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NUMERICAL SIMULATION OF SURFACE ACOUSTIC WAVE
ACTUATED ENANTIOMER SEPARATION BY THE FINITE

ELEMENT IMMERSED BOUNDARY METHOD

R.H.W. HOPPE∗, C. LINSENMANN† , AND K. ZELEKE‡

Abstract. Enantiomers are chiral objects such as chemical molecules that can be distinguished
by their handedness. They typically occur as racemic compounds of left- and right-handed species
which may have completely different properties. Therefore, in applications such as drug design in
pharmacology, enantiomer separation is an important issue. Here, we present a new technology for
enantiomer separation by surface acoustic wave generated vorticity patterns consisting of pairwise
counter-rotating vortices in a carrier fluid. The enantiomers are injected onto the surface of the
fluid between two counter-rotating vortices such that right-handed (left-handed) enantiomers get
attracted by left-rotating (right-rotating) vortices. In particular, we are concerned with the numerical
simulation of this separation process by an application of the finite element immersed boundary
method which relies on the solution of a coupled system consisting of the incompressible Navier-
Stokes equations and the equations of motion of the immersed enantiomers described with respect
to an Eulerian and a Lagrangian coordinate system. For a model system of deformable, initially
L-shaped enantiomers the results of the numerical simulations reveal a perfect separation.

Key words. enantiomer separation, surface acoustic waves, finite element immersed boundary
method

AMS subject classifications. 65M60, 74L15, 76Z05, 92C10, 92C50

1. Introduction. A geometric object is said to be chiral, if it is not identical
to its mirror image, and achiral, otherwise. A chiral object and its mirror image are
called enantiomers (or optical isomers). Since the word chiral stems from the Greek
’χειρ’ which means ’hand’, one distinguishes enantiomers by their handedness (right-
resp. left-handedness, or R- resp. L-form, or (+)- resp. (−)-form).

