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Abstract. We investigate the existence of continuous and fixpoint mod-
els of higher-order specifications. Particular attention is paid to the ques-
tion of extensionality. We use ordered specifications, a particular case of
Horn specifications. The main tool for obtaining continuous models is
the ideal completion. Unfortunately, it may destroy extensionality. This
problem is inherent: we show that there is no completion method which is
guaranteed to preserve extensionality. To restore it, generally a quotient
has to be taken. It is shown that under certain conditions this preserves
the existence of least fixpoints. Examples of the specification method
include the essential concepts of Backus’s FP and Hoare’s CSP.

1 Introduction

During the last years a number of papers have dealt with the extension of first-
order algebraic specifications to higher-order ones (cf. [21, 36, 13, 38, 39, 8,
29, 30, 31, 32, 45, 24, 25]). The basic questions about existence of models are
answered by now. In this paper we want to treat one particular approach to the
question about existence of models in which recursion equations are solvable.
This is especially of interest in connection with the algebraic specification of
infinite objects (cf. [28]), for which, in turn, non-strict operations are a crucial
concept. Based on the ideas of [40], it has turned out that ordered and continuous
algebras (cf. [34, 10, 15]) are a convenient framework for modelling these notions.
Therefore we consider higher-order specifications that admit continuous models.
This idea is also pursued in [13], but not in [38, 39]. The present treatment
is based on [29, 30] where (extensional) higher-order algebras with partially
ordered carrier sets are considered. The paper is a reworking of some chapters of
[30] based on the first-order reduction in [32] and the model theory presented in
[25]. For reasons of space we only include proofs of the most essential theorems;
the remaining proofs can be found in [28, 30] and the other references.

2 First-Order Horn Specifications and Their Models

2.1 First-Order Languages, Structures and Terms

In the presentation we follow closely the papers [32] and [25] and use the reduc-
tion of higher-order notions to the first-order case. This allows a direct re-use of



the results of [28] on ordered and continuous algebras. To accommodate the order
more conveniently we use the framework of Horn specifications (cf. [22, 20, 35]).

A (first-order) language L = (S, F, P, φ, ψ) is a quintuple consisting of a
set S of sorts, a set F of operators, a set P of predicate symbols and arity
functions φ : F → S+ and ψ : P → S∗ such that for every s ∈ S there is an
equality predicate symbol =s ∈ P with ψ(=s) = ss. An operator f ∈ F with
arity φ(f) = s ∈ S is called a constant. L is called algebraic if P contains
no other symbols than the =s (s ∈ S). An algebraic language corresponds to a
signature.

In the sequel we shall frequently use families of sets, functions, relations
etc. Rather than saying that E is a family (Ei)i∈I of entities Ei, we call E an
I-indexed entity. For instance, and I-indexed set X is a family (Xi)i∈I . All set-
theoretic notions are extended componentwise to I-indexed entities; for instance,
requiring X to be nonempty means requiring Xi 6= ∅ for all i ∈ I.

An L-structure (see e.g. [14]) A consists of the following items:

1. an S-indexed non-empty set, also denoted by A, called the carrier of A;
2. for each operator f ∈ F of arity φ(f) = ws with w ∈ S∗ and s ∈ S an

operation fA : Aw → As, where for w = s1 · · · sn we set Aw
def
= As1 ×· · ·×

Asn ;
3. for each predicate symbol p ∈ P a relation pA ⊆ Aψ(p).

We call A normal if =A is the S-indexed identity relation on A. The interpre-
tation of a constant f is a function fA : {()} → As from the set consisting only
of the empty tuple (); as usual it will be identified with its result value on ().
The class of all normal L-structures is denoted by STR(L).

For every language L one can construct a trivial L-structure 1lL by choosing
as the carrier an S-indexed singleton set and assigning to all predicate symbols
except = the singleton relation.

Given a language L = (S, F, P, φ, ψ) and an S-indexed set X of variables
disjoint from L, the S-indexed set WL(X) of L-terms is the smallest S-indexed
set satisfying the following inductive properties:

1. X ⊆ WL(X).
2. For f ∈ F with φ(f) = s1 · · · sns and ti ∈WL(X)si we have f(t1, . . . , tn) ∈

WLs(X).

WL(X) is made into a normal L-structure by defining the operations in the stan-
dard way, interpreting the equality predicate symbols by the respective identity

relations and setting pWL(X) def
= ∅ for all other p ∈ P .

For X = ∅ we call WL
def
= WL(∅) the Herbrand structure over L. A

sort s is populated in L if WLs 6= ∅. For an algebraic language the Herbrand
structure corresponds to the ground term algebra.

A valuation of X in an L-structure A is an S-indexed function v : X → A
that assigns to every variable an element of the respective carrier of A. We denote
the set of all valuations of X in A by AX . A valuation of X in WL is called a
ground term valuation.
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Every valuation v ∈ AX is extended into an S-indexed function v : WL(X)→
A by

1. vs(x)
def
= vs(x) for x ∈ Xs.

2. vs(f(t1, . . . , tn))
def
= fA(vs1(t1), . . . , vsn(tn)) for φ(f) = s1 · · · sns and ti ∈

WL(X)si .

For a ground term t the value v(t) is independent of v ∈ AX ; we denote it by
tA.

2.2 Homomorphisms and Term-Generated Structures

An L-homomorphism h : A → B between two L-structures A and B con-
sists of an S-indexed function h : A → B that satisfies hs(f

A(x1, . . . , xn)) =
fB(hs1(x1), . . . , hsn(xn)) for all f ∈ F with φ(f) = s1 · · · sns and xi ∈ Asi and
h(pA) ⊆ pB for all predicate symbols p ∈ P . An L-epimorphism is a surjective
L-homomorphism, whereas an L-isomorphism is a bijective L-homomorphism.
In working with L-homomorphisms we omit L when it is clear from the context.

We write A � B if there is a homomorphism from A to B. � is a pre-order
on STR(L). Likewise, we write A ∼= B if there is an isomorphism between A and
B.

The interaction between homomorphisms and valuations is given by the free-
ness of WL(X) over X (see e.g. [14]), viz. by

Lemma 1. Consider A,B ∈ STR(L) and a valuation v ∈ AX .

1. v : WL(X)→ A is an L-homomorphism.
2. If h : A→ B is an L-homomorphism then h ◦ v = h ◦ v.

Let K ⊆ STR(L) be a class of L-structures. A structure I ∈ K is initial
in K if for all A ∈ K there is exactly one homomorphism from I to A. Z ∈ K
is terminal in K if for all A ∈ K there is exactly one homomorphism from
A to Z. For every A ∈ STR(L) the functions ιAs : u 7→ uA define a unique
L-homomorphism ιA : WL→ A, so that WL is initial in STR(L).

If ιA is surjective then A is called term-generated (cf. e.g. [3, 4]), reachable
(cf. e.g. [32]) or minimal (cf. e.g. [25]). This means that every element of the
carrier of A can be denoted by an L-ground-term or, in other words, that it can
be obtained by applying finitely many operations of the structure. By GEN(L)
we denote the class of all term-generated L-structures. Since WL itself is term-
generated, it is also initial in GEN(L).

2.3 Horn Specifications and Their Models

Consider a language L = (S, F, P, φ, ψ) and an S-indexed set X of variables.
First-order formulas over L and X and the validity of a formula Φ in an L-
structure A, denoted by A |= Φ, are defined as usual. For binary relation symbols
infix notation will be used.
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A (positive) literal over L is a formula of the form p(t1, . . . , tm) where
p ∈ P with ψ(p) = s1 · · · sm and ti ∈WL(X)si (1 ≤ i ≤ n). If ti ∈WLsi for all
i then p(t1, . . . , tm) is called a ground literal. A Horn formula has the form∧

i∈I
Qi ⇒ Q ,

where I is a finite or infinite index set and the Qi and Q are literals over L.
The equivalence axioms over L are the Horn formulas

xs =s xs ,
xs =s ys ∧ ys =s zs ⇒ xs =s zs ,

xs =s ys ⇒ ys =s xs

for variables xs, ys, zs ∈ Xs. The substitutivity axioms over L are the Horn
formulas

n∧
i=1

xi =si yi ⇒ f(x1, . . . , xm) =s f(y1, . . . , ym)

for all f ∈ F with φ(f) = s1 · · · sms and variables xsi , ysi ∈ Xsi , and

n∧
i=1

xi =si yi ∧ p(x1, . . . , xn) ⇒ p〈y1, . . . , yn〉

for all p ∈ P with ψ(p) = s1 · · · sn and variables xsi , ysi ∈ Xsi . The congruence
axioms over L are the equivalence and substitutivity axioms over L.

