
                                      

Superconducting box coupled to a classical environment 

Gert-Ludwig Ingold ~ 

Service de Physique de I'Etat Condens& Commissariat gl l'Energie Atomique, Saclay, F-91191 Gif-sur-Yvette Cedex, France 

         

                                                                                                                 
                                                                                                                           
                                                                                                                    
                                            

1. Introduction 

The simplest system which exhibits Coulomb charging 
effects [1] is the so-called box circuit where a metallic 
island is coupled to a voltage source via a normal tunnel 
junction or a Josephson junction [2]. The number of 
electrons or Cooper pairs on a normal or superconduct- 
ing island, respectively, is a good quantum number if the 
charging energy of the island is the dominant energy. As 
a consequence, the average number of electrons or 
Cooper pairs then shows clear steps as a function of the 
applied voltage. This so-called Coulomb staircase has 
been observed both in the normal [3] and in the super- 
conducting case [4]. However, the charge quantization 
on the island will never be perfect. Finite temperatures 
lead to fluctuations of the island charge and thus to 
a rounding of the steps. Another source of fluctuations is 
in the superconducting case the finite Josephson coupling 
without which a change of the island charge would be 
impossible. Correspondingly, in the normal case a finite 
tunneling resistance leads to fluctuations of the island 
charge [5]. 

Since a few years it is known that mesoscopic systems 
often may not be considered as independent from their 

1 Present and permanent address: Lehrstuhl fiir Theoretische 
Physik I, Universit/it Augsburg, Memminger Str. 6, D-86135 
Augsburg, Germany. 

surroundings. The behavior of a single ultrasmall tunnel 
junction, for example, depends strongly on the electro- 
magnetic environment of the junction [6]. The influence 
of the environment on the superconducting box was 
studied recently [7] and it was found that even a low- 
frequency environment of sufficient strength may signifi- 
cantly reduce charge fluctuations on the island. This 
result was obtained by a mapping to the spin-boson 
problem for which the partition function could be deter- 
mined from an exact summation of a perturbation series 
in the Josephson coupling. 

The aim of the present paper is to give a more trans- 
parent discussion of the influence of a low-frequency 
impedance on the charge quantization on a supercon- 
ducting island. In Section 2 we introduce the supercon- 
ducting box which we couple to a classical environment 
in Section 3. Analytical results for the partition function 
within a two-state approximation are presented in Sec- 
tion 4. The average island charge may be calculated from 
the partition function. Results for zero and finite temper- 
atures are given in Sections 5 and 6, respectively. Finally, 
in Section 7 we present our conclusions. 

2. Superconducting box 

The superconducting box circuit under consideration 
is shown in Fig. 1. An island is formed by a Josephson 
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Fig. 1. Superconducting box circuit containing an island formed 
by a Josephson junction with Josephson coupling energy Ej and 
capacitance C1 and a capacitor of capacitance C2. The island 
carrying n excess Cooper pairs is coupled to a voltage source via 
an impedance Z(o)). 

junction and a capacitor. The junction is characterized 
by a Josephson coupling energy Ej and capacitance 
C1 while the capacitor has a capacitance C2. Then 
C~ = C1 + C2 is the capacitance of the island leading to 
the charging energy Ec = 2e2/C~ for a single Cooper  pair. 
The charge of the island is - 2he where n is the number 
of excess Cooper  pairs on the island. Here, we neglect the 
quasiparticles which is a good approximation if the gap 
energy A needed to create a quasiparticle on the island 
is much larger than the island charging energy Ec. The 
latter should always be larger than the thermal energy 
k a T  in order to avoid a total suppression of charging 
effects by thermal fluctuations. One may shift the island 
charge by applying an external voltage 1/which results 
in an effective island charge - 2 e ( n - n ~ )  where 
n x = C 2 V/2e. [2] The Hamil tonian describing the charg- 
ing energy of the island is therefore given by 

H¢ = E¢(n - nx) 2. (1) 

The corresponding parabolas are shown in Fig. 2 to- 
gether with the Coulomb staircase for the average num- 
ber of excess Cooper  pairs on the island. At zero temper- 
ature and for negligible Josephson coupling the staircase 
would be as ideal as shown. 

The island capacitance Cx becomes more apparent in 
the circuit of Fig. 3 which may be obtained from the 
circuit of Fig. 1 by applying network transformation 
rules [6]. The transformed circuit also contains a modi- 
fied environment  consisting of the original impedance 
Z(o)) which now is in parallel with the total capacitance 
Ctot = C1C2/(C1 + C2). The total capacitance is formed 
by the two capacitances of the Josephson junction and 
the capacitor in series shown in Fig. 1 as seen from the 
environment. 
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Fig. 2. Charging energy parabolas as a function of the external 
voltage V = 2enx/C2 according to Eq. (1). The different para- 
bolas correspond to different island charges. Below the ideal 
Coulomb staircase for the average number of excess Cooper 
pairs on the island is shown. 

