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Multiple Steady States, Indeterminacy and Cycles 
in a Basic Model of Endogenous Growth

Alfred Greiner and Willi Semmler*

A b stra ct

The goal of this paper is to demonstrate that a basic model of endogenous growth 

with learning by doing may produce a rich array of outcomes. Starting point of 

our analysis is the Romer (1986a) approach. In contrast to Romer, however, we 

assume that one unit of investment shows different effects concerning the building 

up of physical and human capital, so that these variables cannot be merged into 

one single variable. With this assumption, it can be shown that multiple steady 

states, indeterminacy of equilibria and persistent cycles may result in our model.

1 Introduction
It is well known that introducing external effects in models of economic growth may lead 

to sustained per capita growth. Taking for example a learning by doing approach with 

endogenous savings, as initiated by Arrow (1962) and generalized by Levhari (1966), 

Romer (1986a) has shown that per capita variables may grow without an upper bound 

if the spillover effects are sufficiently large. Other examples of endogenous growth 

models with a perpetual increase of per capita production are those where agents may 

devote time to increase their stock of human capital which positively impacts per capita 

output (Lucas, 1988). The vast body of literature on this topic, however, is often 

only concerned with the analysis of balanced growth paths and aspects concerning the 

dynamic behaviour of economies with endogenous growth are frequently neglected.

One interesting feature of endogenous growth models may be the existence of a 

multiplicity of steady states implying that the initial conditions crucially determine the

* Forthcoming in: Journal of Economics/Zeitschrift für Nationalökonomie
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stationary state to which the system converges in the long run. So, two economies 
with distinct starting values of the capital stock may reveal completely different steady 
state values and thus growth rates. This means that one economy always lags behind 
the other and can never catch up. In this case, we can speak of lock-in effects in the 
sense of Arthur (1988). Closely related to that point is the question of indeterminacy 
of equilibria. Here then, two economies with identical initial conditions with respect to 
the stock of physical and human capital have the same stationary values and growth 
rates. The transitional dynamics, however, and thus transitory growth rates depend 
on the starting value of consumption which may be chosen freely. To our knowledge, 
the only papers which study this question within a model of endogenous growth with 
externalities are the one by Boldrin and Rustichini (1994), who show that in a discrete­
time one-sector model equilibria are unique, and the paper by Benhabib and Farmer 
(1994), who demonstrate indeterminacy with an aggregate production function with 
increasing returns and an elastic labour supply. The aspect of indeterminacy as well as 
the possibility of multiple steady states is also studied by Chamley (1993) in a model 
where agents can choose between allocating their time to either learning or producing 
goods. The topic of indeterminacy is also addressed by Benhabib and Perli (1994) for 
the Lucas model and Benhabib, Perli and Xie (1994) for the Romer (1990) model1.

xSee also the papers in the special issue of the Journal of Economic Theory, volume 63, no. 1, which, 
however, mainly focus on the Lucas (1988) variant of an endogenous growth model.

2 See King and Rebelo (1993), Mulligan and Sala-i-Martin (1993), Caballe and Santos (1993), Asada, 
Semmler and Novak (1995) and Koch (1995).

Another point of interest concerns the generic dynamic properties of endogenous 
growth models. Although some papers have recently emerged which study the transi­
tional dynamics on paths to the steady state2, none of these studies finds an interesting 
out-of-steady state dynamics for the standard endogenous growth models either the Lu­
cas (1988) or Romer (1990) type. For conventional growth models, i.e. for models with 
zero per capita growth rates, Benhabib and Nishimura (1979) have shown that in an 
economy with more than one physical capital good persistent oscillations may result. A 
similar outcome was observed by Greiner and Hanusch (1994) in a model with learning 
by doing.

But this question has rarely been studied in continuous time models of endogenous 
growth with positive per capita growth rates. Benhabib, Perli and Xie (1994) or Ben­
habib and Perli (1994, p. 124), for example, mention the possibility of persistent cycles 
in endogenous growth models, but did not go further into the details. Futagami and
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Mino (1995) show for an endogenous growth model with public capital that their model 
may also produce endogenous cycles. However, these authors only demonstrated the 
possibility of existence of closed orbits around a steady state by showing that the real 
parts of two eigenvalues may become zero thus generating a Hopf bifurcation.

The goal of our paper consists in demonstrating that already in a standard one-sector 
model of endogenous growth with learning by doing, multiple steady states and inde­
terminacy of equilibria may result. Moreover, we also prove, applying Hopf-Bifurcation 
theory and numerical examples, that persistent growth cycles may occur in such a mo­
del.

