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1 Introduction

Let M be a K~ihler manifold of complex dimension m. We study smooth maps
: M ~ N into some Riemannian manifold N.  The Hessian Dd~ is a symmetric

2-form on M with values in the pull back bundle ~* TN. After complexification,
we may decompose Dd~ into its (2,0), (1, 1) and (0,2) parts. The map ~ is
called pluriharmonic if Dd~ (1'1) = 0, or equivalently, if ~IC is harmonic for any
complex one-dimensional submanifold C C M.  The second definition shows that
pluriharmonicity does not depend on the metric on M.

If ~p is an isometric immersion, then Dd~ = c~ is its second fundamental
form. Since an isometric immersion is totally geodesic if c~ = 0, a pluriharmonic
isometric immersion is called (1,1)-geodesic. In particular, a (1, l )-geodesic im-
mersion is minimal; in fact, ~IC is a minimal surface for any complex curve
C c M. More generally, an immersion ~y : M --~ N will be called (1,1)-
geodesic if it is pluriharmonic and the induced metric on M is a compatible
K~ihler metric. If N is also a K~ihler manifold, then holomorphic and antiholomor-
phic C•  immersions are (1,1)-geodesic. Clearly, for immersions
of Riemann surfaces (m = 1), (1,1)-geodesic is the same as minimal.

Are there (1,1)-geodesic immersions of  higher dimension which are not i -
holomorphic? Sampson [S] has shown that harmonic already implies plurihar-
monic provided that M is compact  and N has nonpositive curvature operator. Fer-
reira, Rigoli  and Tribuzy [FRT] obtained a similar result, but without compactness
assumption, for minimal immersions: If N has nonpositive curvature operator,
then minimal immersions of  K~ihler manifolds are already (1,1)-geodesic (cf. also
[DR] if N = ~n, and [U] if N is hermitean symmetric). On the other hand, if N
is symmetric,  there are dimension restrictions: Udagawa (cf. [U], Theorem 4) has
shown that a pluriharmonic immersion into N which is not •  has
dimension m < p(N) where p(N) is an invariant of  N introduced by Siu [Si] (cf.
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also [DT] for complex space forms and [FRT] for complex Grassmannians). For
a complex Grassmann manifold N = Gp(CP+q), this number is (p - 1)(q - 1)+ 1.

In the present paper, we construct non-holomorphic (1,1)-geodesic immer-
sions in complex and real Grassmannians. In particular, we recieve compact
examples in the limit dimension m = (p - 1)(q - 1)+ 1 in the case q = 2. These
are obtained by extending the constructions of Eells and Wood [EW], Erdem and
Wood [ErW], Burstall and Salamon [BS] and Wood [W] to higher dimension.

2 Pluriharmonic and (1,1)-geodesic maps

Let M be complex manifold and J its almost complex structure. J has eigenspaces
T ' M  = 7rt(TM), T " M  = 7r"(TM) C TM | C where

1 X 1 X7r/(X) = ~( - iJX), 7r'(X) = 7( + iJX).

Any r-form on M with values in a vector bundle E over M can be complex
linearly extended to TM | C with values in E | C and then decomposed into its
(p, q)-components  (p + q = r)  which are tensor products of p 1-forms vanishing
on T " M  and q 1-forms vanishing on T ' M .  The (1,0) and (0,1) components of
a 1-form 0, i.e. its restrictions to T ' M  and T " M ,  will be denoted by 0' and 0".
E.g. if  ~ : M + N is a smooth map, we have d ~  = d'q9 + d"qo, and if  s is a
section in a vector bundle E with connection D over M ,  we get Ds = D's  +D"s .
For a symmetric 2-form a we have

1
o z ( l ' l ) ( x ,  Y) = ~(c~(X, Y) + c~(JX,JY)).

So ol (1'1) = 0 iff c~(JX,JY) = -o~(X, Y).  On the other hand, c~ is called a (1,1)-
form if its (2,0) and (0,2) components vanish, i.e. if cKJX, JY )  = a(X ,  Y).

Let ( ,)  be a J- invar iant  Riemannian metric on M.  Then ( ,)  is a (1,1)-form
which means that T i M  and T " M  become isotropic subspaces. Sometimes, we
will also use the hermitean inner product

(X, Y) = (X, Y)

on TM | C. The J- invar iance of  the metric says that T ' M A _ T " M  with respect
t o ( ,  ).