Fig. 3. Circuit equivalent to the box circuit shown in Fig. 1 if 
seen from the Josephson junction. Cs = C~ + C2 is the island 
capacitance while fro t = C1C2/(C 1 Jr C2) is the capacitance of 
the two island capacitors as seen from the surrounding circuit. 
The phase differences across Josephson junction, island capaci- 
tor, and environment are indicated. 

The tunneling of Cooper  pairs through the Josephson 
junction is described by the Josephson Hamil tonian 

Ej 
H T = --  ~ -  cos  (~/)j), (2) 

where the phase difference ~0j across the junction is re- 
lated to the voltage U across the junction by 2e ' 
~oj = ~ dt 'U(t ' ) .  (3) 

Correspondingly, we define phases ~0 for the environment 
and ~k for the island capacitance where U in Eq. (3) has to 
be replaced by the voltage across the environmental 
impedance and by - 2e(n - nx)/Cz,  respectively. Since 
the voltages in the circuit of Fig. 3 add up to zero we may 
require that the phases add up to zero as well. Then 
qh may be replaced by - ~ - ~o. We note that the phase 



                                              

~, and the excess number of Cooper pairs are conjugate 
variables obeying the commutation relation 

[~O, n] = - i. (4) 

Therefore, the operator exp( + i~,) changes the island 
charge by -T-2e. Correspondingly, the charge Q on the 
capacitor parallel to the environmental impedance 
shown in Fig. 3 and the phase q~ are conjugate variables 
with the commutation relation 

[q~, Q ] = 2ie. (5) 

3. Classical environment 

We now turn to the description of the environmental 
impedance of which we may think in terms of a set of 
harmonic oscillators. Starting with a Caldeira-Leggett- 
type Hamiltonian [8] it can be shown that any environ- 
mental impedance can be described by an appropriate 
choice of harmonic oscillators [6]. In the following, we 
restrict ourselves to a classical environment for which the 
frequencies of the oscillators are much smaller than the 
thermal frequency kBT/h. This type of environment may 
be treated adiabatically thus allowing for results which 
are nonperturbative in the Josephson coupling energy Ej. 
It is therefore especially suited for a theoretical study of 
environmental effects. In addition, experimentally one 
often has a low-frequency part of the environmental 
impedance which in principle may have arbitrary 
strength with a cutoff frequency in the MHz range, while 
the high-frequency impedance usually is very small and 
may be treated perturbatively. We note that the above 
condition for the environmental mode spectrum implies 
that zero temperature results are obtained by first taking 
the limit of zero frequency before taking the zero temper- 
ature limit. From an experimental point of view this is 
reasonable because frequencies in the MHz range and 
below correspond to temperatures of the order of 10-4 K 
and smaller which for most practical purposes can be 
considered as zero temperature. 

For  the calculation of the partition function oscillator 
modes with frequencies much below kBT/h can effectively 
be considered as zero-frequency modes because the ther- 
mal time hfl is too short to distinguish between a low but 
finite frequency and a zero-frequency mode. More for- 
mally, this can be shown by considering correlation func- 
tions [7]. We therefore may model the environment by 
one single mode with zero frequency leading to the envir- 
onmental Hamiltonian 

Q 2  

H e , v = 2 ~ .  (6) 

We thus replace the total impedance Zt(og) = 
[iogCtot + 1 /Z(~)] -1  of Fig. 3 by a fictitious capacitor 
with capacitance C carrying the charge Q. The corres- 
ponding real part of the impedance is given by 
(n/2C)~+(o9) where ,~+(o~) is a delta function shifted 
infinitesimally to positive frequencies. Since this impe- 
dance has to contain the weight of all modes in the original 
total impedance, we relate the capacitance to the integ- 
rated real part of the impedance introduced in Ref. [7] by 

fo a = da~ Re Zt(c°) e2 
R ~  hC' (7) 

where RQ = h/4e 2 is the resistance quantum. 
Collecting the Hamiltonians (1), (2), and (6) we obtain 

the total Hamiltonian 

- ~ -  (8) 

The last term containing the phases ~o and ~b conjugate to 
the environmental charge Q and the island charge - 2ne, 
respectively, couples the tunneling to or from the island 
to the environment. The eigenenergies of Eq. (8) may be 
calculated with Q as a parameter after making the Hamil- 
tonian independent of the environmental phase q~. In 
view of Eq. (4) we rewrite the operator exp(i~b) in the 
charge representation as 