The rest of the paper is organized as follows. In section 2, we present our model. 
Section 3 studies the possibility of multiple steady states and gives conditions for the 
indeterminacy of equilibria. Moreover, necessary conditions for the emergence of stable 
limit cycles are derived. Section 4 presents simulations which demonstrate the analytical 
results. Section 5 concludes the paper.

2 A M odel of Endogenous Growth w ith  Learning 
by D oing

We consider an economy with a macroeconomic production function of the form Y  (t) = 
L W a K (ty ~ a , with Y(t) output, A(t) stock of human capital, L(t) labour force 

and K (t) total stock of physical capital, a G (0,1) is the coefficient in the Cobb- 
Douglas function determinig the labour share in the production of the output Y (t), and 
all variables are functions of time.

The labour supply L(t) is assumed to grow at the constant rate n. Macroeconomic 
output Y  (t) may be either consumed or invested, thus increasing the stock of physical 
capital in the economy. The evolution of the per capita capital stock K (t) is given by 
the differential equation, K[i) — I(t) -  (6 + n)K (t), with I(t) per capita investment 
and 6 >  0 constant depreciation rate. As to the stock of human capital A(i) we assume 
that it is formed according to the learning by doing approach initiated by Arrow (1962). 
In contrast to Arrow, however, who uses a vintage approach with fixed coefficients, we 
assume in our model that technical change is disembodied and the production function 
is not restricted to fixed coefficients (see Levhari, 1966). Moreover, we suppose that the 
contribution of gross investment further back in time to the formation of human capital 
is smaller than recent gross investment. This assumption makes sense economically and
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can be formalized by defining the stock of human capital as an integral of past gross 
investment with exponentially declining weights put on investment flows further back 
in time (cf. Ryder and Heal, 1973, or Feichtinger and Sorger, 1988). A(t) then is given 
by A(i) =  p ep's~t 1'1(s)ds, with p > 0. The parameter p represents the weight given 
to more recent levels of gross investment. The higher p, the larger is the contribution 
of more recent gross investment to the human capital stock in comparison to flows of 
investment in the past. There is an alternative interpretation for the parameter p. This 
coefficient can also be considered as the parameter determining the turnover of human 
capital in the economy. This is seen by differentiating A(t) with respect to t, giving, 
A = p(I — A). The higher p the larger is the change in human capital induced by one unit 
of investment and the more of the current stock of human capital depreciates. In this 
sense we could say that the creation of new knolwedge is subject to the process of creative 
destruction in the Schumpeterian sense because any new investment creates knowledge 
but, at the same time, makes a certain part of the existing knowledge obsolete.

3 We thank a referee for a remark on this topic.

It should be mentioned that our approach is equal to the one by Romer (1986a) for 
p =  1 and under the assumption that neither the stock of physical nor human capital 
depreciates. Then, we get A{t) — I(s)ds = K (t) and our model is the same as the 
original Romer model3 .

Per capita consumption C(i) in our economy is chosen so as to maximize the wel­
fare functional e~r tu(C (t))L(t)dt, subject to the constraint giving the evolution of 
physical capital, r > 0 denotes the constant discount rate and u(-) is a strictly concave 
utility function, u'(-) > 0, «"(•) < 0. Moreover, the utility function obeys the Inada 
conditions lime—ou'(C) — oo, lime—oou'(C) =  0, and we suppose that the elasticity of 
marginal utility u"(C)C/u'(C) = —a is constant.

As usual in this type of growth models with positive external effects, the solution 
to this optimization problem does not yield the socially optimal outcome. The latter 
would be achieved by explicitly taking into account an additional differential equation 
giving the evolution of human capital over time. The question, however, what measures 
should be taken to achieve the social optimum is beyond the scope of this paper. Instead, 
we will limit our investigations to the competitive situation, i.e. where only the direct 
effects of investment on physical capital are taken into account, and study what dynamic 
behaviour may result in that type of models.

Considering that the labour force grows with the constant rate n > 0 and normalizing
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L(0) =  1, we can write our optimization problem as

sup [  e~(r~n ^u(C(t))dt (1)
c(t) Jo

subject to4

4 In what follows we will suppress the time argument if no ambiguity arises.

K  = bAa K ^  — C — (6 + n)K. (2)

The external effect of investment is described by the differential equation,

A = p(bAa K ^  - C  -  A). (3)

Given the fact that the evolution of human capital is exogenous to firms, the solution 
to this optimization problem is equivalent to the solution of the market economy with 
competitive firms, which pay wages equal to the marginal product of labour and rent 
capital with the interest rate equal to the marginal product of capital, and households, 
which receive labour income and interest payments on their savings.