Fig. 1.1. Left- and right-handed enantiomer
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In chemistry, chirality refers to a molecule that is not superposable on its mirror image
(cf. Figure 1.1). Compounds consisting of molecules of the same handedness are called
single-enantiomeric, enantiopure, or unichiral, whereas compounds consisting of the
same amount of R- and L-form enantiomers are referred to as racemic. The discovery
of molecular chirality goes back to the nineteenth century when in 1815 the French
physicist J.-B. Biot [3] studied organic compounds and found that some of them ro-
tate polarized light in the noncrystalline state, i.e., in the liquid or solvent state. Biot
was aware that the optical rotation is due to structural properties of the molecules,
and he referred to them as ’substances moléculairement actives’. Three decades later,
in 1848 the French chemist and microbiologist Louis Pasteur [27] (see also [15]) dis-
covered hemihedrism in crystals of dextro-tartaric acid ((+)-tartaric acid), i.e., the
existence of small facets at alternate corners of the crystals that make the crystals dis-
symmetric (i.e., chiral). Pasteur [28] also examined racemic acid, earlier discovered by
Gay-Lussac in 1826 which does not rotate polarized light and is chemically inactive,
and found that there are two different crystals with hemihedral facets inclined to the
right and to the left. Pasteur managed to separate the two kind of crystals ((+)- and
(−)-tartaric acid) and found that in solvent state they rotate polarized light with
the rotations being equal in magnitude but opposite in direction. In 1858, Pasteur
also discovered enantiomer selectivity when he studied solutions of racemic acid en-
riched by microorganisms and found that the (+)-enantiomers were more rapidly
metabolized than the (−)-enantiomers concluding that this process must be due to a
selective interaction of enantiomers with key chiral molecules within the microorgan-
isms. Roughly twenty years after Pasteur’s fundamental work, the Dutch and French
chemists J.H. van’t Hoff [17] and J.A. LeBel [24] independently discovered the tetra-
hedral carbon atom as a basis for molecular chirality and thus paved the way for the
elucidation of the structures of organic compounds.
During the first half of the last century, several attempts have been made to derive
appropriate models for chiral molecules based on electronic theories explaining their
optical activity. Among them are Born’s theory of coupled oscillators [6] and the
quantum mechanical one-electron theory due to Condon et al. [10] which - opposed
to Born’s assumption - proves that a single electron can be optically active under
the influence of a chiral potential. However, the quantum mechanical description
of chirality leads to a contradiction which already has been stated ten years before
Condon’s contribution by Hund [19] known as Hund’s paradox: stable ground energy
states of chiral molecules with respect to a two-well potential are achiral, whereas
the L- and R-states formed by eigenstates associated with the two local minima are
not stationary and can tunnel through the potential barrier such that an enantiomer
should permanently switch between its L- and R-form. Obviously, there must be
an additional coupling effect which destabilizes the achiral ground state of quantum
mechanics and stabilizes the L- and R-form once the molecule has been synthesized
accordingly. A possible effect is provided by electro-weak quantum chemistry: thirty
years ago, computations revealed that there is an energy difference between L- and
R-form enantiomers in achiral media (’parity violation’ resp. ’de lege symmetry break-
ing’) which dominates the tunneling effect. This result is of significant relevance for
the understanding of molecular chirality: only in case of parity violation the R- and
L-form of enantiomers can be observed in an absolute sense (cf., e.g., [32]). The
current status of spectroscopic experiments, confirming molecular parity violation, is
reviewed in [33].
Nowadays, enantiomer separation and enantiomer selectivity play a significant role
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in agrochemical, electronic, and pharmaceutical as well as food, flavor and fragrance
industries (cf., e.g., [2, 8, 9, 13, 23, 29]). The relevance of chirality in drug design
became apparent on occasion of the so-called ’Contergan scandal’ or ’thalidomide dis-
aster’ in the sixties of the last century when worldwide thousands of children were
born with extremely severe deformities after their mothers had taken this sleeping
drug in early pregnancy. Unfortunately, it was discovered too late that L-thalidomide
molecules cause malformations of the fetus, since they block the action of a chiral
enzyme regulating the synthesis of cartilage in the second month of the pregnancy.
The qualitative and quantitative analysis of chiral molecules relies on high-throughput
screening by fluorescence spectroscopy and mass spectroscopy with achiral reporter
molecules or antibodies and enzymes [7]. Since the chemical synthesis of enantiomers
usually gives rise to racemic compounds, chiral separation is of utmost importance.
Current approaches are based on direct gas chromatography [7] or HPLC (High
Pressure Liquid Chromatography) [37], capillary electrophoresis [34], or NMR (Nu-
clear Magnetic Resonance) anisotropy methods [38]. They suffer from the drawbacks
that they are slow and only yield endpoint results, i.e., they do not provide any infor-
mation about the dynamics of the separation process. Moreover, they mostly require
costly chiral media. Consequently, in order to guarantee a higher cost-effectiveness as
well as a significant speed-up and to allow for an in-situ investigation of the enantiomer
separation at a high time-resolution, there is the need for alternative techniques. Such
techniques have been provided by chiral separation in microfluidic devices taking ad-
vantage of the fact that enantiomers drift in microflows with a direction depending
on their chirality (cf., e.g., [7, 21, 22, 25, 26, 35]).

Fig. 1.2. Left: Vorticity pattern at the surface of the fluid. The optical path is slightly tilted
to gain a larger field of view. The image is a superposition of micrographs and shows parts of
the four quadrant flows induced by the SAWs. Right: Micrograph showing two of the counter-
rotating vortices. In the flow quadrant diagonally opposing vortices always have the same direction
of rotation.

In this paper, we are concerned with the separation of deformable vesicle-like enan-
tiomers by a specific flow pattern generated by surface acoustic waves (SAWs). In
particular, we consider a fluid-filled container with an immersed SAWmicrochip at the
ground. The SAW microchip is coated with a piezoelectric material such as lithium
niobate (LiNbO3) and features an Inter-Digital Transducer (IDT) such that the IDT
is placed at the center of the bottom of the container with its aperture pointing up-
wards. Applying a high-frequency signal to the IDT, acoustic waves are created that
enter the fluid in the container and create a steady-state flow pattern at the fluid
surface consisting of four counter-rotating vortices (cf. Figure 1.2). Almost flat L-
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shaped enantiomers with hydrophobic top and bottom are injected onto the surface
of the fluid between two counter-rotating vortices. It turns out that right-handed
(left-handed) enantiomers get trapped by left-rotating (right-rotating) vortices in the
sense that they stably rotate around the center of the vortex.
For the numerical simulation of the surface acoustic wave actuated enantiomer sep-
aration we have used the Finite Element Immersed Boundary Method (FE-IB). The
Immersed Boundary Method (IB) is due to Peskin [30] (cf. the survey paper [31]
and the references therein) and has been extended to the FE-IB in [4, 5] (cf. also
[14, 18]). The FE-IB is based on a coupled system consisting of the incompressible
Navier-Stokes equations described in an Eulerian coordinate system and the equation
of motion of the immersed enantiomer described with respect to a Lagrangian coor-
dinate system.
The paper is organized as follows: In section 2, we deal with the generation of vorticity
patterns by SAWs. Section 3 is concerned with a description of the FE-IB, whereas
section 4 is devoted to its numerical realization. Finally, section 5 contains the re-
sults of numerical simulations illustrating the feasibility of SAW actuated enantiomer
separation.