The metric is K~hler if J is parallel or if  the 2-form o~(X, Y) = ( X , J Y )  is
closed. In local coordinates z~ = x~ + iy~ (a = 1, ..., m), we have

1 Z ( Z a , ~ b ) d Z  a AdZbw = -~

where Za = O/OZa =  89 - iYa) with Xa = O/OXa, Ya = O/Oya. The form ~ is
closed if

(1) DzaZb = 0
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where D denotes the Levi-Civita connection, extended complex linearly to TM |
C. So (1) implies the K~ihler condition. On the other hand, the subbundles T 'M
and T " M  of TM | C. are parallel if J is parallel, and consequently,

Dz~2b = D2bZa C TIM A TIIM = O.

Therefore, (1) is equivalent to the K~ihler condition.
Now let (N, (,)) be a Riemannian manifold and ~ : M ~ N an immersion.

Then the induced metric ~* (,) =(dg) ,  dg:) is K~ihler if and only if (d~, dg~) is
a (t, 1)-form and Dzo (dq~(Zb) is perpendicular to the image of  d~.  Suppose ~that
M comes with a possibly different K~ihler metric (,). Then by (1),

(2) Dza (d~a(2b )) = Ddgg(Z~, Zb )

Hence, an immersion qo : M --+ N induces a compatible K~ihler metric iff
(dqo, dqo) is a (1,1)-form and D d ~  0'1) is normal.

Recall that the mapping ~ : M ---+ N is called pluriharmonic if D d ~  ~1'1) = O,
i.e. if D " d ' ~  = 0. This condition does not depend on the choice of  the Kahler
metric on M since the left hand side of (2) is independent of  this metric. The
mapping ~2 is called pluriconformal if J is isometric with respect to (d~9, dqo),
in other words if (dqo, d~2) is a (1,1)-form. An isometric immersion ~ : M ---+ N
is called (1,1)-g, eodesic if c~ 0,1/ = 0 where c~ : TM ~ TM ---+ uM denotes the
second fundamental form of ~2. Now we have proved:

Theorem 1 Let M be a complex manifold admitting a Kgihler metric, (N, (, })
a Riemannian manifold and g~ : M --~ N an immersion. The induced metric
(dqo, dcy) on M is a compatible Kgihler metric and qa a (1, l)-geodesic immersion
with respect to this metric if and only i f  ~ is pluriharmonic and pluriconformal.

More generally, an arbitrary smooth map qo : M --+ N will be called (1,1)-
geodesic if ~ is pluriconformal and pluriharmonic.

Remarks
1. Pluriconformality implies that the kernel of dqo is J-invariant. Thus on the open
subset M0 of M where ker d ~  has minimal dimension, the levels ~ - t ( y )  form a
foliation of complex submanifolds of  M0, and a transversal complex submanifold
M '  inherits a Kahler metric such that ~otM' is a (1,1) geodesic immersion on M' .
Hence on an open dense subset, a (1,1)-geodesic map locally is the composition
of a (1,1)-geodesic immersion and a holomorphic submersion.
2. If M is compact with Cl(M) > 0 then any pluriharmonic map qo : M -+ N is
also pluriconformal (cf. [OU], p.374).

Now let N be also a K~ihler manifold. The mapping ~ is called holomorphic
if d~a preserves T'  and T",  and antiholomorphic if dqa interchanges T'  and
T". Clearly, a holomorphic or antiholomorphic map ~a is (1,1)-geodesic: In fact,
since T 'N  is isotropic, (d '~ ,  d'qa) = 0, so qa is pluriconformal, and since T 'N
and T " N  are parallel subbundles, the values of  D"d'qa = D'd"g9 are lying in
T 'N  N T " N  = O.
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3 Maps into complex Grassmannians

Let G = Gp = Gp(C ") denote the Grassmann manifold of  complex p-dimensional
subspaces of  C ~. Identifying a subspace _~ C C ~ with the orthogonal projection
4 onto 4, we embed Gp into the real vector space H(n) of hermitean n • n-
matrices with its usual trace inner product (standard embedding). Then the tangent
space T~Gp becomes the space of hermitean matrices mapping ~_ into ~• and
vice versa. There is an isomorphism between T~Gp and Home,(4, 4 • mapping
A C Hom(4, 4 • onto the matrix

(OA AO)
with respect to the decomposition C n = ~+4 • The multiplication by i = v#Z-1 in
Hom(~, 4 • gives the complex structure in T~G. The complexification T~G |  C
H(n) | C = C nxn is the space of  all complex n • n-matrices mapping 4 into ~•
and vice versa, with its usual hermitean inner product ( , ). Note that e.g.

7r,,lO A* 1 0 (iA)* A. A"0)+/(/A 0 )
x

Now let M be a K~,ihler manifold and ~ : M ---, G a smooth map. This can
also be viewed as a p-dimensional subbundle cp of  the trivial bundle M x C" with
fibre cp_.~x = im(~p(x)). Let v E TxM. Then 0v~ = d~.v 6 T~(x)G maps ~x onto
a subspace of  ~p{. Let ~ x  be the (complex linear) span of all these subspaces,
i.e.