A Horn specification K = (L,E) consists of a language L and a set E of
Horn formulas over L, called the axioms of K, which includes the congruence
axioms for L. Equational specifications are Horn specifications over algebraic
languages.

An L-structure A is called a model of K if all axioms in E are valid in A
and A is normal. We denote by MOD(L) the class of all models of L, and by
GEN(L) the class of term-generated models of L.

2.4 Quotients

Models for equational specifications can be constructed as quotients of the term
algebra by suitable congruences. We generalise this notion to arbitrary struc-
tures.

Consider an L-structure A. A family R = (pR)p∈P with pA ⊆ pR ⊆ Aψ(p)
is called a pre-congruence on A. For a positive literal p(t1, . . . , tn), valuation
v ∈ AX and pre-congruence R on A we define

v,R |= p(t1, . . . , tn)
def⇔ (v(t1), . . . , v(tn)) ∈ pR .

This relation is extended inductively to general first-order formulas as usual.
Then R satisfies a first-order formula Φ iff v,R |= Φ for all valuations v ∈ AX .
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By IUA we denote the universal pre-congruence on an L-structure A with

pIUA
def
= Aψ(p) for all p ∈ P . We say that a set of pre-congruences on A is

lattice-forming if it is closed under intersection and contains IUA. Such a set
forms a complete lattice under relation inclusion where the greatest lower bound
of a set G of pre-conguences on A is their intersection ∩G. Fundamental for the
theory of Horn specifications is

Theorem 2. Consider an L-structure A and a set E of Horn formulas over L.
The set of pre-congruences on A that satisfy E is lattice-forming.

Taking E = ∅ we obtain that the set of pre-congruences on A is lattice-

forming. Its least element is RA with pR
A

= pA for all p ∈ P .
A pre-congruence R is called a congruence if it satisfies the congruence

axioms. The set of pre-congruences on A is denoted by CG(A). By Theorem 2 it
is lattice-forming. The quotient A/R of A by R ∈ CG(A) is defined by setting

1. (A/R)s
def
= {[x] : x ∈ As} where [x] is the equivalence class of x w.r.t. =R

s ;

2. fA/R([a1], . . . , [an])
def
= [fA(a1, . . . , an)];

3. ([a1], . . . , [an]) ∈ pA/R def⇔ (a1, . . . , an) ∈ pR.

The congruence axioms ensure well-definedness of this construction. It is clear
that IUA is a congruence and that A/IUA ∼= 1lH . Moreover, we have

Lemma 3. A Horn formula Q is valid in the quotient A/R iff R satisfies Q.

For L-structures A and B and homomorphism h : A → B we define the

kernel Rh on A by (a1, . . . , an) ∈ pRh
def⇔ (h(a1), . . . , h(an)) ∈ pB . Then Rh is

a congruence on A.

Theorem 4. Consider A,B ∈ STR(L).

1. If h : A→ B is an epimorphism then A/Rh ∼= B.
2. For R1, R2 ∈ CG(A) the inclusion R1 ⊆ R2 implies A/R1 � A/R2.
3. A ∈ GEN(L) iff A ∼= WL/R for some R ∈ CG(WL). Moreover, then R =

RιA .
4. If A,B ∈ GEN(L) we have A � B iff RιA ⊆ RιB . Thus, GEN(L)/ � is

order-isomorphic to (CG(WL),⊆) and hence a complete lattice.
5. There is at most one homomorphism from one term-generated structure to

another. If there is one, it is an epimorphism.
6. If A,B ∈ GEN(L) then A ∼= B iff A � B and B � A.
7. GEN(L) is closed under quotients.

We can use quotients to construct models:

Theorem 5. Consider a Horn specification K = (L,E).

1. K has an initial model. It is the quotient of WL by the least congruence on
WL that satisfies E.
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2. The set of isomorphism classes of term-generated models of L forms a com-
plete lattice w.r.t. �.

A special case is the well-known result that the isomorphism classes of term-
generated models of an equational specification form a complete lattice under
the homomorphism ordering.

2.5 A Deductive Calculus

Consider now a Horn specification K = (L,E) with L = (S, F, P, φ, ψ). For a
term valuation v ∈WL(X)X we extend v to Horn formulas by setting for literals

v(p(t1, . . . , tn))
def
= p(v(t1), . . . , v(tn)) and then v(

∧
i∈I

Qi ⇒ Q)
def
=
∧
i∈I

v(Qi) ⇒

v(Q). Then the following inference rules are sound in MOD(L):

(Axiom)
Φ

for Φ ∈ E

(Instantiation)
Φ
v(Φ)

for Φ ∈ E and v ∈WL(X)X

(ModusPonens)

∧
j∈J

Qj ⇒ Q Qi (i ∈ I)∧
j∈J\I

Qj ⇒ Q

These rules form a complete calculus:

Theorem 6. Let K = (L,E) be a Horn specification, I an initial structure in
GEN(K) and Q a literal over L. Then the following equivalences hold:

1. L ` Q iff MOD(L) |= Q.
2. If Q is a ground literal then I |= Q iff L ` Q iff GEN(K) |= Q.

This theorem shows also the distinction between term-generated models and
arbitrary ones: In GEN(K) usually more formulas are valid than in MOD(K),
since the principle of term-induction (see below) is available. Thus not all formu-
las valid in GEN(K) need be provable using only the above calculus. However,
for ground terms provability and validity in GEN(K) coincide; moreover, they
are equivalent to the validity in initial models.

To conclude this section, we now state the above-mentioned principle of term
induction.

Theorem 7 (Term Induction). Let L be a language and Φ be a first-order
formula over L containing exactly one free variable xs ∈ Xs for some s ∈ S.
Then Φ is valid in a class K ⊆ GEN(L) of term-generated structures for L iff
the following property holds: For all f ∈ F with φ(f) = s1 · · · sns the assumptions
K |= Φ[xj/xs] (j ∈ J) imply K |= Φ[u(x1, . . . , xn)/xs], where xi ∈ Xsi (1 ≤
i ≤ n) are variables not occurring in Φ and J

def
= {i : si = s}.
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3 The Ordered Case

We turn now to the special case where the only predicate symbols besides the
equality symbols are order relation symbols.

3.1 Pre-Orders

A pre-order is a reflexive and transitive binary relation ≤ on some set M ; an
order is an antisymmetric pre-order. E.g. in [5] one finds

Lemma 8. For a pre-ordered set (M,≤) the relation ∼≤ defined by

x ∼≤ y
def⇔ x ≤ y ∧ y ≤ x

is an equivalence relation on M .

We denote by [x]≤ the equivalence class of x w.r.t. ∼≤ and by [M ]≤ the
set {[x]≤ : x ∈ M}. If no ambiguity arises, the index ≤ will be dropped. For a
pre-ordered set (M,≤) the set [M ] together with the relation

[x] ≤ [y]
def⇔ x ≤ y

is an ordered set called the quotient of (M,≤) by ∼≤; we denote it by M/≤.

3.2 Ordered Specifications and Structures

A language L = (S, F, P, φ, ψ) is called ordered if P = {=s,≤s: s ∈ S} with
ψ(=s) = ψ(≤s) = ss. If L is ordered then all L-homomorphisms between L-
structures are monotonic.

A Horn specification K = (L,E) is an ordered specification if L is ordered
and E contains the order axioms

xs ≤s xs ,
xs ≤s ys ∧ ys ≤s zs ⇒ xs ≤s zs ,
xs ≤s ys ∧ ys ≤s xs ⇒ xs =s ys

for all s ∈ S and variables xs, ys, zs ∈ Xs. The congruence and order axioms
are called the standard axioms of K, whereas the other axioms are non-
standard axioms. In the sequel we shall omit the indices of the equality and
order predicate symbols.

Note that by the substitutivity axioms the antisymmetry axiom can be
strengthened to

x ≤ y ∧ y ≤ x ⇔ x = y .

So in any L-structure A satisfying the order axioms ≤A is a pre-order and =A

coincides with ∼≤A as defined in Lemma 8. If L is normal then ≤A is an order.
Therefore we define: an ordered L-structure is a normal L-structure satisfying
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the order axioms. Hence, again by Lemma 8 any quotient by a congruence that
satisfies the order axioms is an ordered L-structure.