2. Generation of the Vorticity Pattern by SAWs. The SAWs are generated
by an IDT featuring fingers substantially parallel to one another. A static electric
field E = −∇Φ, with Φ denoting the electric potential, is applied to generate a strain
which varies across the aperture of the IDT. The electric field is created by applying
a DC voltage between two correspondingly positioned conductors. The piezoelectric
effect thus leads to SAWs that travel in the direction of the wall and enter the fluid-
filled container.
We assume that the piezoelectric material with density ρ occupies some domain Ω1

with boundary Γ1 = ∂Ω1 and exterior unit normal n1 such that

Γ1 = ΓE,D ∪ ΓE,N , ΓE,D ∩ ΓE,N = ∅ ,

Γ1 = Γp,D ∪ Γp,N , Γp,D ∩ Γp,N = ∅ ,

where ΓE,D is a rectangular subdomain of the upper boundary of Γ1 and ΓE,N :=
Γ1 \ ΓE,D. Denoting by u the mechanical displacement, by σ = σ(u,E) the stress
tensor, and by D = D(u,E) the dielectric displacement, and given boundary data
ΦE,D on ΓE,D, the pair (u,Φ) satisfies the following initial-boundary value problem
for the piezoelectric equations (cf. [16])

ρp
∂2u

∂t2
− ∇ · σ(u,E) = 0 in Q1 := Ω1 × (0, T1) , (2.1a)

∇ ·D(u,E) = 0 in Q1 , (2.1b)

u = 0 on Γp,D , n1 · σ = σn1 on Γp,N , (2.1c)

Φ = ΦE,D on ΓE,D , n1 ·D = Dn1 on ΓE,N , (2.1d)

u(·, 0) = 0 ,
∂u

∂t
(·, 0) = 0 in Ω1 . (2.1e)

The equations have to be complemented by the generalized Hooke’s law

σ(u,E) = c ε(u)− eE, (2.1f)

and the constitutive equations

D = ϵE+P, P = e ε(u). (2.1g)

4



Here, ε(u) := (∇u + (∇u)T )/2 is the linearized strain tensor and c, e refer to the
symmetric fourth order elasticity tensor and the symmetric third order piezoelectric
tensor. Moreover, ϵ is the electric permittivity of the material and P stands for the
polarization.

We assume that the fluid in the container occupies a domain Ω2 := (0, L)2×(0, H),H,
L > 0, with boundary Γ2 := Γb ∪ Γl ∪ Γs, where Γb := (0, L) × (0, L) × {0},Γs :=
(0, L) × (0, L) × {H}, and Γl := Γ2 \ (Γb ∪ Γs). The impact of the SAWs on the
fluid flow is modeled through a boundary condition on ΓSAW := [L/2 − a, L/2 +
a]× {0}, a > 0. Taking into account that the propagation of acoustic waves in fluids
yields compressible effects and denoting by ρf , η, ξ the density, the standard and the
bulk viscosity of the fluid, and by v, p the velocity and the pressure, the fluid flow is
described by the compressible Navier-Stokes equations

ρf
(∂v
∂t

+ v · ∇v
)
= ∇ · σ, (2.2a)

∂ρf
∂t

+∇ · (ρfv) = 0 in Q2 := Ω2 × (0, T2), (2.2b)

v(·, t) = ∂u

∂t
(·, t) on ΓSAW , t ∈ (0, T2), (2.2c)

v(·, t) = 0 on (Γb \ ΓSAW ) ∪ Γl , t ∈ (0, T2), (2.2d)

σn = 0 on Γs , t ∈ (0, T2) , (2.2e)

v(·, 0) = 0, p(·, 0) = 0 in Ω2. (2.2f)

The constitutive equation for the stress tensor σ = (σij)
3
i,j=1 reads

σij := −p δij + 2ηDij(v) + δij(ξ − 2η/3)∇ · v, (2.2g)

whereD = (Dij)
3
i,j=1, Dij := (∂vi/∂xj+∂vj/∂xi)/2 stands for the rate of deformation

tensor.