+ot~ 

e i*=  ~ I n - 1 ) ( n l .  (9) 
n = - - o ~  

It then becomes clear that a unitary transformation 
which multiplies the charge state J n )  by exp [i(n - ½) ~o ]
will indeed lead to a q~-independent Hamiltonian. The 
shift of n by ½ leads to a more symmetric formulation 
which will be convenient in Section 4. Making use of Eq. 
(5) we finally obtain the Hamiltonian 

H = , = ~ _ ~ [ E c [ ( n - ½ ) 2 - e ( 2 n - 1 ) ]  

+ T - 2n + 1 In)(n[ 

E j  + oo 

2 ~ ( I n ) ( n + l l + l n + l ) ( n l ) .  (10) 
n =  - - o o  

Here, we have introduced e = nx - ½ which measures the 
distance from the step in the average island charge where 
the charge states n = 0 and 1 are degenerate. Further- 
more, we have discarded the constant energy E¢ e z which 
is especially convenient when only two charge states are 
considered. From Eq. (10) we may directly calculate the 
partition function 

= d Q T r e  -pH, (11) 
- o o  



                                               

where the trace has to be taken over the island charge 
states. The average island charge may then be obtained 
according to 

1 1 0 l n ( ~ )  
( n )  = ~ + 2flE~ ee (12) 

from which the slope of the step is obtained as 

~(n) (13) 
Z = ~e ~=0" 

In general, the partit ion function (11) has to be evaluated 
numerically. However,  close to a step (e ~ 1) it is often 
sufficient to restrict the calculation to two charge states. 
This case, for which analytical results may be derived, 
will be discussed in the following. 

4. Partition function in two-state approximation 

The steps in the average island charge appear at volt- 
ages for which two charge states are degenerate. At e = 0 
these are the states n = 0 and 1. We note that the behav- 
ior of the system is periodic in n so that all steps have the 
same form. Not  too far from the step, i.e. for e ~ 1, the 
restriction to these two charge states is still a good 
approximation provided that E j  <~ E e. This ensures that 
the level splitting between the two states under consid- 
eration is much smaller than the energetic distance to the 
neglected states. In addition, we have to require kaT ~ E¢ 
to avoid thermal excitation to other charge states and 
thermal suppression of charging effects. These conditions 
still allow for an arbitrary ratio Ej/ka T. 

Restricting the charge states in Eq. (10) to n = 0 and 
1 we get for the Hamil tonian in matrix notat ion 

) E c e +  2 \ e  + 1 2 

2 -- E ~  + ~ -  - -1  

(14) 

where we shifted the energy by Ec/4. The first and second 
component  of the state vector are related to In) -- 10) 
and I1), respectively. F rom Eq. (14) we immediately get 
for the eigenenergies as a function of the environmental  
charge Q 

= ha(Q~ 2 ha Ece) J . El'2 2 \ e ]  +--2+ + ha + 

(15) 

The behavior of the ground state energy as a function of 
Q changes qualitatively at ha = Ej/2. For  the case of 

weak coupling (ha < Ej/2) shown in Fig. 4 the ground 
state energy has only one minimum while for the case of 
strong coupling (ha > E j/2) shown in Fig. 5 the ground 
state energy displays two minima. In the two figures the 
left curve is given for a voltage at the step (e = 0) while 
the right curve corresponds to a voltage in the vicinity of 
the step (e -- Ej/Ec). Such energy curves have been ob- 
tained before for the spin-boson problem [9]. 

In order to understand this qualitative difference be- 
tween the weak and strong coupling we consider the 
situation at the step (e = 0). The connection of the super- 
conducting box to an electromagnetic environment leads 
to a coupling between the island charge and the environ- 
mental charge. For  weak Josephson coupling this results 
in eigenstates of the Hamil tonian which are also good 
eigenstates of the number operator  for Cooper  pairs on 
the island. Since we consider only two charge states we 
get the corresponding two minima in the strong coupling 
case of Fig. 5. On  the other hand, for weak coupling to 
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Fig. 4. The two energies (15) as a function of the environmental 
charge Q for weak coupling ha = 0 .25Ej .  The left and right 
curves correspond to e = 0 and Ej/Ec, respectively. 
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Fig. 5. The two energies (15) as a function of the environmental 
charge Q for strong coupling ha = 2 .5E j,  The left and right 
curves correspond to e = 0 and Ej/E~, respectively. 