As a simple example for an ordered specification consider the one having as
non-standard axioms only the formulas

x ≤ y ⇒ y ≤ x

for all sorts. The models of this specification are exactly the trivially ordered
structures. Thus we retrieve here in a second way the above-mentioned result on
isomorphism classes of models of equational specifications.

3.3 Groundedness and Strictness

In connection with programming language semantics frequently “undefined sit-
uations” are modelled by special ⊥-elements in the respective domains; these
elements are considered as carrying no information, i.e., as least elements in the
information contents ordering (cf. [40]).

We call an ordered set grounded if it contains a least element. A language
L = (S, F, P, φ, ψ) is grounded if for all s ∈ S there are distinguished constants

⊥s with φ(⊥s)
def
= s. If L is grounded then all L-homomorphisms are strict:

Since each ⊥s is a special constant, we have for A,B ∈ STR(L) and h : A→ B
that hs(⊥As ) = ⊥Bs .

We call a specification K = (L,E) grounded if L is grounded and E contains
the groundedness axioms

⊥s ≤s xs
for all s ∈ S and variables xs ∈ Xs. To abbreviate our specification texts in
examples, we use the keyword grounded; the operators ⊥s as well as the ground-
edness axioms are then omitted from the specification text.

For many operations the concept of strictness in a certain argument is very
important: Operationally speaking, this argument is crucial for computing the
operation; as long as no information about this argument is available, the opera-
tion will be undefined. Given a grounded language L and an operator f ∈ F with
φ(f) = s1 · · · sns we can specify strictness in the kth argument by the axiom

f(xs1 , . . . , xsk−1
,⊥sk , xsk+1

, . . . , xsn) ≤ ⊥s.

3.4 Monotonicity

A second class of specifications is concerned with monotonic structures.
We call a specification K = (L,E) monotonic if L = (S, F, P, φ, ψ) is or-

dered and E includes the monotonicity axioms

n∧
i=1

xi ≤ yi ⇒ f(x1, . . . , xn) ≤ f(y1, . . . , yn).

for all f ∈ F with with φ(f) = s1 · · · sms and variables xsi , ysi ∈ Xsi . An L-
structure is monotonic if it satisfies the monotonicity axioms. The standard
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axioms for a monotonic specification are the congruence, order and monotonic-
ity axioms. We use the keyword monotonic to mean that the respective specifi-
cation implicitly contains the monotonicity axioms.

A congruence R on an L-structure A is monotonic if it satisfies the mono-
tonicity axioms. From Lemma 3 we obtain

Corollary 9. A/R is monotonic iff R is monotonic.

The specialisation of Theorem 5 for monotonic specifications was obtained
in [26, 28].

A special case of ordered specifications are inequational specifications, i.e.,
monotonic specifications in which the non-standard axioms are only of the form
u ≤ w with u,w ∈ L(X). For these we have the stronger result (see also [6])

Theorem 10. Let K = (L,E) be an inequational specification.

1. MOD(L) is closed under epimorphisms and hence under quotients.

2. GEN(K)/� is a complete sublattice of GEN(L)/�.

The specification with grounded language L requiring only the groundedness
and monotonicity axioms has as its initial model the Herbrand structure WL
ordered by the syntactic approximation relation v first described in [34]: For
two ground terms u1, u2 we have u1 v u2 iff u2 results from u1 by replacing zero
or more occurrences of ⊥ by other ground terms. This is due to the fact that the
order in the initial model is the least order comprising the relation generated by
the groundedness and monotonicity axioms.

As another example we give a specification of an ordering that will be used
below:

Example 1. Consider

spec S
grounded monotonic
sort nat
0, 1 : nat
plustwo : nat → nat
axioms plustwo(⊥) = ⊥

0 ≤ plustwo(0)
1 ≤ plustwo(1)

endspec

The initial model I of S has the
carrier

natI :

...
...

| |
4 5
| |
2 3
| |
0 1
\ /
⊥

ut
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3.5 Completeness and Continuity

We head now for continuous structures, i.e., structures in which fixpoint equa-
tions are solvable; they allow thus a mathematical semantics for recursion equa-
tions (see e.g. [15]).

Let us give the necessary order-theoretic notions. Consider two subsets S, T ⊆
M of a pre-ordered set (M,≤). We write S ≤ T if S × T ⊆≤, i.e., if ∀ x ∈ S :
∀ y ∈ T : x ≤ y. For singletons we write x ≤ T and S ≤ y rather than {x} ≤ T
and S ≤ {y}.

The sets of upper and lower bounds of a subset N ⊆ M are defined by

upb≤N
def
= {y ∈M : N ≤ y} , lwb≤N

def
= {x ∈M : x ≤ N} .

An upper (lower) bound of N that lies in N is called a greatest (least) element
of N , and we set

gst≤N
def
= N ∩ upb≤N , lst≤N

def
= N ∩ lwb≤N .

Note that all greatest (least) elements of a subset are identified in M/≤.
If the set of all upper (lower) bounds of N possesses least (greatest) elements,

these elements are called least upper bounds (greatest lower bounds) of
N . We set

lub≤N
def
= lst≤ upb≤N , glb≤N

def
= gst≤ lwb≤N .

In an ordered set, least upper bounds and greatest lower bounds are unique if
they exist. In the sequel we shall omit the indices ≤ if ≤ is clear from the context.

A subset D ⊆ M of a pre-ordered set (M,≤) is directed if D 6= ∅ and
D ∩ upb {x, y} 6= ∅ for all x, y ∈ D. A pre-ordered set (M,≤) is ∆-complete
if M is grounded and lubD 6= ∅ for every directed subset D ⊆ M .

Let (M1,≤1), (M2,≤2) be pre-ordered sets. A function f : M1 → M2 is
continuous if for every directed D ⊆ M1 we have f(lub≤1

D) ⊆ lub≤2
f(D).

In the case of an order we may replace the inclusion by an equality. A continuous
function is monotonic.

The following well-known fixpoint theorem is the basis for the solution of
recursion equations:

Theorem 11 (Knaster, Tarski, Kleene). Let (M, v ) be a ∆-complete or-
dered set and f : M →M be continuous. Then f has a least fixpoint, viz.

fix (f)
def
= lub f∗(⊥) ,

where f∗(x)
def
= {f i(x) : i ∈ IN}.

Now we carry over these notions to structures. Contrary to groundedness,
strictness and monotonicity they cannot be characterised by Horn formulas. An
L-structure A is called

1. pre-complete if all its operations are continuous in all arguments;
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2. continuous if it is pre-complete and its carrier is ∆-complete.

Note that a pre-complete structure is monotonic.

Lemma 12. For a given language L the Herbrand structure WL is pre-complete.

We consider now particular congruences that fit these specialised notions of
structures. Consider an ordered language L and an ordered L-structure A. We
call a congruence R ∈ CG(A)

1. pre-complete if for every operation fA : Aw → As and every ≤R-directed
subset D ⊆ Aw we have fA(lub≤R D) ⊆ lub≤R fA(D);

2. lub-compatible if for every≤A-directed subsetD ⊆ As we have lub≤A D ⊆
lub≤R D. This is equivalent to lub≤A D ≤R upb≤R D.

Theorem 13. Let R be a congruence on A ∈ STR(L).

1. A/R is pre-complete iff R is pre-continuous.
2. Let h : A→ B be a homomorphism.

(a) If h is continuous then Rh is lub-compatible.
(b) If h is an epimorphism and Rh is lub-compatible then h is continuous. In

particular, for lub-compatible R the canonical homomorphism k : A →
A/R given by k(a)

def
= [a]=R is continuous.

For the proof see [11]. We denote by MonA and PreA the sets of monotonic
and pre-continuous congruences on A.

Lemma 14. MonA and PreA are lattice-forming.

3.6 Completions

Our method of obtaining continuous structures is via completing term-generated
monotonic structures. The requirement of monotonicity can be relaxed (see [33]),
but for simplicity we shall here work assuming it.

Call a ∆-complete set M a completion of an ordered set L if

1. there is an order-embedding ι : L→M ;
2. for every continuous function h : L→ N into a ∆-complete set N there is a

unique continuous function ĥ : M → N with ĥ ◦ ι = h, i.e., which extends h
to M .

The completion is called lub-preserving if the embedding ι is continuous. Then
it preserves the least upper bounds already existing in L. Thus, as pointed out
in [11], there can only be a lub-preserving completion of A if A is pre-complete,
i.e., if its operations are already continuous at the existing least upper bounds.