~5~___~ = Span U 0 ~ ( ~ )  = Span U im (0~p.  ~(x)).
vETxM vETxM

I f f  : M --~ C n is a section of ~, i.e. f = ~y . f ,  we have df = d~ . f  + ~. df, hence

d~p - f  = (1 - cp)df = ~ •  df.

So for local bases fl , . . . , fp of ~_ and Vt,..., Vzm of TM we have

6 j  = Span{Q • "OvJi ; i = 1, . . . ,p,j  = 1, ...,2m}.

If ~__~ has constant rank q, it defines a smooth map &p into another Grassmannian
Gq. Similarly, by restriction to T'M and T"M, we define 6~g) and 6"g). Clearly,
&p = 61~ + ~"g~. The map ~ : M ~ Gp is holomorphic iff d"qo takes values in
T"Gp, i.e. iff d " ~ .  ~ = 0.

Lemma 1 Let qo : M ~ G be smooth. The following statements are equivalent:
(a) ~ is holomorphic, i.e. d"g) �9 qo = O,
(b) 6P'qo = O,
(c) im d" f  C ~ f o r  any f  c Fqo,
(d) ~ is a holomorphic subbundle of M • C, n.
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Proo f  For a n y f  C/ 'g )  we have d ' c y . f  = r177 . d " f  which shows (a) r (b) ~ (c).
If (c) holds, choose a local basis f l ,  . . . ,fp : U --~ C" of r on some open subset
U c M. Then d"j~ C ~, i.e.

d"f j  = Z f i a i j
i

or in matrix notation,

(*) d'~f = f "  a

where f = (/l, ...,fp), a = ((aij)). After a unitary transformation of C n, we may
assume that ~x is close to the subspace C p c C n for all x E U, so that --~x n
(CP) • = 0. Thus the projection 7r : C n --~ CP is an isomorphism on cp x, and
9 := 7rf is an invertiblep xp-matrix. Let 7r • : ~'n -+ (CP) • be the complementary
projection and put h = :r• Then F = h9 -1 : U --~ C px(~-p) is holomorphic:
by (*) we have d".q = .qa, d ' h  = ha, hence

d " F  = d " h  �9 9 1 _ _  h9 1 . d i g .  9 - t
= hag -1 _ h g - l g a g  -1

: 0 .

Thus ,~  := ei + F . e i  (i = 1, . . . ,p )  is a holomorphic basis of ~ which shows (d).
The converse (d) ~ (c) is clear. ~2

Lemma 2 ~ : M ~ G is p lur iharmonic  i f f  Oz,,Oz,c2 leaves ~ and ~ •  invariant
f o r  any two commut ing  (1,0) and (0 ,1) -vec tor f ie lds  Z r, Z" .

Proo f  Let D denote the Levi-Civita connection on G C H ( n ) .  The map ~ is
pluriharmonic iff D z , , O z , ~  = 0, i.e. iff 0z, ,0z,~ is in the normal bundle of G.
But the normal vectors of G at ~ are precisely the matrices which leave ~ and
~• invariant. []

4 Strongly isotropic (1,1)-geodesic immersions

The following construction goes back to Eells and Wood [EW] and Erdem and
Wood [ErW] in the case m = 1. It was extended to higher dimension by Ohnita
and Udagawa (cf. [OU]). We will use it to construct (1,1)-geodesic immersions.
Let p + q + r = n. Consider the flag manifold

H = {(( ,  n) c C,, • ao  I ( •

with its induced metric, and the map 7c : H --, Gr,

~(~ ,~)  = (~ + ~)~.
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L e m m a  3 (c f  [EW]) 7r : H --+ Gr is a Riemannian submersion, and a smooth
map ({,77) : M --~ H is horizontal with respect to 7r i f f  6~•

Proof  The orthogonality relation 4• in other words ~77 = 0, shows that the
tangent space TC~,o)H contains those pairs (~', rf)  E T~Gp • ToG q such that

~'77 = - @ ' .

So we have the following matrix representation with respect to the decomposition
C ~ = 4 + rl + ~P where ~o = 7r(4, 77):

(i A. -A" o)~ ' = 0 0 , r / '= - A  0 C*
0 0 0 C 0

with A C Hom(~_,77), B C Hom((,~o), C C Hom(77,~). For ~ '  := d~.(~',77') we
get the orthogonality relations

~o'4 = -qo4', ~o'~ = -~oz/'

and therefore

qo' = 0 - C *  .
- C  0

Thus we have

j[(4',77')11 2 = I1(112 + 1177'112 = 2 .  (21IAJJ 2 + IIBll = + IICII5 _> I1~*112

with equality iff A = O. Therefore, 7r is a Riemannian submersion, and (4', 77') E
T{r is horizontal iff ~/{' = 0, i.e. iff im 4'L_~. Thus a smooth map ({, 7/) :
M ~ H is horizontal iff im d 4 •  which means that 64• []

Theorem 2 Let M be a Ktihler manifold, ~ : M --* Gp a holomorphic immersion
and 77 : M --~ Gq an antiholomorphic map such that 77• 6'~. Then qo := ((+z/) • :
M -~ Gr with r := n - (p +q)  is a (1,1)-geodesic immersion.