                                              

the environment the Josephson coupling energy is domi- 
nant. This leads to a strong hybridization of the two 
charge states. As a consequence the charge oscillator is 
frustrated which results in an energy minimum at Q = 0. 
It follows from this discussion that the different number 
of local minima will have direct consequences for the 
behavior of the superconducting box. This will become 
clear in Section 5 where we consider the case of zero 
temperature. 

The partition function within the two-state approxi- 
mation follows from Eq. (11) as 

L oo 

.~ = dQ [e -#e'(Q) + e-#E2(Q)], 
co 

(16) 

which together with Eq. (15) becomes 

[ ~ =  -~ d~exp - ~ , T x  + 

xcosh ~ + ( h a x + E : )  2 )  J. (17) 

By expanding the integrand it can be shown that this 
result is equivalent to the somewhat more complicated 
expression for the partition function given in Eq. (50) of 
Ref. [7] apart from the partition function of the free 
environment which was divided out in the latter result. In 
general, the partition function (17) has to be evaluated 
numerically. Analytical results can be obtained for zero 
temperature as well as for low temperatures with 
kBT < Ej where a local harmonic approximation around 
the energy minima is possible. The expressions for the 
position of the minima as well as the corresponding 
harmonic approximations for the energy are given in the 
appendix. 

5. Zero-temperature behavior 
Results for zero temperature may be obtained by con- 

sidering the minima of the charge-dependent ground 
state energy. As was already discussed in Section 3 this is 
no zero-temperature limit in the strict sense since accord- 
ing to our model the thermal energy always has to be 
larger than the mode energy of the oscillator. Neverthe- 
less, the following results are valid for temperatures 
which for practical purposes can be considered as zero 
temperature. 

In order to calculate the behavior of the average num- 
ber of excess Cooper pairs on the island it is convenient 
to determine from Eq. (14) the charge state of the ground 
state from which the average charge as a function of the 

environmental oscillator charge Q 
e from the step is obtained as 

and the distance 

(18) 

with 

E o = ha Q-- + g : .  (19) 
e 

Since for our two-state model <n> gives the probability 
to find the state n = 1, Eq. (18) confirms the arguments 
given above. For e = 0 we find for large Josephson coup- 
ling energy a strong hybridization corresponding to 
<n> = ½. On the other hand, for small Josephson coup- 
ling energy we get <n> = 0 or 1 depending on the sign 
of Q. 

For weak coupling (ha < Ej/2) the slope of the average 
number of excess Cooper pairs as a function of the 
applied voltage at e = 0 is determined by the continuous 
shift of the minimum of the ground state energy as shown 
in Fig. 4. Inserting the leading e-dependence of Q0 given 
in Eq. (A.1) into Eq. (19) we obtain from Eq. (18) for the 
slope 

Ec 
Z = - -  ( 20 )  

Ej -- 2ha" 

This result diverges as ha = Ej/2 is approached which 
indicates that for stronger coupling <n>(e) exhibits 
a jump. 

For strong coupling (ha > Ed2) the behavior changes 
qualitatively because of the two minima which are pres- 
ent in the ground state energy shown in Fig. 5. For 
nonzero ~ the energy curve is asymmetric and the lower 
minimum will determine the average number of excess 
Cooper pairs. At e = 0 the two minima are degenerate 
leading to a finite jump of <n). According to Eq. (A.3) the 
degenerate environmental charges at the minima of the 
ground state energy are 

[ ( 'Vl Q+ = + 1 - (21) 
e - \2~aa] j • 

Together with Eqs. (18) and (19) we then get for the jump 
of <n> at e = 0 

A<n> = [1_  (E' '~2T/2 
\2h-aa/ J " (22) 

As we expect, the height of the jump goes to zero as ha 
approaches E j~2 from above. 



                                               

6. Finite temperature results 

We now consider the case of low but finite temper- 
atures for which Ej/kBT ~ 1. Then thermal fluctuations 
are rather small allowing us to study the interplay be- 
tween Josephson coupling and environmental coupling. 
Furthermore, for the calculation it is sufficient to con- 
sider only the ground state energy and to expand the 
energy around the minima up to second order. 