An important, however in general not lub-preserving, completion is the ideal
completion (see e.g. [5, 12]). To define it, we need some auxiliary notions.
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Consider a pre-ordered set (M,≤). The downward closure of a subset
N ⊆ M is

N≤
def
= {x ∈M : ∃ y ∈ N : x ≤ y} .

By a cone of M we mean a downward closed subset, i.e., a set N ⊆ M such
that N = N≤. An ideal of an ordered set (M,≤) is a directed cone in M . For a
directed subset D ⊆ M the cone D≤ is the ideal generated by D. Note that
lubD = lubD≤. For x ∈M we write x≤ instead of {x}≤.

An element x of M is finite (compact) if for every directed set D ⊆ M
with x ≤ lubD we have also x ≤ z for some z ∈ D. Equivalently, x is finite
iff for every ideal I ⊆ M with x ≤ lub I we have x ∈ I. (M,≤) is inductive
(algebraic) if every element of M is the least upper bound of a directed set of
finite elements. A non-finite element of an inductive set is called a limit point
or an infinite element.

Theorem 15. Let (M,≤) be an ordered set and I(M) be the set of ideals of M .

1. The set (I(M), ⊆ ) ordered by set inclusion is an inductive completion of M ,
the finite elements being the ideals x≤ for x ∈M . M is embedded into I(M)
via the function i : x 7→ x≤.

2. For every monotonic (not necessarily continuous) function h : M → N into a

∆-complete set (N,≤) there is a unique continuous function ĥ : I(M)→ N

extending h, i.e., with ĥ(x≤) = h(x). ĥ is given by ĥ(I) = lub h(I) for

I ∈ I(M); hence ĥ(D≤) = lub h(D) for directed D.

For the proof see e.g. [11]. We call (I(M), ⊆ ) the ideal completion of M .
Let us now apply these notions to L-structures. A continuous L-structure B

is a completion of a monotonic L-structure A if there is an order-embedding
homomorphism ι : A → B such that every continuous homomorphism h : A →
C from A into a continuous L-structure C extends uniquely to a continuous
homomorphism ĥ : B → C in the sense that ĥ ◦ ι = h. Again, the completion is
called lub-preserving if ι is continuous.

Now every grounded monotonic L-structure A may be embedded into an
inductive continuous L-structure A∞ using the ideal completion. Define

A∞t
def
= I(At) ordered by inclusion,

fA
∞

(I1, . . . , In)
def
= fA(I1, . . . , In)≤

A

(f ∈ F ) .

Theorem 16. 1. A∞ is an inductive completion of A.
2. Every monotonic (not necessarily continuous) homomorphism h : A → B

into a continuous L-structure B extends uniquely into a continuous homo-
morphism ĥ : A∞ → B such that ĥ ◦ ι = h.

We call A∞ the ideal completion of A. Its construction may be applied to
monotonic structures that are not pre-complete. It resolves non-continuities by
introducing additional limit points into the carriers and by suitably extending
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the functions to these limit points. The price for this is that in general it is not
lub-preserving.

A different completion method which is based on techniques in [23] and [11]
and which is lub-preserving is discussed in [30]. We do not describe it here,
since the construction is fairly complicated and still does not give a satisfactory
construction of continuous models, as we shall see below.

3.7 Fixpoint Structures

We now study structures in which fixpoint equations are solvable.
Let L be a grounded language and X be an S-indexed set of variables disjoint

from L. A system of recursion equations over L and X is a valuation e of
X in WL(X). It may be viewed as the S-indexed set of equations

({x = es(x) : x ∈ Xs})s∈S .

Over any L-structure A such a system can be conceived of as a set of conditions
about a family of elements of A, viz. about a valuation v of X in A. Thus we
say that a valuation v ∈ AX is a solution of the system e if for all x we have
vs(x) = v(es(x)).

Given an L-structure A, we now associate a valuation transformer eA :
AX → AX with a system e by setting for v ∈ AX

eA(v)
def
= v ◦ e.

Thus the transformed valuation associates with each variable the value of the
corresponding right hand side in e under the given valuation v. Then v ∈ AX is
a solution of e iff v is a fixpoint of eA.

To this end we need to order valuations. We use the standard pointwise
order on functions. More generally, for a family (Mi,≤i)i∈I of pre-ordered sets,

the product
∏
i∈I

Mi carries the pointwise pre-order given by (xi)i∈I ≤ (yi)i∈I

iff ∀ i ∈ I : xi ≤i yi. For elements f, g of a function space M → N =
∏
x∈M

N

with pre-ordered set (N,≤) we therefore have f ≤ g ⇔ ∀ x ∈M : f(x) ≤ g(x).

Lemma 17. Consider a continuous L-structure A.

1. The set AX is ∆-complete under the pointwise order on valuations.
2. For any system e of recursion equations over L and X the valuation trans-

former eA is continuous.

Hence by Theorem 11 fix (eA) is the least solution of e in A. If we set

ΩA(x)
def
= ⊥A for all x ∈ X,

we obtain
fix (eA) = lub e∗A(ΩA) .
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Thus, over continuous structures fixpoint equations are solvable. However,
for the mere process of solving equations a continuous structure generally con-
tains much too many “superfluous” least upper bounds. More liberally, we call a
grounded and monotonic structure A a fixpoint structure if for every system
e of recursion equations lub e∗A(ΩA) 6= ∅ and consists of a fixpoint of eA. Note
that, by monotonicity of A, it then is the least fixpoint of eA.

Theorem 18. 1. Every continuous structure is a fixpoint structure.
2. Let A be a fixpoint structure and h : A → B be a strict continuous homo-

morphism. Then B is again a fixpoint structure. Moreover, for a system e
of recursion equations we have h ◦ fix (eA) = fix (eB).

3. The class of fixpoint structures is closed under quotients modulo lub-compat-
ible congruences.

Proof. 1. is trivial.
2. For a system e of recursion equations and a valuation v ∈ AX we have, by

Lemma 1, h ◦ eA(v) = h ◦ v ◦ e = h ◦ v ◦ e = eB(h ◦ v). By induction it now
follows that also h ◦ e∗A(v) = e∗B(h ◦ v).
Moreover, by strictness of h, h ◦ΩA = ΩB . Hence, by continuity of h,

h ◦ fix (eA) = h ◦ lub e∗A(ΩA) ⊆ lub h ◦ e∗A(ΩA) = lub e∗B(ΩB) = fix (eB) .

3. is immediate from 2. and Theorem 13.3.
ut

4 Adding Higher Order

4.1 Higher-Order Languages and Structures

We shall now, following [32, 25], introduce higher-order languages and struc-
tures as particular instances of the corresponding first-order notions. To keep
the presentation simple, we do not introduce product types. The reason for this
is that an n-ary product behaves exactly like a function type over a domain of
cardinality n. So product types would lead to a duplication in all definitions
without adding extra power. Moreover, in function arguments they can always
be eliminated by currying. A formal treatment can be found in [25].

We first define (higher-order) types. Assume that a non-empty set B of basic
types is given. The set T (B) of types over B is the smallest set such that
B ⊆ T (B) and for s, t ∈ T (B) also s→ t ∈ T (S). As customary we assume that
→ associates to the right and hence abbreviate a type s1 → (s2 → · · · (sn →
sn+1) · · ·) by s1 → s2 → · · · sn → sn+1.

A higher-order language (hol) is an ordered language H = (S, F, P, φ, ψ)
satisfying the following conditions:

1. S ⊆ T (B) for some set B of basic types. This set can be uniquely recon-
structed from S and is denoted by B(H).
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2. For every populated type s → t ∈ S there is an operator αs→t ∈ F with
φ(αs→t) = (s→ t) s t, called application operator.

3. All other operators in F are constants.
4. S is exactly the set of types populated in H.
5. All basic types are populated in H.
6. Whenever a type s → t is populated in H, so is s (and hence also t). Then

for every term denoting a functional object there is also at least one term
denoting an argument to that functional object. This can always be achieved
by adding suitable constants of all types.

The latter three conditions serve to exclude empty sets in the carriers of H-
structures. Note that a grounded language automatically satisfies these require-
ments.

In the sequel we shall drop the type superscripts as they will always be clear
from the context. We will also use a simplified notation for terms over a hol: we
abbreviate α(t, u) by t u and assume, as customary, that juxtaposition associates
to the left.