The SAW induced fluid flow exhibits two different time scales. When the SAWs
enter the fluid filled container, sharp jets are created within nanoseconds. The SAWs
propagate upwards and experience a significant damping which results in a vorticity
flow pattern called acoustic streaming. This relaxation process happens on a time
scale of milliseconds. The multiscale character of this process can be appropriately
taken care of by a homogenization approach. We refer to [1, 20] for details.

3. The Finite Element Immersed Boundary Method. In this section, we
adopt standard notation from Lebesgue and Sobolev space theory (cf., e.g., [36]). In
particular, for D ⊂ R2 we refer to L2(D) and Hs(D) as the Hilbert space of Lebesgue
integrable functions in D with inner product (·, ·)0,D and associated norm ∥ · ∥0,D and
the Sobolev space of functions with inner product (·, ·)s,D and norm ∥ · ∥s,D. L2

0(D)
is the subspace of functions with zero integral mean. We further refer to H1

0 (D) as
the closure of C∞

0 (D) in H1(D) and to H−1(D) as the dual of H1
0 (D), denoting by

⟨·, ·⟩H−1,H1
0
the dual pairing. For Σ ⊆ ∂D and a function v ∈ Hs(D), we denote by

v|Σ the trace of v on Σ. We write L2(D) and Hs(D) in case of vector-valued functions.

Since the enantiomers float on the surface Γs of the fluid, we are only interested in
the fluid flow and the motion of the enantiomers on Γs. The fluid flow on Γs can be
modeled by the incompressible Navier-Stokes equations with a source term f = fq+ fg
consisting of a quadrupolar force density fq, reflecting the SAW induced vorticity
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pattern on Γs, and a global force density fg, reflecting the impact of the enantiomers
on the flow:

ρf
∂v

∂t
+ ρ(v · ∇)v − η∆v +∇p = f in Γs × (0, T ), (3.1a)

∇ · v = 0 in Γs × (0, T ), (3.1b)

v = 0 on ∂Γs × [0, T ), (3.1c)

v(·, 0) = v̂ in Γs. (3.1d)

The quadrupolar force density is given according to

fq := −η∆v̂, v̂ = (v̂1, v̂2)
T , v̂1 = ∂Ψ/∂x1, v̂2 = −∂Ψ/∂x2 (3.2)

in terms of the stream function

Ψ(x1, x2) = v0(f) L
sin(πx1/L) sin(πx2/L)

(2− cos(πx1/L)) (2− cos(πx2/L))
, (3.3)

where v0(f) > 0 depends on the frequency f of the IDT. We note that fq provides
a good approximation of the SAW generated vorticity pattern at the surface of the
fluid. The global force density fg will be specified by means of the total energy of the
immersed boundary in (3.8) below.
In the FE-IB an immersed enantiomer is modeled as a body consisting of an elastic
membrane enclosing a fluid which here is assumed to have the same density and
viscosity as the carrier fluid in the container. In practice, this can be achieved by
density and viscosity matching, i.e., adding chemical additives to the carrier fluid.
The immersed enantiomer is supposed to occupy a subdomain Bt ⊂ Γs, t ∈ [0, T ],
with boundary ∂Bt which is a non-selfintersecting closed curve. We further assume
that the boundary ∂B0 of the initial configuration B0 has length ℓ := |∂B0| and denote
by q ∈ [0, ℓ] the Lagrangian coordinate labeling a material point on ∂B0. We refer to
X(q, t) = (X1(q, t), X2(q, t))

T as the position vector of the point q at time t ∈ (0, T ]
which moves with the velocity v of the fluid such that the equation of motion takes
the form

dX

dt
(q, t) = v(X(q, t), t), q ∈ [0, ℓ], t ∈ [0, T ], (3.4a)