Before we proceed to use necessary conditions to describe the solution to  this opti­
mization problem, we first investigate whether there exists a solution at all. A crucial 
condition in demonstrating that a solution to our optimization problem exists is to as­
sume that the growth of A(t) and K (t) is bounded. This assumption excludes jumps 
in these variables and states, in economic terms, that the economy must not grow too 
fast. The following proposition gives the exact condition.

P ro p o s itio n  1 Assuming that K (t) and A{t) are bounded by a function growing with 
e9 t, where 0 < g < r — n, there exists a unique solution for (1) subject to (2).

Proof: To prove this assertion, we use the theorem by Romer (1986b). To apply this 
theorem, we have to write our problem in the form maxK  f£° u (A ,K , k)e~^r ~n ^dt. Since 
(2) is invertible, this is easily done. A solution to the problem exists if u(-) is (i) 
upper-semicontinuous, (ii) concave in k  and if, (iii), u(-) < m(t) — |K'|P holds, with 
p > 1 and m(t)e~^r~n ^ integrable, (i) and (ii) are easily seen to be satisfied. To show 
that (iii) is fulfilled, we first note that u(C) < u(l) + u '(l)(C  -  1) holds because of 
the strict concavity of u(-) in C. Stating that C = bAa K l ~a  — (<5 +  n)K  — K , we may 
write u(bAa K 1~a  -  (5 +  n )K  -  K ) < u(l) + u'(l)(bA“K x- tt -  (6 + n )K  -  K  -  1) <

=  u(l)+u '(l)(6A oKo es t ). Here, it should be noted that we 
implicitly assume that investment is irreversible, i.e. I  > 0. Now we can find constants
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M 2 and a p > 1 so that u(l) -J- u'(l)(bAQK o e9 t) < u(l) + < u(l) +
ut (l)M 2e9t -  (K 0g )^e 9 ty  < u (l) +  u '(l)M 2e^ -  \K\?. Setting u(l) + u '(l)M 2e“  = m(t) 
and knowing that g < r — n, it is immediately seen that (iii) is fulfilled. □

With this proposition at hand we can use Pontryagin’s maximum principle to de­
scribe the optimal solution. The current-value Hamiltonian for our problem is &(•) = 
u(C) + ^(bA a K ^ a  ̂ ~  C -  (5 +  n)K ).

Maximizing with respect to C yields u'(C) =  7 for interior solutions. The evolution 
of 7 is given by, 7 = 7(r +  £ ) —7(1 — a}b{A/K )a . Since the Hamiltonian is strictly 
concave in C and K  jointly, the necessary conditions are also sufficient if in addition 
the transversality condition at infinity lim^oo e” r̂ ~n ^7(Z)(K(Z) — > 0 is fulfilled
with K *lt) denoting the optimal value. Moreover, strict concavity in C and K  also 
guarantees that the solution is unique (cf. Seierstad and Sydsaeter (1987), pp. 234-235). 
This holds because for the competitive economy only the evolution of physical capital 
is taken into account whereas the evolution of human capital is given exogenously.

3 T he D ynam ic Behaviour
The necessary optimality conditions together with the differential equation describing 
the exogenously given evolution of human capital determine the dynamics of our eco­
nomy. It is given by the differential equations

c 1 — a , f( A \ a r + 6
= ------- &1 —■ 1 --  ----- --- (4)c a \ K )  a ’

k I A \ a c  ,
k = -  -  (£  +  « ) .

A
(5)

A , i A \ a - i  c

A = '‘ (K) (6)

It is obvious that sustained per capita growth is only feasible if the external effect 
of investment is strong enough. In fact, if A  is constant we have the usual neoclassical 
growth model with zero per capita growth in the long run. This is well-known and has 
been pointed out by others before5. The novelty of our approach consists in assuming 
that the contribution of one unit of gross investment shows different effects on the 
building up of physical capital and human capital. This is certainly reasonable and 
implies, as a consequence, tha t these state variables cannot be merged into one single

6 See e.g. Romer (1986a) or Sala-i-Martin (1990).
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variable, as is frequently done. In the following, let us assume that the spillovers in our 
economy are sufficiently strong so that positive per capita growth is feasible and that 
the rate of growth is bounded by 0 < g < r -  n.