A hol is called essentially of first order if its constants are only of types
of the form s or s1 → · · · sn → sn+1, with s, si ∈ B, and its only non-constant
operators are the respective application operators α. Such hols correspond to the
first-order languages defined in Section 2.1: a constant f : s1 → · · · sn → sn+1

represents an operator f with φ(f) = s1s2 · · · snsn+1.
Consider now a hol H. In every H-structure A each element f ∈ As→t of a

carrier of functional type s→ t induces a function [[f ]]A : As → At given by

[[f ]]A(x)
def
= αA(f, x)

for x ∈ As; it is the curried form of αA. Note that this function cannot be
denoted by an operator in the language, since the corresponding “higher-order
arity” does not exist. We shall frequently use this function instead of αA; if A is
clear from the context we shall omit the superscript A.

The function order axioms over a hol H are the formulas

f ≤ g ⇒ f x ≤ g x

with f, g ∈ Xs→t and x ∈ Xs for all populated functional types s→ t in H. An H-
structure A is called a higher-order H-structure (H-hos) if it is ordered and
satisfies the function order axioms. Equivalently, A is an H-hos if all functions

[[ ]]A : As→t → (As → At)

are monotonic. This condition ensures that the ordering on carriers of functional
types conforms to the pointwise function space ordering. The carriers As with
s ∈ B(H) are called the basic carriers of A. The class of all H-hos is denoted
by HOS(H). A similar notion occurs already in [37].

From our general setting we also obtain a notion of term-generated hoss.
Note that a homomorphism between hoss also is a homomorphism w.r.t. [[ ]].
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Of particular interest are monotonic (pre-complete) hoss: there all functions
[[f ]] are monotonic (continuous). In a continuous hos in addition the functions
[[ ]] are continuous.

Finally, we study quotients of hoss. Consider a hol H = (S, F, P, φ, ψ) and
an H-hos A. A congruence R ∈ CG(A) is called a higher-order congruence
(hop) if it satisfies the order and the function order axioms so that all functions
[[ ]]A are monotonic w.r.t. ≤R. The set of all hops on A is denoted by HCG(A).
Since the function order axioms are Horn formulas, we obtain from Lemma 3
and Theorem 2

Corollary 19. Consider A ∈ STR(H) and R ∈ CG(A).

1. A/R ∈ HOS(A) iff R ∈ HCG(A).
2. HCG(A) is lattice-forming.

4.2 Extensionality

Consider a hol H = (S, F, P, φ, ψ). The extensionality axioms over H are the
formulas

(∀ s x : f x ≤ g x) ⇒ f ≤ g

with f, g ∈ Xs→t and x ∈ Xs for all populated functional types s → t in H.
They are the reverse implications of the function order axioms. An H-hos A is
called extensional if it satisfies the extensionality axioms for H. Equivalently,
A is extensional if all functions [[ ]]A are order-embeddings. In particular we have
that

[[f ]]A ≤A [[g]]A ⇒ f ≤A g .

Then the carriers of functional types are isomorphic to subsets of the respective
function spaces. Since we allow subsets rather than always full function spaces,
we are working in the framework of “general” models (cf. [18]) rather than
“standard” or “full” models of higher type logic. This is the reason why we can
still obtain a complete deductive calculus. Moreover, it allows a notion of term-
generatedness for extensional hos, which in general would not be possible for full
models, since for a countable language the Herbrand structure and therefore all
term-generated models have countable carriers, whereas full funcion spaces over
infinite domains are uncountable.

A first example of an extensional structure is given by

Lemma 20. For a given hol H the Herbrand structure WH is extensional.

Although the extensionality axioms are not Horn formulas, for a particular
H-hos A we can replace them by equivalent infinite Horn formulas. To this
end we extend the language H by an S-indexed set C of new constants, where

Ct
def
= {cx : x ∈ At}.Denote the extended language by H(C). Then A is made

into an H(C)-structure by defining cAx
def
= x. This means that each element of
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the carrier of A is now denoted by a constant. Then the extensionality axiom
for type s→ t ∈ S can be replaced by the (in general infinite) Horn formula∧

c∈Cs

f c ≤ g c ⇒ f ≤ g .

This observation is important in view of the results of [20, 42, 43]; it is the
deeper reason for the nice structural properties of extensional specifications.
If A is even term-generated, we can avoid the language extension and instead
replace the extensionality axiom by the (again in general infinite) Horn formula∧

u∈WH s

f u ≤ g u ⇒ f ≤ g .

We call a congruence R ∈ HCG(A) extensional if it satisfies the extension-
ality axioms, i.e., if for every function type s → t ∈ S and all f, g ∈ As→t we
have

[[f ]] ≤R [[g]] ⇒ f ≤R g .

The set of extensional congruences on A is denoted by ExtA .
From Lemma 3 and the above remark on Horn formulations of extensionality

we have

Corollary 21. Consider A ∈ HOS(H).

1. If R ∈ HCG(A) then A/R is extensional iff R is extensional.
2. ExtA is lattice-forming.

For A ∈ HOS(H) therefore ∩ExtA is the least extensional congruence on A; it
forms the “closest” extensional quotient of A. We now want to study the function
Ext : A 7→ A/ ∩ ExtA more thoroughly. First we note that Ext generally not
only influences the carriers of types of higher order, but also the basic carriers.

Example 2. Consider a hol H with the basic types m and n and the constants

a : m
d, e : n
f, g : m→ m
p : (m→ m)→ n

and A ∈ HOS(H) with

f(a)A = g(a)A = aA

dA 6= eA

p(f)A = dA

p(g)A = eA

Then in B
def
= Ext(A) we have fB = gB and hence, by the congruence property

of ∩ExtA, also dB = eB . ut
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In general, this is an undesired effect. Thus we call A ∈ HOS(H) extension-

ally well-behaved if ≤∩ExtA

t =≤At for all basic types t of H. This means that
the extensional view of A does not induce additional order relations or equalities
on the basic elements of A.

Lemma 22. Assume A ∈ HOS(H) for H = (S, F, P, φ, ψ).

1. If A is extensionally well-behaved then ∩ExtA is inductively given by

(a) ≤∩ExtA

t =≤At for t ∈ B(H).

(b) For f, g ∈ As→t we have f ≤∩ExtA

s→t g iff f =A g or for all a, b ∈ As with

a =∩ExtA

s b also [[f ]](a) ≤∩ExtA

t [[g]](b).

2. Let A be continuous and R be an extensional congruence on A that is lub-
compatible on the basic carriers. Then R is lub-compatible. In particular, if
A is extensionally well-behaved then ∩ExtA is lub-compatible.

Proof. 1. Define a system R of relations on A inductively by

(a) ≤Rt
def
= ≤At for t ∈ B(H),

(b) f ≤Rs→ t g iff f =A g or for all a, b ∈ As with a =R
s b also [[f ]](a) ≤Rt [[g]](b),

and a =R
t b

def⇔ a ≤Rt b ∧ b ≤Rt a. To prove 1. we show now that R = ∩ExtA.
To this end we first prove that R is a congruence on R.
By construction =R and ≤R are reflexive and =R is symmetric and sub-
stitutive w.r.t. ≤R. Next, we show that =R is also substitutive w.r.t. the
application operations α. Assume f =R

s→ t g and a =R
s b. By definition of =R

then f ≤Rs→ t g and g ≤Rs→ t f . By definition of ≤Rs→ t and symmetry of =R
s we

therefore have [[f ]](a) ≤Rt [[g]](b) and [[f ]](b) ≤Rt [[g]](a), i.e., [[f ]](a) =R
t [[g]](b).

