier depicts a minimum as a function of
increasing 7; (II) with Equation (18) obeyed only for 7 — oo the effective
barrier increases towards an asymptotically flat value as 7 — oo; (IIT) with
R(7) not sufficiently increasing with 7 the behavior is as in Equation (17).

(iii) Symmetries. We next consider symmetric bistable potentials U (z)
such that —U’(z) = f(z) = — f(—z) is an odd function. The flow in Equa-
tions (3, 4) then exhibits a different symmetry depending whether the barrier
modulation function g(x) is even or odd, respectively; i.e.

inversion symmetry: z— -z, (- —( ifg(z)=g(-x) 19)

reflection symmetry: z— -z, (- +¢ ifglz)=—g(-z). (20)
These symmetries drastically impact the behavior of the separatrix, which
divides the deterministic domain of attraction of the bistable flow in Equa-
tions (3, 4). With an odd modulation, the separatrix is described by the line
z = 0, whereas for even g(z) (e.g. g(z) = const) the separatrix is moving
into the x — (-plane, crossing at (x = ¢ = 0) from left to right [18c, 23].

(iv) Behavior at extreme noise ratios R. It turns out that the behavior
for T(R, ) exhibits a different asymptotic behavior depending on whether
Q/T = R < 1, 0r R > 1. In the latter case the escape is dominated by the
noise intensity (), rather than 7. Putting a particle initially at x = z_, the
escape dynamics within the (z, {)-phase space of Equations (3, 4) closely
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follows for R >> 1 the line e(z) = —f(z)/g(z), where the deterministic
flow lines (i.e. T = Q = 0 in Equations (3, 4)) exhibit turning points, i.e.
d¢/dx = oo, see Figure 2. If we denote by (s the maximum of |f(z)/g(z)|
within (z_, z*), the asymptotic behavior for 7 (R > 1, 7) reads

T(R > 1,7) = T(R)(1+O(r)) exp [7(¢ + O(R™")/2Q] .@1)

Note that for 7 — oo, the exponential increase given by the last term domi-
nates over all the remaining contributions.

For the bistable symmetric Landau potential with a fluctuating curvature
[22], ie. f(z) = az — bx?, g(x) = , one finds Cps = a, i.e. Equation (11)
yields

T(R> 1,7) = T(R)(1 + 2a7)'/?

a® ab a
4+ 22 (1= had
xexp{r[2+E ( ln(l-i—bR))

+O(R"L,R %I R)] /Q}, (22)

while in the opposite limit, R < 1, which is problematic within the convential
UCNA, cf. below Equation (9), the escape time behaves as

T(R< 1,7) = T(R)(1 + 2a7)?exp(a®1/6bT), ar < 1. (23)

This makes explicit that in the latter case with Q@ — 0,7 — 0, T > Q, the
escape is dominated by the additive thermal noise &(t).

4.3. Correlated noise sources

Throughout the above analysis we assumed that the colored noise ¢ (t) driving
the barrier fluctuations and the internal white noise £(t) were not correlated.
This assumption, however, might not always hold a priori. In particular, when
the barrier fluctuations are not imposed externally by the experimenter, but
rather are the result of strong couplings to random nonequilibrium environ-
ments, additive and multiplicative noise contributions likely become corre-
lated. Within our approach, such a correlation can be described by setting in
Equations (3, 4) (n(t)é(s)) = pé(t — s) with |p| < 1, which guarantees a
positive definite diffusion tensor. The corresponding UCNA-Fokker—Planck
equation becomes rather complex, reading explicitly

b =~ ({07 @ n)f + Qe @, ) (C )Y

+TC Yz, 7(C Wz, 7)) + p/QT C~ Nz, 7)
x g7 @ 7)) +9(C7'(z,7))] } 1)

+T08—; ({c2@ N + R +20VRglpi}),  @4)
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where C(z,7) = 1 - 7g(f/g)" has been used. For the corresponding Arrhe-
nius factor one obtains from Equation (24) the result
#

A(Brp) = [ SO =T /a))

. 25

; [1+ Rg%+ 2p+/Ryg v (25

Equation (25) again can be improved by setting

.’D*
- 1-19(f/9)'}
AP™VU(R T, p) = — / A dy. (26)
J 1+ Rg* +2pv/Rg — 79(f/9)']

For the important case of a symmetric static barrier, f(z) = —f(—=z) and

symmetric barrier modulations W (z) = W(—xz), i.e. g(z) = —g(—x), the
forward and backward escape times 7 (R, 7) are no longer equal. From
Equations (25, 26) we find with p > 0: T,.(R,7 = 0,p) < T, (R, T,p),
and 7. (R,7,p) > T_(R,7,p) > T_(R,7 = 0,p), where we assumed
g(z—2*) < 0, for (x —z*) < 0. Here 7. denotes the forward (z_ — ) and
backward (z.. — x_) escape time, respectively. For zero noise color 7 = 0,
the above effective barrier becomes exact, yielding T, (R, p) > T_(R, p),
p > 0. However, we find that 7,.(R, p) < 7 (R = 0) generally is no longer
obeyed. This is so, because the two contributions Rg? and 2p/Rg making up
the diffusion coefficient are with g < 0in (z_, z¥) of different sign. We thus
have the paradoxical finding that in presence of additional white noise ¢(t)
the escape time 7., — contrary to common belief — can increase (correlated
slow-down of escape!).

4.4, Influence of quantum tunneling

The escape over fluctuating barrier configurations has thus far been treated
solely classical. At low temperatures, the noise sources characterizing envi-
ronmental fluctuations £(¢) and/or the fluctuations which control the barrier
shape become influenced by quantum effects. The typical temperature scale
at which tunneling effects compete with thermal hopping is given by the
crossover temperature 7 [1]

To ~ huwy(2mkp)™", 1))

where wj, denotes a characteristic (average) value for angular frequency at the
barrier top. It has been demonstrated elsewhere [27] that within quantum tran-
sition state theory the quantum noise near and above Ty can approximatively
be accounted for by merely raising the noise temperature (or noise intensity,
respectively) according to

T—T [1 — 2w} + wg)/(24TAU)“] . (28)

Here, w% denotes a characteristic value for the curvature at well bottom and
AU characterizes the average barrier height. At even lower temperatures
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T < T, the analysis of the escape requires a detailed study for a metastable,
stationary nonequilibrium quantum system.

5. Conclusions and outlook

There are a number of further investigations suggested by our general study
of noise — assisted escape over fluctuating barriers. The role of correlated
noise sources certainly deserves future research efforts. Another area which
remained untouched is the study of inertia effects, and more generally, the
influence of additional relevant degrees of freedom, i.e. the role of multidi-
mensional (fluctuating) barrier crossing [24]. In presence of colored noise
sources this latter task obviously becomes very difficult [1, 18c, 18d].

We could demonstrate that the phenomenon of ‘resonance-like’ escape in
[6] is generic if the noise temperature Q(7) is sufficiently strongly increasing
with increasing noise color 7. This resonance essentially occurs when the
color-induced effective barrier in Equation (12b) assumes a minimal value:
Its minimum depends globally on both the static potential shape U (x) and the
barrier modulation W (z). In the context of surmounting fluctuating barriers
in metastable nanostructures, the influence of non-Gaussian statistics (e.g.
shot-noise) for both the colored noise source ¢(t) and the white noise £(t) is
of integest as well. The author hopes to return to this latter area in a future
study.
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