To explicitly investigate the dynamic behaviour of our economy, we perform a change 
of variables with k = K /A  and c = C¡A. Differentiating with respect to time gives 
k /k  = K /K  — A /A  and c/c = C /C  — A /A . Our new system of differential equations 
in k and c is then given by

k = bk'~a - b p k 2~a — c — k(6 +  n )+  pk(l +  c), (7)

c = - --- —bk~a c — — -c  — bpckl ~a +  pc(l + c). (8)
a  a

A rest point of this system corresponds to a balanced growth path of (4) - (6) with 
A /A  = K / K  — C /C  — const. Let us, in a next step, examine whether system (7) - (8) 
has a steady state. It is immediately seen that k =  0 cannot be a steady state value since 
k is raised to a negative power in (8). This implies that there is no steady state with a 
zero value for k. Moreover, setting c — 0 and k so that 6 + n — p = bk~a (l — pk) would 
yield a stationary point for (7) - (8). This, however, would imply that consumption is 
zero, a fact which does not make sense from the economic point of view so that we can 
exclude this rest point a priori, too. Therefore, we can consider the system (7) - (8) in 
the rates of growth and find its interior stationary points. In Proposition 2, we state 
conditions which guarantee that the interior stationary state is unique.

P ro p o sitio n  2 If 6 + n > (r +  b}/o > p, the existence of an interior steady state for 
system (7) - (8) implies that it is unique. The growth rate associated with this steady 
state is an increasing function of the population growth n.

If the above inequality does not hold, multiple steady states may be possible.

Proof: Setting k /k  = 0 yields c°° =  [bk1~a —bpk2~a  — k(6+ n)+ pk)/(l—pk). Substituting 
c°° in c/c and setting c/c =  0 gives, q(k,-) = —pbk(l -  a )/o  -  k a (—p +  (r +  6)/<T) — 
pka + 1(b + n — (r + 6)/cr) +  6(1 — a}/a  =  0.

For k =  0, q[k,-) =  6(1 -  a )/0  > 0. Moreover, q'(k} < 0 if the condition in the 
Proposition is fulfilled. If this does not hold, multiple solutions to q{k, •) =  0 may exist.

Furthermore, the balanced growth rate is given by (4). Differentiating this expression 
with respect to n and using the fact that k = c =  0 holds at the steady state, then 
yields d (C /C }/d n  = - a ( l  — a)bp/q'(k)a, which is positive for q'(k) < 0. □
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This proposition shows that the technology does not play any role in determining 

whether multiple steady states exist or not. Only the absolute value of the (constant) 

marginal elasticity of utility is decisive, besides exogenously given parameters. If the 

absolute value of the marginal elasticity of utility remains within some boundaries, 

namely if (r + S)/(6 +  n) < a  < (r + ^)/p, then the balanced growth path is unique. 

However, if either (r +  ¿)/(6 4- n) > a or a > (r 4- &}/ P, we may observe multiple steady 
states. This demonstrates that the marginal elasticity of utility plays the decisive role, 

and the emergence of multiple balanced growth path depends whether its absolute value 

is lower or larger than a certain numerical value which is determined by the parameter 

values for r, <5, n and p.
The economic meaning of this proposition is that, in case of mulitple steady states, 

the long run growth rate in an economy crucially depends on the initial conditions of 

k. Here we can speak of path dependence and lock-in effects in the sense of Arthur 

(1988) implying that an economy with a lower initial stock of human capital possibly 

always lags behind another one and never can catch up. This means that two economies 

may reveal completely different growth rates both transitorily as well as in the long run 

although they have identical preferences and an identical technology. A  feature like 

this can be used to explain why some less developed countries do not succeed in the 

process of catching up and continue to show low or even negative per capita growth 

rates. In this case we may speak of poverty traps in which an economy is caught and 

no convergence towards high per capita income economies will occur. A  similar finding 

has also been reported in a paper by Futagami and Mino (1993) and an earlier paper by 

Shell (1967)6 . These authors, however, could derive their results only for conventional 

growth models, i.e. for models with a zero per capita growth rate.

6 See also Azariadis and Drazen (1990) who study this problem with a threshold model.

A topic closely related to the above is the question of the indeterminacy of equilibria. 

If the stationary state is completely stable, that is all trajectories satisfying (7) and (8) 

which start in the neighborhood of this stationary state converge to the rest point, then 

there exists a continuum of paths {k(t),c(t)} all converging to the stationary point. This 

holds because only the initial condition for physical and human capital, i.e. k0 , is given 

for an economy, whereas the initial consumption per human capital, CQ, can be chosen 

freely. Therefore, there exists a continuum of c0 , satisfying the first order conditions, 

so that we may say that the equilibrium path is indeterminate. W hat level for c0 is 

eventually selected depends on non-economic factors like cultural or institutional ones
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affecting the transitional paths of the economy until it reaches the long-run balanced 
growth rate. Thus, the level of the long-run capital stock and of consumption are also 
determined by Co, but, of course, not the long-run growth rate. This property might be 
used to explain why some countries which are similar in structure, like highly developed 
countries of North America and Western Europe for example, show different growth 
rates.