X(q, 0) = X0(q), q ∈ [0, ℓ], (3.4b)

where X0 stands for the initial position.
The total elastic energy of the immersed boundary ∂Bt of the enantiomer is given by

E(t) := Ee(t) + Eb(t) , t ∈ (0, T ), (3.5)

Ee(t) :=

L∫
0

Ee(X(q, t)) dq, Eb(t) :=

L∫
0

Eb(X(q, t)) dq, (3.6)

where Ee(t) and Eb(t) are the local energy densities according to

Ee(X(q, t)) =
κe

2

( ∣∣∣∣∂X∂q (q, t)

∣∣∣∣2 − 1
)
, (3.7a)

Eb(X(q, t)) =
κb

2

∣∣∣∣∂2X

∂q2
(q, t)

∣∣∣∣2 . (3.7b)
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Here, κe > 0 and κb > 0 denote the elasticity coefficients with respect to elongation-
compression and bending.

Denoting by fl the local force density according to fl(q, t) = −E′(X(q, t)), where E′ is
the Gâteaux derivative of E, the global force density fg in (3.1a) is given in variational
form by

⟨fg(t),w⟩H−1,H1
0
=

L∫
0

fl(q, t) ·w(X(q, t)) dq, w ∈ H1
0(Γs). (3.8)

The FE-IB is based on the variational formulation of (3.1) and (3.4). To this end, we
introduce the function spaces

V(0, T ) := H1((0, T ),H−1(Γs)) ∩ L2((0, T ),H1(Γs)),

W(0, T ) := {v ∈ V(0, T ) | v|∂Γs = v̂},
Q(0, T ) := L2((0, T ), L2

0(Γs)),

Y(0, T ) := H1((0, T ),L2([0, ℓ])) ∩ L2((0, T ),H3
per([0, ℓ])),

where H3
per([0, ℓ]) := {Y ∈ H3((0, ℓ)) | ∂kY(0)/∂qk = ∂kY(ℓ)/∂qk, k = 0, 1, 2}.

The weak formulation of the Navier-Stokes equations (3.1) requires the computation
of (v, p) ∈ W(0, T ) ×Q(0, T ) such that for all w ∈ H1

0(Γs) and all q ∈ L2
0(Γs) there

holds

⟨ρ∂v
∂t

,w⟩H−1,H1
0
+ a(v,w)− b(p,w) = ℓ(w), (3.9a)

b(q,v) = 0, (3.9b)

(v(·, 0),w)0,Γs = (v̂,w)0,Γs . (3.9c)

Here, a(·, ·), b(·, ·), and the functional ℓ(·) are given by

a(v,w) := (ρf (v · ∇)v,w)0,Γs + (η∇v,∇w)0,Γs (3.10a)

b(p,v) := (p,∇ · v)0,Γs , ℓ(w) := (fq,w)0,Γs + ⟨fg,w⟩H−1,H1
0
. (3.10b)

On the other hand, the weak formulation of (3.4) amounts to the computation of
X ∈ Y(0, T ) such that for all Z ∈ H3

per([0, ℓ]) it holds

(
dX

dt
(·, t),Z)0,(0,ℓ) = (v(X(·, t), t),Z)0,(0,ℓ), t ∈ [0, T ], (3.11a)

(X(·, 0),Z)0,(0,ℓ) = (X0,Z)0,(0,ℓ). (3.11b)

4. The Backward Euler/Forward Euler FE-IB. For the discretization in
space of the incompressible Navier-Stokes equations (3.9) we use Taylor-Hood P2/P1
elements with respect to a quasi-uniform simplicial triangulation Th(Γs) of Γs. For
K ∈ Th(Γs), we denote by |K| the area of K, by hK the diameter of K, and we set
h := max{hK | K ∈ Th(Γs)}. Further, Pk(K), k ∈ N, refers to the set of polynomials
of degree ≤ k on K. The associated finite element spaces Vh for the velocity and Qh

for the pressure read

Vh :={vh ∈ C(Γ̄s)|vh|K ∈ P2(K)2,K ∈ Th(Γs),vh|∂Γs = v̂h},

Qh :={wh ∈ C(Γ̄s)|wh|K ∈ P1(K),K ∈ Th(Γs),

∫
Γs

whdx = 0},
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where v̂h is the L2-projection of v̂ onto the space of piecewise polynomials of degree
2 on ∂Γs. For the discretization of the boundary of the immersed enantiomer we
consider a partition