We now show transitivity of ≤Rt by induction on t. For t ∈ B(H) this is clear
from the assumption. Assume f ≤Rs→ t g ∧ g ≤Rs→ t h for f, g, h ∈ As→ t. If
f =A

s→ t g or g =A
s→ t h then f ≤Rs→ t h is immediate. Otherwise consider

arbitrary a, b ∈ As with a =R
s b. By definition of ≤Rs→ t and reflexivity of

=R
s we get [[f ]](a) ≤Rt [[g]](a) and [[g]](a) ≤Rt [[h]](b). Since by the induction

hypothesis ≤Rt is transitive this implies [[f ]](a) ≤Rt [[h]](b). Since a, b were
arbitrary we conclude from the definition of ≤Rs→ t also f ≤Rs→ t h.
Hence ≤R is a preorder and thus, by Lemma 8, =R is an equivalence.
By construction, R satisfies the function order axioms. We next show that
≤At ⊆≤Rt by induction on t. For the basic types this is trivial. Assume now
f ≤As→ t g and a =R

s b for a, b ∈ As. By substitutivity and reflexivity of =R

we get [[f ]](a) ≤Rt [[f ]](b). Since A satisfies the function order axioms we have
[[f ]](b) ≤At [[g]](b). By the induction hypothesis this implies [[f ]](b) ≤Rt [[g]](b),
and transitivity of ≤Rt shows [[f ]](a) ≤Rt [[g]](b). Since a, b were arbitrary we
conclude f ≤Rs→ t g.
Since substitutivity was shown above, R thus is a congruence on A.
Next we show that R is extensional. Suppose [[f ]](c) ≤Rt [[g]](c) for all c ∈ As.
By substitutivity and reflexivity of =R we have for arbitrary a, b ∈ As with
a =R

s b that [[f ]](a) =R
t [[f ]](b) ≤Rt [[g]](b) =R

t [[g]](b). Since a, b were arbitrary
we conclude f ≤Rs→ t g.
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Let now R′ be another extensional congruence on A. We show by induction
on t that ≤Rt ⊆≤R

′

t for all t ∈ S.
(a) For t ∈ B(H) we have ≤Rt =≤At ⊆≤R

′

t .
(b) Let f ≤Rs→ t g. We have for all a ∈ As that [[f ]](a) ≤Rt [[g]](a), and hence,

by the induction hypothesis, also [[f ]](a) ≤R′t [[g]](a) showing f ≤R′s→ t g
by extensionality of R′.

2. The proof again uses induction on the types involved. On the basic types the
lub-compatibility of R is assumed. Let now D ⊆ As→ t be ≤As→t-directed.
For all a ∈ As we have, by ≤A-continuity of [[ ]], that [[lub≤A

s→t
D]](a) =

lub≤A
t

[[D]](a). By the induction hypothesis lub≤A
t

[[D]](a) ≤Rt upb≤R
t

[[D]](a).

Since R satisfies the function order axioms, [[ ]] is ≤R-monotonic and so also
[[lub≤A

s→t
D]](a) ≤Rt [[upb≤R

s→t
D]](a). Now extensionality ofR shows lub≤A

s→t
D ≤Rs→t

upb≤R
s→t

D.
ut

Property 2. will be instrumental for the existence of extensional structures
that allow solving fixpoint equations. However, the structure Ext(A) need not
be continuous even if A is:

Example 3. Let At1 , At2 and At1→t2 be given by

At1→t2 :
• • • · · ·
a0 a1 a2

At1 : a • At2 :

...
|

b2 •
|

b1 •
|

b0 •

and define [[ai]]
A(a)

def
= bi. Then At1→t2 is ∆-complete, but Ext(A)t1→t2 is order-

isomorphic to At2 which is not ∆-complete. ut

4.3 Higher-Order and Extensional Specifications

A higher-order specification is an ordered specification K = (H,E) with a
higher-order signature H = (S, F, P, φ, ψ) such that the set E of axioms includes
the function order axioms. K is extensional if E also includes the extensionality
axioms. It is clear that all models of an extensional higher-order specification
are extensional. We use the keyword extensional to express that the respective
specification implicitly contains the extensionality axioms.

Consider now specifications that are almost Horn, i.e., higher-order spec-
ifications K = (H,E) such that E consists of Horn axioms except possibly
for extensionality axioms. Note that an almost Horn specification may even be
Horn. As an immediate consequence of Theorem 2 and Horn expressibility of
extensionality on term-generated algebras we obtain
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Theorem 23. For a higher-order specification K that is
- almost Horn,
- almost Horn and grounded,
- almost Horn and monotonic,
- almost Horn, monotonic, and grounded,
the set GEN(K)/� of isomorphism classes forms a complete lattice. In partic-
ular, K has an initial term-generated model.

For a specification with an extensionality axiom for a type s → t ∈ S the
following additional inference rule is sound:

(Extensionality)
ux ≤ w x
u ≤ w

for u,w ∈WH (X)s→t and
x ∈ Xs not occurring in u,w

As shown in [30] and generalising the respective result in [25] we have the
following completeness result:

Theorem 24. Let K = (H,E) be an almost Horn specification and u,w ∈
WH (X). Then

K ` u ≤ w iff MOD(K) |= u ≤ w.

Note that the analogue of Theorem 10 fails for almost Horn specifications.

4.4 Particular Higher-order Specifications

So far we have not used λ notation. This decision was taken to avoid the usual
problems with bound variables. This does not imply a loss in power: A term
λx.t can always be simulated by a new constant f with the axiom f x = t.
Another way to realise λ notation is to include the classical combinators S,K, I
as additional constants with the usual axioms and to replace λ terms by their
combinator equivalents.

In the case of a higher-order specification K = (H,E), we call K grounded
if E comprises the groundedness axioms and all axioms of the form ⊥(x) = ⊥.
Strictness is expressed as in the first-order case: for a hol H = (S, F, P, φ, ψ) and
f ∈ F with φ(f) = t1 → · · · → tk−1 → tk → tk+1 → · · · → tn → t, strictness in
the k-th argument is required by the axiom

f xt1 · · · xtk−1
⊥tk xtk+1

· · · xtn ≤ ⊥t.

4.5 Continuous Higher-Order Structures

Since hoss are just a special case of structures, we can apply completion tech-
niques to monotonic hoss as well. However, the ideal completion may destroy
extensionality as is shown by

Example 4. Let IN⊥ be the flat domain of natural numbers extended by ⊥ and
define the functions fi : IN⊥ → IN⊥ (i ∈ IN ∪ {∞}) by

fi(x)
def
=

{
x if 0 ≤ x < i
⊥ otherwise

f∞(x)
def
= x .
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The set M
def
= {fi : i ∈ IN ∪ {∞}} is extensional. The ideals of M are the sets

Ii
def
= {fj : j ≤ i} (i ∈ IN ∪ {∞}) and J

def
= {fj : j < ∞}. We have Ii ⊆ Ik iff

i ≤ k, Ii ⊆ J iff i < ∞, and J ⊆ I∞. In order to extend function application
in a continuous way to (I(M), ⊆ ) we need to set for I ∈ I(M)

I(x)
def
= lub {f(x) : f ∈ I} .

We have for all x ∈ IN⊥ that I∞(x) = J(x), but I∞ 6= J . Hence I(M) is not
extensional. ut

This example shows also that the embedding of M into I(M), in general, is
not continuous; hence the ideal completion is not a lub-preserving completion.

It may seem that the loss of extensionality is due to the additional limit
point, i.e., to the fact that the ideal completion is not lub-preserving. However,
even under a lub-preserving completion extensionality may be lost. In fact, it
turns out that there is no completion technique which is guaranteed to preserve
extensionality. To prove this formally, we first study a particular ordered set:

Lemma 25. Consider the following ordered set M and its completion M∞:

M :

...
...

| |
4 5
| |
2 3
| |
0 1
\ /
⊥

M∞ :

∞0 ∞1

| |
...

...
| |
4 5
| |
2 3
| |
0 1
\ /
⊥

Then in every completion Q of M we have

lubQ {ι(n) : n even} 6= lubQ {ι(n) : n odd}

where ι : M → Q is the embedding of M into Q.

Proof. Consider the embedding h : M → M∞. SinceQ is a completion ofM and
M∞ is ∆-complete, h extends uniquely into a continuous function ĥ : Q → M∞.
We calculate, for k ∈ {0, 1}

ĥ(lubQ {ι(2i+ k) : i ∈ IN})

= {[ continuity ]}

lubM∞ {ĥ(ι(2i+ k)) : i ∈ IN}

= {[ Q completion ]}
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lubM∞ {h(2i+ k) : i ∈ IN}

= {[ ideal completion ]}

∞k .

Since ∞0 6= ∞1 and ĥ is a function the claim follows. ut

Now we can show

Theorem 26. There is no completion technique which is guaranteed to preserve
extensionality.

Proof. Consider a hos A and types s, t with As = {⊥} and At and As→t given
by the following diagrams.

At :

a∞
/ \
...

...
| |
a4 a5
| |
a2 a3
| |
a0 a1
\ /
⊥

As→t :

...
...

| |
4 5
| |
2 3
| |
0 1
\ /
⊥

Q :

u v
| |
...