It should be mentioned that the above definition refers to local indeterminacy. In 
contrast to local indeterminacy, there may also exist global indeterminacy in the sense 
that the initial level of consumption may be crucial in determining to which balanced 
growth path the economy converges in the long run. These definitions have been first 
introduced by Benhabib and Perli (1994) and Benhabib, Perli and Xie (1994). In the 
simulations below we show examples for both local and global indeterminacy.

Another interesting question, besides the number of steady states and the indeter­
minacy of equilibria, is what generic dynamic behaviour of the growth rates is feasible, 
especially whether the economy reaches the steady state growth rate at all. This holds 
all the more because the dynamics of such models are not yet well understood (Caballe 
and Santos (1993), p. 1043) although the number of papers examining models with 
endogenous growth has sharply increased during the last few years7 . For our system, 
it follows immediately from the Poincare-Bendixson theorem, that the most complex 
dynamic behaviour we can expect is a limit cycle. To apply this theorem, we have to 
find a compact invariant set. Since this is not an easy task to fulfill, we will not apply 
this theorem, but resort to bifurcation theory to investigate of whether cyclical solutions 
for our system exist. This, however, gives us only a local result, valid near the steady 
state under consideration. From an economic point of view, this procedure seems to be 
justified because from empirical data it is to be expected that real economies are near 
stationary states.

7 See the papers cited in the introduction.

As to the relevance of growth cycles for real world economies we should like to 
make two remarks. First, we do not think that neoclassical growth models, where all 
markets clear instantenously because prices are sufficiently flexible, can explain short run 
business cycle fluctuations. Instead we should like to maintain a theoretical dichotomy 
between growth and business cycles. Therefore, second, we believe that the emergence 
of cycles in this type of models can only be used to explain more medium or long run 
fluctuations, which we will call growth cycles. As to the empirical relevance of this sort
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of cycles, it is difficult to come to a clear answer. This results from the fact that there 
is little reliability of the time series to test for long run fluctuations in economic growth. 
Nevertheless, there do exist studies asserting that long run fluctuations can be observed 
in the data8 .

8 See e.g. Bieshaar and Kleinknecht (1984), Rosenberg and Frischtak (1984) or Kleinknecht and Bain 
(1992).

Let us go back to our analytical model. In the following we assume that there 
exists at least one interior rest point for our system (7)-(8). To investigate the local 
dynamics, we proceed as usual and first calculate the Jacobian matrix. Using the fact 
that k = c =  0 at a stationary state, the Jacobian at the steady state is given by

c /k — abk~a  — (1 — a)bpkl ~a pk — 1 
l-^bc^—a)k~a ~1 — pcb(l — a)k~a pc

As is well known, the trace of the Jacobian, trJ, and the determinant, det J, determine 
the local stability properties. If det J  < 0, the stationary state is stable in the saddle 
point sense with a one-dimensional stable manifold leading to the rest point. In this 
case, the equilibrium is locally unique in the neighborhood of the steady state, i.e. for 
every kQ in the neighborhood of k°° there exists a unique c0 in the neighborhood of 
c°° that generates a trajectory converging to {k°°,c°°}. If trJ  < 0 and det J  > 0, the 
real parts of the eigenvalues are negative indicating that the steady state is completely 
stable. In this case, we have a continuum of equilibria and may speak of indeterminacy. 
If, however, tr J  =  0 and det J  > 0, the system looses stability and has two purely 
imaginary eigenvalues. In this case, it may undergoe a Hopf bifurcation leading to 
stable limit cycles. If this happens, the economy does not converge any longer to a 
balanced growth path but instead shows cyclical oscillations in the growth rate.

In Proposition 3, we state conditions which determine the dynamic outcome for our 
analytical model.

P ro p o s itio n  3 (i) A necessary and sufficient condition for uniqueness of equilibria is 
(ab(l -  o )( l -  pk) + bkpa) f ( k a pa) > c.

(H) A necessary and sufficient condition for indeterminacy of equilibria is (a6(l — 
a )( l  -  pk) + bkpa)/(ka pa) < c < (abk~a + (1 -  ^ b p k 1"01) / ^  + fc- 1 ).

(Hi) A necessary condition for stable limit cycles is c = {abk'■“ + (1 — a)bpkx a )/(p + 
k ^ 1) and a 4- (—u"(-)C/u'(-)) < 1.