T∆q := {0 =: q0 < q1 < · · · < qR := ℓ} , R ∈ N,

of the interval [0, ℓ] into subintervals Ii := [qr−1, qr], 1 ≤ r ≤ R, of length ∆qr :=
qr − qr−1 with ∆q := max{∆qr|1 ≤ r ≤ R}. We approximate X from (3.11) by
periodic cubic splines

Sh := {Zh ∈ C2([0, ℓ]) | Zh|Ir ∈ P3(Ir)
2, 1 ≤ r ≤ R,

Z
(k)
h (q0) = Z

(k)
h (qR), k = 0, 1, 2},

where P3(Ir) stands for the set of polynomials of degree ≤ 3 on Ir. For Zh ∈ Sh, we
set Zr := Zh(qr), 0 ≤ r ≤ R. The discrete immersed enantiomer occupies subdomains
Bh,t ⊂ Γs with boundaries ∂Bh,t that are C2 curves parameterized by the periodic
cubic spline Xh(·, t) ∈ Sh.
We define the total discrete energy by means of Eh(t) := Ee

h(t) + Eb
h(t), where the

discrete elastic energy Ee
h(t) and the discrete bending energy Eb

h(t) are given by

Ee
h(t) =

κe

2

ℓ∫
0

(∣∣∣∂Xh

∂q
(q, t)

∣∣∣2 − 1
)
dq, (4.1)

Eb
h(t) =

κb

2

R∑
r=1

qr∫
qr−1

∣∣∣∂2Xh

∂q2
(q, t)

∣∣∣2dq.
Observing that ∂3Xh(q, t)/∂q

3 is constant on Ir, the discrete force density takes the
form

⟨fh,g(·, t),wh⟩h = −κe

ℓ∫
0

∂Xh(q, t)

∂q
· ∂

∂q
wh(Xh(q, t)) dq (4.2)

+ κb

R∑
i=1

qi∫
qi−1

∂3Xh(q, t)

∂q3
· ∂

∂q
wh(Xh(q, t))dq =

− κe

ℓ∫
0

∂Xh(q, t)

∂q
· ∇wh(Xh(q, t))

∂Xh(q, t)

∂q
dq

+ κb

R∑
r=1

∂3Xh(q, t)

∂q3

∣∣∣
Ir

·
qr∫

qr−1

∇wh(Xh(q, t))
∂Xh(q, t)

∂q
dq.

We thus obtain the following approximation of the right-hand side in (3.9a)

ℓh(wh, t) := (fq,wh)0,(0,ℓ) + ⟨fh,g(·, t),wh⟩h. (4.3)

The discretization in time is done with respect to an equidistant partition

T∆t := {0 =: t0 < t1 < · · · < tM := T} , M ∈ N,
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of the time interval [0, T ] into subintervals of length ∆t := T/M . We denote by

v
(m)
h an approximation of vh ∈ Vh at t = tm. We further refer to D+

∆tv
(m)
h :=

(v
(m+1)
h − v

(m)
h )/(∆t) and D−

∆tv
(m)
h := (v

(m)
h − v

(m−1)
h )/(∆t) as the forward and

backward difference operator. We set

W
(m)
h := {w(m)

h ∈ C(Γ̄s) | w(m)
h ∈ Vh, w

(m)
h |∂Γs = v̂h},

Q
(m)
h := {w(m)

h ∈ C(Γ̄s) | w(m)
h |K ∈ Qh,

∫
Γs

w
(m)
h dx = 0}.

The Backward Euler/Forward Euler FE-IB reads as follows: Given v
(0)
h = v̂h and

X
(0)
h ∈ Sh, for m = 0, . . . ,M − 1 we perform the following two steps:

Step 1: Compute (v
(m+1)
h , p

(m+1)
h ) ∈ W

(m+1)
h × Q

(m+1)
h such that for all wh ∈

Vh,0 := {wh ∈ Vh | wh|∂Γs = 0} it holds

(ρfD
+
∆tv

(m)
h ,wh)0,Γs + a(v

(m+1)
h ,wh)− b(p

(m+1)
h ,wh) = ℓ

(m)
h (wh), (4.4a)

b(wh,v
(m+1)
h ) = 0, (4.4b)

where ℓ
(m)
h (wh) := ℓh(wh, tm) is given by (4.3).