For  weak coupling we make use of Eq. (A.2) to calcu- 
late the partition function. Together with Eqs. (12) and 
(13) we get for the slope of the step 

X = E, , ha 1 fl(E~ - 2ha)2 ] ' (23) 

which yields to first order in the coupling strength a, 
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Fig. 6. Slope Z of (n) at a step as a function of the coupling 
strength ha. The full line was calculated numerically for 
flEj = 50. The corresponding analytical results obtained from 
the harmonic approximation of the energy are shown as dotted 
lines. The dashed line corresponds to zero temperature. 

g = 2ha(1 3 
e,L +E,\ (24) 

Since we have flEj >> 1 these result describe an increase of 
the slope due to the coupling to the environment. If we 
include the excited state with Eq. (A.6) into the calcu- 
lation of the partition function, we find to first order in a, 

good agreement with the numerical curve except in the 
vicinity of ha = Ed2 where the character of the ground 
state energy changes. The figure shows that an environ- 
mental impedance may increase the slope significantly, 
especially at low temperatures. 

E~ ( ~ _ 2 ) I  Ec 6Ec (fl_~) 
Z = ~j  tanh + ha 3 E2 flEa tanh 

E2 tanh 2 . (25) 

This expression also contains the result for small 
Josephon coupling, f lEj  '~ 1 given in Ref. [7]. 

For  strong coupling we use Eq. (A.4) to obtain for the 
slope 

z =  1 - \2-~ / j +  
Ec E 2 

2ha ((2ha) 2 - Ej2) ' (26) 

where we neglected terms of orde r T. For very strong 
coupling the slope takes the asymptotic value [3E°/2. The 
first term in Eq. (26) also describes the leading behavior 
in the opposite temperature limit f lEj  '~ 1 for strong 
coupling hfla >> 1. [7]. 

The dependence of the slope on the coupling strength 
is shown in Fig. 6. The dashed line shows the zero- 
temperature result (20) which diverges at ha = E j~2 since 
the slope for stronger coupling is infinite. The full line has 
been calculated numerically from Eq. (17) for the finite 
temperature kaT = 0,02Ej. The corresponding analytical 
results (23) and (26) based on the harmonic approxima- 
tion of the energy are shown as dotted lines. They are in 

7. Conclusions 

We have studied a superconducting box circuit which 
contains a low-frequency environment of arbitrary 
strength. Within the approximation of two charge states 
it was found that the behavior of the system changes 
qualitatively when the integrated real part of the impe- 
dance exceeds the value Ej/2h. The model of one zero- 
frequency mode relates this to the qualitative change in 
the dependence of the ground state energy on the envir- 
onmental charge. At zero temperature strong coupling to 
the environment leads to a jump of the average island 
charge at the voltage where two charges are degenerate. 
At low but finite temperatures the slope at  the step can be 
increased significantly by the environment thus leading 
to a better charge quantization. 
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Appendix: Energy minima and 
harmonic approximation 

For  low temperatures it is useful to consider the vicin- 
ity of the energy minima in harmonic approximation. In 
the following we list the charges Qo for which the energy 
is minimal for small e as well as the energies for small e up 
to second order in the distance AQ from Qo. For  the 
ground state the min imum charge in the case of weak 
coupling (ha < Ej/2) is given by 

Qo 2E¢ 4E3cEj 3 
e Ej_2h~a e ( E ~ - - ~ a ) , e  + . . .  (A.1) 

and the energy reads 

Ej ha E 2 e2 
E = - - ~ - t  2 Ej -- 2ha 

[ h a ( h a )  2 (ha)2E~ I(A_~__Qe)2 
-F E j  + 6 E j ( E j  - -  2ha) 2 e2 + "'" 

(A.2) 

For  strong coupling (ha > Eft2) the ground state energy 
has two minima at 

[ ( 'Vl , Q-3°- + 1 -  +-- e - - \2-~a } _[ ha (ha) 2 - -  E 2 8 

~:2E2t~ a
-T-12 (2£ -~J '~ j2 ) s / i e  2 + . . . .  (A.3) ( ) -  

Expanding the energy around these minima we obtain 

E= E'~ [ (~'~ lel ''2 
- r E o  / 3 

2 2 _ 2E¢ E j  1 e2 
ha (2ha) 2 - E 2 

--\~a: J -  4ha [(2ha) 2 -  E,] '/z ~ 

3EcEj 2(2ha) z - E J  2 z l  
+ 2h----a.-((2tia)2 _ E~)2 e j + - . . .  (A.4) 

Independent  of the coupling strength the excited state 
has only one minimum at 

Qo 2E¢ 4E3Ej e3 
e Ej + 2ha e + (Ej  -I- 2ha) 4 + . . . .  (A.5) 

The energy close to this minimum is given by 

E~ ha E 2 F" 2
E = T + T + Ej + 2h---------a 

[_~" (ha)2 (.a)2 Ec 2 e21{AQ x~ 2
+ L  + ~ - 6 E , ( E j + Z h a )  2 ] \ - ~ - J  + " ' "  

(A.6) 
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