The values for k and c in (i) - (Hi) are evaluated at the steady state {k°°,c°°}.
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Proof: The condition for uniqueness of equilibria follows from det J  < 0. The first 
condition for indeterminacy of equilibria follows from det J  > 0. The second results from 
tr J  < 0. The first condition for stable limit cycles follows from trJ  — 0. Substituting 
this c in det J  and knowing that det J  < 0 must hold, then yields the second. □ 

The second necessary condition for growth cycles shows that the higher the labour 
share in the macroeconomic production function and the higher the absolute value of 
the elasticity of marginal utility, the less likely is the emergence of endogenous growth 
cycles. Or, stated in another way, a large capital share and a low absolute value of the 
elasticity of marginal utility is a necessary condition for persistent growth cycles.

The conditions for uniqueness and indeterminacy, however, cannot be interpreted 
economically. Therefore, we state the following corollary which gives further insights 
and states conditions that can be interpreted in economic terms.

C oro llary  For k > p- 1  the following turns out to be true:
6 + n — p <  0 and — apk1 + a(6-\-n — p) > 6a(l —a )( l  —pA:)2 are necessary and sufficient 

for uniqueness of equilibria, while 6+n—p < 0 and —crpk1+a (ti+n—p) < 6a (1—a ) ( l—pk)2 
are necessary conditions for indeterminacy of equilibria.

For k <  p” 1 the following is true:
¿ + n — p <  0 and — opk1 + a[6 + n —p) < 6a(l — a )( l — pk)2 are sufficient for uniqueness 

of equilibria whereas 6 + n — p < 0 and —apk1 + a[6 + n — p) > 6a(l — a )( l  — pk)2 are 
necessary conditions for indeterminacy of equilibria.

The value for k is evaluated at the steady state {k°°}.

Proof: To proof this corollary we calculate the determinant and the trace of the Jaco­
bian. Taking into account that c at the rest point can be calculated as c°° =  (6fc1 - a  — 
bpk2~a  — k(6 + n) + pk)/ ( I  — pk) (from k /k  =  0) and using c/c = 0 which gives an expres­
sion for r at the steady state, the determinant can be computed as det J  =  (—6(1 — pk) + 
k a (6 + n -p )) ‘( b a ( l -a ) ( l - p k ) 2 + apk1 + a(6 + n -p )) /(k 2aa ( p k - l ) 2). The sign of this ex­
pression is equivalent to (—6(1—pk)+ka (6+n—p))-(6a(l —a ) ( l—pk)2-f<rpk1 + a (6+n—p)). 
Now, we know that k /k  = 0 implies — 6(1 — pk)+ka (6+ n—p) = — c (l— pk)ka . Combining 
these two expressions then leads to (c(l — pk)ka ) •(ba(l — a )(l — pk)2 + opk1 + a (6 + n — p)) 
which determines the sign of det J.

Following the same steps for the trace of the Jacobian gives the expression b+ba(pk— 
1) + (6 + n — p)ka (l + pk)/{pk — 1) which determines the sign of trJ.

With these expressions giving the sign of det J  and tr J  the results in the corollary



follow immediately. □
This corollary shows that the ratio of physical to human capital k at the steady state 

in relation to the parameter p, denoting the turnover of human capital, is most decisive. 
If k is larger than 1/p, i.e. if either the ratio of physical to human capital is large or 
p takes a high value (or both show high values), then the equilibrium path is unique 
if the absolute value of the elasticity of marginal utility is relatively high, for a given 
technology and parameter values. On the other hand, a relatively low value (in absolute 
terms) for the elasticity of marginal utility is a necessary condition for indeterminacy.

If, however, k is smaller than 1/p, the conditions are just reverse. Now, a relatively 
small elasticity of marginal utility (in absolute terms) is a sufficient (but not neces­
sary) condition for uniqueness of equilibria, while an indeterminate equilibrium path 
necessarily goes along with a high elasticity.

In contrast to the conditions for limit cycles, which were independent of the steady 
state value for k and the parameter p, the conditions for uniqueness and indeterminacy 
crucially depend on the sign of k — p- 1  and the elasticity of marginal utility. This 
demonstrates that it cannot be determined a priori whether the equilibrium path is 
indeterminate or unique. Instead, the specific conditions of an economy, depending on 
the parameter values and preferences among others, determine the dynamic outcome.

In order to demonstrate tha t multiple steady states as well as uniqueness and in­
determinacy of equilibria may occur we next present two numerical examples, where 
we illustrate our analytical results. The simulations are also needed in order to show 
that endogenously generated cycles in the growth rate may actually occur, since it is 
rather difficult to analytically check of whether the other conditions leading to stable 
limit cycles (positive crossing velocity of the eigenvalues and the sign of the coefficient 
determining the stability of the cycle) are also fulfilled for the model.