...
| |
4 5
| |
2 3
| |
0 1
\ /
⊥

Assume further that [[⊥]]A(⊥) = ⊥ and [[i]]A(⊥) = ai. Then As→t satisfies the
extensionality axiom. By the previous lemma we know that in every completion
A∞ of A the carrier A∞s→t has a subset of the shape of Q. For the unique contin-
uous extension [[ ]]A

∞
of [[ ]]A we have [[u]]A

∞
(⊥) = a∞ = [[u]]A

∞
although u 6= v.

Hence A∞ is not extensional. ut

A remedy for this unpleasant situation will be discussed in the following
section.

4.6 Higher-Order Fixpoint Structures

We now want to apply the results of Section 3.7 to the case of higher-order
structures. Given a hol H and a grounded structure A ∈ GEN(H), we can carry
out the following construction:

1. Pass to the monotonic structure B
def
= Mon(A).

2. Form the ideal completion C
def
= B∞.

3. If ∩ExtC is lub-compatible on the basic types, pass to the extensional struc-

ture D
def
= Ext(C).
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By Lemma 22 and Theorem 18.3 then D is an extensional fixpoint structure.
To conclude this section, we want to discuss the aspect of generatedness for

this construction. Consider a term-generated structure A ∈ GEN(H). In the
ideal completion A∞ every carrier element is the least upper bound of a directed
set of (injections of) elements of A, i.e., of term-denotable elements, and the
behaviour of A∞ is, through continuity, determined by this term-denotable set.
Hence in the ideal completion A∞ the infinite entities may just be viewed as a
“way of speaking” about certain sets of finitely denotable elements. Note that
this behaviour of A∞ carries over to quotients by lub-compatible congruences.
Thus, unlike in the approaches of [44, 1], no transfinite terms are involved here.
This seems intuitively much more appealing, in particular, since we want to
interpret the finitely denotable elements as approximations through which we
handle infinite elements, as is the case on actual computers.

4.7 Continuous and Fixpoint Models of Higher-Order Specifications

In this section we want to construct fixpoint models of specifications, i.e.,
models that are fixpoint structures. In keeping with the idea of approximability,
we want to use the construction of the previous section. To ensure that, start-
ing from a model, this construction leads again to a model, the axioms of the
specifications should remain valid in the completed structure.

From [28] we know

Lemma 27. Consider an ordered and grounded language L and a formula Φ
of the shape Φ = (u1 ≤ u2) or Φ = (u1 = u2). Then for any grounded and
monotonic ordered structure A ∈ STR(L) we have A |= Φ iff A∞ |= Φ.

Together with the principle of term-induction this gives a very powerful
means of proving properties of completions of term-generated models of an in-
equational specification. Further classes of axioms that are preserved under the
ideal completion are discussed in [28]. As we shall, however, see below, more
general axioms are not useful in the higher-order case.

Example 5. Consider the specification S from Example 1. The ideal completion
I∞ of the initial model I of S has a carrier which is order-isomorphic to the set
M∞ in Lemma 25. ut

For the inequational specification with grounded language L and grounded-
ness and monotonicity axioms only (cf. Section 3.4) we get as a continuous model

the structure WL∞
def
= (WL/ v )∞. It can be thought of as the completion of

the term structure WL by “infinite terms”. For a grounded hol H that is essen-
tially of first order, it is isomorphic to the free ∆-complete F -magma defined in
[10]. WL∞ can thus be interpreted as a generalised term structure comprising
finite and infinite L-terms. In the case of a general hol we may also have infinite
terms of functional type.

Finally, we need to consider the case where a quotient has to be taken after
completion. To this end, the class of models of the respective specification should
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be closed under quotients. This is the case for inequational specifications, as we
know from Theorem 10.1. Hence we have

Corollary 28. Let K be a grounded and monotonic inequational specification
and assume A ∈ GEN(Mon(K)). If ∩ExtA

∞
is lub-compatible on the basic types

then Ext(A∞) is an extensional fixpoint model of K.

5 Examples

In this section we give a number of examples illustrating various uses of higher-
order specifications. For modularisation, we use the phrase include SPC′ within
a specification SPC to indicate that SPC′ is a subspecification of SPC.

On some occasions we use overloading of operator identifiers. Also, we freely
use mixfix notation; the positions of actual parameters are marked by under-
scores.

We assume grounded and monotonic specifications BOOL and NAT that
define the basic type bool with the truth values true and false and the standard
operations on them, and the basic type nat with 0, successor succ, predecessor
pred , zero test iszero, addition add , equality test eq and the doubling function
double. All these operators are supposed to be strict.

Finally, for every populated type s we assume a constant

if then else fi : bool→ s→ s→ s

with the axioms
if ⊥ then a else b fi = ⊥,
if true then a else b fi = a,
if false then a else b fi = b.

5.1 A Small Functional Programming Language

In this example we specify a small language showing some of the essential features
of Backus’s FP (cf. [2]), viz. constant function , lifting ˆ of basic functions
and predicates, function composition ◦ , conditional → ; and function
application : We restrict ourselves to unary functions on natural numbers and
assume a superspecification OPS of NAT that provides the primitive functions
and predicates from which to build the functional programs.

spec FUNCT
grounded monotonic
include OBS
basic type funct, bfunct

: nat → funct
ˆ : (bool→ nat)→ bfunct
ˆ : (nat → nat)→ funct
◦ : funct→ funct→ funct
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→ ; : bfunct→ funct→ funct→ funct
: : bfunct→ nat→ bool
: : funct→ nat→ nat

axioms ⊥ : x = ⊥
y : x = y
p̂ : x = p x

f̂ : x = f x
(f ◦ g) : x = f : (g : x)
(p→ f ; g) : x = if p : x then f : x else g : x fi

endspec

The only higher-order objects are the combining forms , ,̂ ◦ and →
; whereas all functional programs are basic objects. Therefore questions of

extensionality do not arise.
Unlike the first-order approaches in [9, 27], the present framework allows a

proper treatment of the lifting operators ˆ that assign to every operation of type
nat → bool and nat → nat a functional program denoting that operation. In the
approaches mentioned, this had to be done outside the respective specifications
by adding for each operator of type s1 → s2 a new constant of sort funct s1 s2.

The specification is inequational and hence our completion techniques apply.
A typical recursion equation over FUNCT is

funct zero = ˆiszero → 0 ; (zero ◦ ˆpred)

defining the recursive constant zero function.

5.2 Function Composition

As a building block for further specifications we define a generic composition
operator for functions. Note that this is quite different from the purely syntactic
composition operator in the functional language of the previous example. This
specification by itself does not have a hol in the sense defined in Section 4.1.
However, we only want to use it as a building block for larger specifications
which then will have proper hols.

spec COMP
◦ : (t1 → t2)→ (t2 → t3)→ (t1 → t3)

axioms (f ◦ g)x = f (g x)
endspec

We have
COMP ` (f ◦ (g ◦ h))x = ((f ◦ g) ◦ h)x

with variables f, g, h, and x. In extensional models A of specifications that in-
clude COMP we have therefore also

A |= f ◦ (g ◦ h) = (f ◦ g) ◦ h,

i.e., composition is associative in A.
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5.3 Fixpoints and Function Iteration

We now define a fixpoint operation as used in the semantics of recursively rou-
tines or objects; contrary to Section 3.7, we do this within rather than over a
specification. We compare the fixpoint with the elements obtained by functional
iteration starting from ⊥.

spec FIX
grounded
include NAT
include COMP
fix : (t→ t)→ t
id : t→ t

: (t→ t)→ nat → (t→ t)
axioms fix f = f (fix f)

x = f x ⇒ fix f ≤ x
id x = x
f0 = id
f succ n = f ◦ fn

endspec

Note that the specification of fix is not complete relative to the other func-
tions. Therefore, in an initial model of FIX, the interpretation of fix (f) will not
coincide with that of any other term; it provides a proper extension of the carrier
of type t→ t (cf. [16]).

Using the proof rules from Section 2.5 we can deduce f i⊥ ≤ fix f . Hence
fix f is an upper bound of the f i⊥. However, since we have no assertion of
continuity (in fact not even a notion of continuity at this level), we cannot be
sure that it is the least upper bound of the f i⊥. Note that this property cannot
even be specified by a Horn axiom.

This unsatisfactory behaviour is the reason why we consider recursion equa-
tions over specifications.

5.4 Communicating Sequential Processes

In [19] already an algebraic approach to the specification of communicating se-
quential processes is taken. We want to show with this Example, how that de-
scription fits into the present framework, and how higher-order concepts can be
used to smoothen the description.