Step 2: Compute X
(m+1)
h ∈ Sh such that for all Zh ∈ Sh it holds

(D+
∆tX

(m)
r ,Zh)0,(0,ℓ) = (v

(m+1)
h (X(m)

r ),Zh)0,(0,ℓ), 1 ≤ r ≤ R. (4.5)

As has been shown in [14, 18], the Backward Euler/Forward Euler FE-IB is not
unconditionally stable, but has to satisfy the CFL-type stability condition

∆t

h
≤ η

4C(κeL1 + κbL2)
, (4.6)

where C > 0 is a constant depending on the size and shape of the immersed enantiomer
and L1, L2 are given by

L1 := max
0≤m≤M

max
q∈[0,ℓ]

|
∂X

(m)
h

∂q
|, L2. = max

0≤m≤M
max

1≤r≤R
|
∂3X

(m)
h

∂q3
|Ir |.

5. Numerical results. We present the results of numerical simulations of the
separation of deformable, initially L-shaped enantiomers by SAW generated vorticity
patterns consisting of four pairwise counter-rotating vortices at the surface of the
fluid. The material data and the numerical data have been chosen as follows:

Material Data: As piezoelectric material we have used 128o rotated YX lithium
niobate (LiNbO3) with density ρp = 4.63 · 103 kg/m3 and elasticity tensor c, piezo-
electric tensor e, and dielectric tensor ϵ given in Table 5.1. The operating frequency
f of the IDT has been chosen according to f = 1.42 · 102 MHz. It turns out that
v0(f) = 2.0 ·10−3m/s in (3.3) provides a good approximation of the resulting velocity
pattern at the surface of the fluid.
The fluid with density ρf = 1.1 · 103 kg/m3 and viscosities η = ξ = 1.01 · 10−6 m2/s
occupied a domain D = (0, L)2 × (0,H) with L = 4.0 · 10−2 m and H = 5.0 · 10−3
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Table 5.1
Material Moduli for 128o rotated YX LiNbO3 (note that c11 = c22, c13 = c23, c14 = −c24 =

c56, c44 = c55 and e22 = −e16)

c c11 c12 c13 c14 c33 c44 c66
[1010 N

m2 ] 20.3 5.3 7.5 0.9 24.5 6.0 7.5
e e15 = e24 e22 = −e21 e31 = e32 e33

[ C
m2 ] 3.7 2.5 0.1 1.3
ϵ ϵ11 = ϵ22 ϵ33

[10−12 F
m ] 749.0 253.2

m. The material moduli of the enantiomers were given by κe = 3.0.10−2 N/m and
κb = 2.5.10−17 Nm.

Numerical Data: For the numerical solution of the coupled system (3.9),(3.11) by
the Backward Euler/Forward Euler FE-IB we have used a uniform simplicial trian-
gulation of Γs by right isosceles with h = L/35 and a uniform partition of [0, ℓ] with
∆q = 1/500. We have further used a uniform partition of the time interval with time
step size ∆t = 1/2000 satisfying the CFL-condition (4.6). All computations have been
performed under Linux featuring Intel(R)Core(TM) i3-2100 CPU 3.10 GHz and 7.7
GB RAM.

Simulation Results: An initially L-shaped, left-handed enantiomer has been in-
jected onto the surface of the fluid approximately in the middle between two counter-
rotating vortices. The motion of the enantiomer is such that it gets attracted by the
right-rotating fluid vortex. After the completion of the first cycle around the center
of the vortex, new cycles begin with pathes of the enantiomer similar to the first one
(cf. Figure 5.1). Figure 5.2 displays the pathes of an initially L-shaped, right-handed
enantiomer which gets attracted by the left-rotating vortex. The separation does not
depend on the position of the enantiomers with respect to the velocity field (see Figure
5.3 for a left-handed L-shaped enantiomer rotated by 90o compared to the upright
position). However, for a proper separation of the enantiomers it is important that
they are injected approximately in the middle between two counter-rotating vortices.
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Fig. 5.1. Velocity field and motion of a left-handed L-shaped enantiomer initially placed in the
middle between two counter-rotating vortices
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