4 N u m er ica l E xam p les

Let us now illustrate our analytical findings with the help of numerical examples.
Example 1. For the utility function, we assume a function with constant relative 

risk aversion, u(C) = Ca /a , a < 1 (cf. Romer, 1986b, p. 903) and suppose a =  0.6. b 
in the macroeconomic production function is normalized to 1 and the coefficient in the 
Cobb-Douglas production function is set to a  =  0.5, which may be seen as a plausible
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upper bound for the capital share9 . The depreciation rate is 6 — 0.19, the population 
growth is assumed to be n = 0.02 and p is set to p =  1.65. Interpreting one time period 
as two years then means that the annual depreciation is 9.5 per cent, which is about in 
the range reported by Maddison (1987 table 7) and the growth rate of the workforce 
per year is 1 per cent. The value for p states that the contribution of investment two 
years back to the present stock of human capital is g- 0 -825 2 =  0.192 and the contribution 
of investment 5 years back is 1.62 per cent. The discount rate r serves as bifurcation 
parameter. With these parameter values our dynamic system becomes,

9 See King and Rebelo (1993, p. 918).
1 0To do the numerical calculations we used the software Mathematica (see Wolfram Research, 1991).
11 We show a qualitative representation of the phase diagram because in the phase diagram drawn to

scale, the isoclines are nearly identical for k G (3,6) such that the intersection points of them cannot be
clearly recognized.

k = k°-5 -1 .6 S k 1 5 ~ c-Q .2 1 k  + l . ^ ^

c 1.25fc"°'5c -  2.5(r + 0.19)c -  1.65cfc°'5 +  1.65c(l + c),

For r — 0.041 figure 1 gives the curve q ^ * ) ,  which is the differential equation c/c with 
c taken at the steady state which is computed from k /k . A point for which q{kz *} =  0 
holds then yields a balanced growth path for our economy.

Figure 1 about here

It can be seen that there are two interior stationary states which are given by k™ = 
4.11234, cj° =  1.00431 and k ^  = 3.63524, c f  =  0.859293.

The first point is a stable focus with eigenvalues AI /2 = —0.00911843±0.151366x/=4, 
while the second is stable in the saddle point sense. If we vary the discount rate, we see 
that for a critical value of rcrit =  0.040899, the eigenvalues become purely imaginary, 
AI /2 =  ±0.167918x/^I. The steady state for this value of r shifts to k™ =  4.17066 and 
cj° = 1.02111. Moreover, we can calculate dReA(r)/dr =  —82.536 for r =  rcra so that 
the crossing velocity is non zero, indicating a Hopf bifurcation. For r = 0.04075, stable 
limit cycles can be observed10.

Figures 2a and 2b show the situation in the c — k phase diagram with r =  0.041 and 
r =  0.04075 respectively11. * *

Figure 2a and 2b about here
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This phase diagram gives an idea about the global dynamics of our system. If the initial 
level of k is smaller than 3.635 the equilibrium is determinate, i.e. convergence to the 
balanced growth path is only given if it starts on the stable branch of the saddle point. 
For values of k larger than 3.635 the economy may either converge to the balanced 
growth path  associated with k%° =  3.635 or to the one associated with k™ = 4.112, for 
r =  0.041. This is the case in figure 2a. In this case we may speak of global indeterminacy 
in the sense that the initial level for c determines whether the economy converges to k^° 
or k%°. If r =  0.04075, the model produces a stable limit cycle if it converges to k™ as 
shown in figure 2b.

In figure 3, we illustrate the case of local indeterminacy and depict two optimal time 
paths for k(t) for r =  0.041 and with the same initial condition for k(t), k(0) = 4.18, but 
different starting values for consumption, namely c(0) =  1.01 and c(0) =  1.02. It can be 
observed that the initial conditions for consumption crucially determine the transitional 
dynamics until the paths converge to the stationary state with a constant total annual 
growth rate of 1.725 per cent.

Figure 3 about here

Figure 4 shows how the trajectory approaches the limit cycle in the k[t) —c(t) phase 
diagram for r =  0.04075 and inital conditions fc(0) = 4.18, c(0) =  1.02.

Figure 4 about here

It should be noted that the value for k(t) varies about between 3.699 and 4.689 implying 
that in this case the annual growth rate varies between 2.81 and —0.83 per cent. With 
these values it cannot be determined whether the functional diverges or not. Neverthe­
less, if (1) does not converge, the path described by the first order conditions is optimal 
according to the catching-up critérium (CU-optimal)12.