The ordering on processes used in the specification is the refinement ordering:
It is intended that p ≤ q should hold iff q is a refinement of p, i.e., iff the behaviour
of q is at least as determinate and defined as that of p. In the terminology of [19],
p ≤ q states that q is at least as reliable as p. Actually, we define the ordering
conversely to the one used in [19] to make it fit in with the ideal completion.

We assume a primitive specification DATA that defines the basic type data
of data values to be used in the communications. Based on DATA, we want to
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build our description of CSP in several levels to bring out the structure of that
language and its semantics more clearly. First we define the totally unreliable
and underspecified process > that is refined by any process.

Moreover, we define the output construct !d → p that describes a process
that outputs the element d of type data and then behaves like the process p.

The sort of processes is denoted by pcs. The corresponding specification reads

spec TRACES
monotonic
include DATA
basic type pcs
> : pcs
! → : data→ pcs→ pcs
axioms > ≤ p

endspec

The only terms of type pcs in TRACES are of the form

!d1 → (!d2 → · · · (!dk → >) · · ·)

with primitive terms di of type data. Since the only axioms besides leastness of
> are monotonicity axioms, in an initial model I of TRACES we have

!d1 → (!d2 → · · · (!dm → >) · · ·)I ≤I
!e1 → (!e2 → · · · (!en → >) · · ·)I

iff m ≤ n and for all i ≤ m then dIi = eIi . Thus the carrier pcsI is order-
isomorphic to the set of all finite sequences of data elements under the prefix
ordering. Hence, for the completion I∞, pcsI

∞
is order-isomorphic to the set of all

finite and infinite sequences of data elements, again under the prefix ordering. In
the terminology of CSP, these sequences are also called traces, whence the name
of our specification. More frequently, these sequences are also called streams.

In the next step, we add the operator ∨ of disjunction of processes. It is
used to form processes that offer alternative behaviour. The operator ∨ is
associative, commutative, and idempotent; moreover, a disjunction is at most as
reliable as either of its alternatives.

spec TRACESETS
monotonic
include TRACES
∨ : pcs→ pcs→ pcs

axioms (p ∨ q) ∨ r = p ∨ (q ∨ r)
p ∨ q = q ∨ p
p ∨ p = p
p ∨ q ≤ p
(!d→ p) ∨ (!d→ q) ≤ !d→ (p ∨ q)

endspec

27



The last axiom, together with the derivable property

!d→ (p ∨ q) ≤ (!d→ p) ∨ (!d→ q)

implies
!d→ (p ∨ q) = (!d→ p) ∨ (!d→ q),

i.e., that output distributes over disjunction, as is stipulated in [19]. This prop-
erty allows us to write every process as a disjunction of traces.

Another derivable property is

p ≤ q ⇔ p ∨ q = p . (1)

In [19] this property is taken as the definition of the refinement ordering, since
there the ordering is a derived concept, whereas in the present framework it is,
of course, a basic notion. This property allows omitting extensions of traces in
a disjunction from that disjunction without changing the result. Together with
the associativity, commutativity, and idempotence of choice this implies that the
carrier pcsI in an initial model of TRACESETS is isomorphic to the set of finite
sets of traces that are not prefixes of each other. Hence in the completion I∞

the carrier pcsI
∞

is isomorphic to the Smyth power domain (cf. [41]) over the
set of finite and infinite traces.

From (1) one obtains immediately

> ∨ q = > , (2)

which states that disjunction is “demonic”, i.e., that a process offering a totally
unreliable alternative is totally unreliable itself. Note that (2) depends crucially
on the axiom p ∨ q ≤ p. By using the dual axiom p ≤ p ∨ q we would obtain an
“angelic” disjunction with > ∨ p = p.

One can also show that the disjunction of two processes is the greatest lower
bound of these processes w.r.t. the refinement ordering; hence in all models of
TRACESET the carrier of sort pcs is a lower semilattice.

In the next step we introduce an input command. In CSP this is coupled with
a binding mechanism: The input value is bound to an identifier under which it
is available throughout the remaining process. However, to keep the description
simple, we want to avoid the introduction of identifiers and the problems of
binding. Rather, we use a combinator variant of input and represent a process
depending on a free identifier for data elements as a function from data to pcs.
The input command may only be applied to such a parameterised process pp;
after input of a data value d the process then behaves like pp(d). We extend
disjunction pointwise to parameterised processes. The operator c©. lifts a process
to a constant parameterised process.

spec INPUT
monotonic
include TRACESETS
?→ : (data→ pcs)→ pcs
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∨ : (data→ pcs)→ (data→ pcs)→ (data→ pcs)
c© : pcs→ (data→ pcs)

axioms ?→ (pp ∨ qq) = (?→ pp) ∨ (?→ qq)
(pp ∨ qq)(d) = pp(d) ∨ qq(d)
( c©p)(d) = p

endspec

Let us now specify a process representing an unbounded buffer. In this, we
follow [7]. Since a buffer process internally maintains the sequence of buffered
values, we first specify sequences of data values.

[] denotes the empty sequence, [ ] is the singleton sequence former, and +
denotes concatenation.

spec SEQU =
include DATA
basic type sequ
[] : sequ
[ ] : data→ sequ

+ : sequ→ sequ→ sequ
axioms [] + s = s

s+ [] = s
r + (s+ t) = (r + s) + t

endspec

spec BUFFER
monotonic
include SEQU
buf : sequ→ pcs
enterbuf : sequ→ (data→ pcs)
axioms buf [] = ?→ enterbuf [],

buf s+[x] = (?→ enterbuf s+[x]) ∨ (!x→ buf s)

enterbuf t y = buf [y]+t

endspec

These axioms may be interpreted as follows: A buffer with empty internal
sequence can only input and then behave like the enterbuf process with empty
internal sequence. A buffer with non-empty internal sequence either may input
another value and pass it to the enterbuf process or output the last buffer value
and behave like a buffer with a shortened internal sequence. The enterbuf process
merely attaches the input value to the front of its internal sequence and then
behaves like a buffer. This specification shows how, using higher-order concepts,
we can give the use of indices in [7] a precise foundation. Further CSP constructs
such as chaining and interleaving can be introduced similarly following [19].

Since the whole specification is inequational, grounded (with > instead of ⊥),
and monotonic, the constructions of Sections 4.6 and 4.7 yield fixpoint models of
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PCSCOMB in which solutions to these recursion equations exist. As an example
for such a recursion equation consider

pcs dinf = !d→ dinf

for some fixed d ∈ data. Its least solution is the process that emits an infi-
nite number of ds. However, this equation is of first order and so already the
techniques of [26, 28] would have sufficed to give its semantics. A higher-order
recursion is

pcs finf = ?→ λx. !f x→ finf

for some fixed f ∈ data → data. This is an infinitary version of the apply-to-all
operation from functional languages: an infinite process fed into finf by chaining
(see [19]) gets all its output transformed by f .

Finally it should be remarked that the description given leads to problems
with fairness when infinite processes are considered. However, this is due to the
model chosen in [19] and not to the underlying framework of higher-order speci-
fication. The present example was meant to show how the semi-formal treatment
of [7, 19] can be made fully formal within the proposed specification style; it is
not an attempt at giving a new semantics for parallelism.

6 Conclusion and Outlook

The approach to higher-order specifications using a generation principle also for
higher types has proved to lead to a framework which preserves the simplicity
and clarity of the first-order case. Higher-order specifications can be formulated
in a straightforward way; for Horn axioms the existence of extensional models
is guaranteed, so that in this case one can use the higher-order framework quite
naively and actually conceive of the higher-order objects as functions. We deem
this of high importance for the practical acceptance of the idea of formal spec-
ification in general and of higher-order specifications in particular. Only if the
framework is simple, programmers will actually want to use it.

Although the construction of fixpoint models turns out to be more awkward
than in the first-order case, the way how specifications need to be written is still
fairly straightforward.

It will be interesting to see whether from Kleene’s approximation sequence
for the solution of recursion equations over specifications one can derive busy
and lazy operational semantics as was done in [27] for the first-order case. Such
an investigation should go hand in hand with a search for deduction-oriented
sufficient criteria for hierarchy-completeness extending the ones in [17] to the
higher-order case. Similarly, deduction-oriented sufficient criteria for relative con-
sistency w.r.t. subspecifications should be developed.

Of course, a large field of further research is the investigation of wider classes
of axioms that admit extensional and fixpoint models.
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