1 2 See Seierstad and Sydsaeter (1987), p. 232-233.

The second steady state k™ =  3.53563, c“  — 0.827053 has eigenvalues Ai = 
-0.315808 and A2 = 0.0971835 for r =  0.04075. This rest point, however, implies that 
the functional (1) diverges.

Example 2. Next, let us present an example with a higher capital share in the 
production function and set a  =  0.3. Taking 1 -  a = 0.5 as an upper bound for the 
capital share, a physical capital share of 0.7 seems to be implausibly high, at first sight.
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However, in an empirical study Romer (1987) finds that, due to spillovers, the overall 
capital share in determining long run economic growth falls in the range 0.7 to 1.0, 
whereas the value for the labour share is in the range 0.1 to 0.3, with values possibly 
as large as 0.5. Taking these estimates seriously, our choice for a seems to be justified. 
The coefficient in the utility function is now a — 0.5. The depreciation rate is 6 =  0.09, 
the population growth is assumed to be n = 0.03, b and p are as above.

Analyzing this system with r =  0.2967, we again find two interior steady states. 
The first is given by c™ — 1.78019, k™ =  4.47098, with eigenvalues Aj = —0.248538 and 
A2 =  0.0975281, indicating that this equilibrium is stable in the saddle point sense. The 
endogenous per capita growth rate per year is 3.996 per cent.

The second stationary point is c™ — 1.93537, k%° — 4.79655. The eigenvalues asso­
ciated with this stationary point are Af/2 — —0.025915 ±  0.157396^/^-1, showing that 
this point is a stable focus. The endogenous per capita growth rate corresponding to 
this steady state is 3.064 per cent and per year. This analysis demonstrates that the 
economy only achieves the higher growth rate associated with {cj°, k^°} if it starts on 
the stable manifold of the saddle point, depending on the initial conditions of the eco­
nomy. If the economy is on the unstable branch of the saddle point and near the other 
steady state {c£°, k^3}, it will converge in the long run to this stationary value resulting 
in a lower growth rate.

Moreover, if the economy converges to {c£°, k™}, it will show transitory oscillations 
until it reaches the stationary value. Furthermore, if we vary the discount rate r, we see 
that for r = rcrit = 0.296452, two eigenvalues are purely imaginary. The stationary point 
for this value of r is shifted to k°° =  4.97537 and k°° = 2.01863. Since dReAfr)/dr — 
—79.3687 for r =  rcrit the crossing velocity is non zero indicating a Hopf bifurcation.

For r =  0.296348 we can again observe stable limit cycles around the stationary point 
which changes to k™ = 5.02978 and c£° = 2.04371. The value of k(t) varies between 
5.42 and 4.56 implying that the per capita growth rate per year varies between 2.02 
per cent and 4.28 per cent. For this value of the discount rate, the other rest point is 
given by cj° = 1.68597 and k™ =  4.27837 with the eigenvalues Ai = —0.362199 and 
A2 =  0.149095, indicating that this equilibrium is still stable in the saddle point sense.

Figure 5 shows the time path for k(t) over one cycle, for r =  0.296348 with fc(0) = 
4.97 and c(0) = 2.02.

Figure 5 about here
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As to the analysis in the phase diagram it should be noted that the qualitative 
picture is analogous to figures 1 and 2. Therefore, we confined ourselves to presenting 
figure 5 which shows that stable limit cycles may result for this example, too.

5 Conclusion

In this paper we presented a basic model of endogenous growth with learning by doing. 
In contrast to the usual approach, we supposed that investment in physical capital does 
not increase the stock of human and physical capital one for one, but shows different 
effects on the formation of these two state variables. This assumption implies that the 
stocks of physical and human capital cannot be merged into one single state variable, 
but instead are treated as two distinct variables, with the evolution of each described 
by a differential equation.

With this assumption, we could demonstrate that even our extremely simple eco­
nomy, where we have disregarded the accumulation of human capital (Lucas, 1988) or 
knowledge capital (Romer, 1990), may show multiple steady states and indeterminacy 
of equilibrium paths. This result is equivalent to the one detected by Benhabib and 
Farmer (1994), Benhabib and Perli (1994) and Benhabib, Perli and Xie (1994) who in­
vestigated indeterminacy and multiple steady states in a two sector endogenous growth 
model of Lucas or Romer type. In addition to this result we could demonstrate that the 
external effect of investment may also generate cyclical growth paths with transitory 
or, using Hopf-Bifurcation theory, permanent oscillations.
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