Proof  Clearly, (~, 77) : M ~ Gp • Gq is a (1,1)-geodesic immersion since the two
components are i -holomorphic  and the first one is an immersion. On the other
hand, the map (~,~) takes values in H C Gp • Gq, so it is (l,1)-geodesic in H,
and it is horizontal by Lemma 3 since 6"(  = 0 (cf. Lemma 1) and 6/4177 . Since
the second fundamental form of  a horizontal immersion remains unchanged under
Riemannian submersion, qo = r ro  (4, rl) is a (1,1)-geodesic immersion. []

Remarks
1. Since fy • = ~+~, the induced bundle ~*(TGr) = TwGr splits as T~ + T o where

T O = {gg' E T~oGr; g~'(~o) C rl}

and Tr similar. Claim: 6~&71 iff Te and T o are parallel subbundles of qo* TGr. In
fact, let qd be a section of T o a n d f  a section of  _~. Since Dqv' is the projection
of dqo' onto T~Gr, we have
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D~o' -f = ~x �9 dw'-f = w• ' .f) - ~o'(~. df) - W'(~o • �9 df)).

The last term at the right hand side vanishes; recall that qo • �9 ~o' �9 ~• = 0 for
all <;' C T~Gr. The middle term takes values in q, by definition of  T n. The first
term takes values in qox(() = zl iff 6z/A_(. Thus D ~ '  maps ~ to (, and so the
covariant derivative D leaves T,j invariant.
2. It is easy to see that d ' ~  takes values in T n. In fact, let f and x be local
sections of  _~ and ~_. Since ( is holomorphic, d"x  takes values in ( and therefore
( d ' f , x )  = ( f , d " x )  = 0. So the values of d ' ~  . f  = ~o • - d ' f  are perpendicular
to _~ and _~, hence they lie in ~. Similar, d"qo C T(. Thus the pluriharmonicity
also follows from Remark 1 since D"d'%o = D'd"~ takes values in T71 U T~ = 0.
Moreover, (D')Jd'~) E T~ and ( D " ) J d " ~  C T( for a l l j  > 0. Thus cy is strongly
isotropic in the sense of [ErW]. In particular, c? is pluriconformal since the values
of d'g~ and d " ~  are perpendicular.

Example. Let M be a complex (possibly immersed) submanifold of CP n-I  = GI,
i.e. there exists a holomorphic immersion ( : M ~ CP n- l .  Then 6 ' (  defines a
map ~ = 6'~ : M -~  Gm where m = dime M. By Theorem 2, this is a (1,1)-
geodesic immersion: In fact, ( + 6 ' (  is a holomorphic vector bundle (spanned
by a holomorphic section x of  ( and its partial derivatives with respect to a
holomorphic chart, cf. Lemma 1), so ~ = (( + 6 '()  • is antiholomorphic and

= ( (+  r/) • If M is a hypersurface, i.e. m = n - 2, then ~ is a non-holomorphic
(1,1)-geodesic immersion of maximal dimension in Gm(C m+2) (cf. [U],[FRT]).

Remarks
1. If  we replace G1 by Gp in the above example, the rank of  6 ' (  could drop
essentially on a singular set S C M of complex codimension > 2, cf. [OU]. So
the construction works only on M \ S.
2. Recently we learned that the case where M is a hypersurface of CP n-1 in the
above example has also been considered by P.Kobak ([K], p.57). In this case,
the Grassmannian G m =  Gn-2(C ") is a quatemionic symmetric space and the
flag manifold H its quaternionic twistor space (the canonical S2-bundle over a
quaternionic symmetric space). Using this example and the birational equivalence
of quaternionic twistor spaces proved by F.Burstall [B], Kobak is able to construct
(1,1)-geodesic submanifolds of  the same dimension in the other quaternionic
symmetric spaces. However, in general these submanifolds are not compact since
the birational map may have singularities.
3. It is an open question whether there are non-holomorphic (1,1)-geodesic im-
mersions of  maximal dimension m = (p - 1)(q - 1) + 1 into Gp (~.P+q) for p,  q ___ 3.

The construction of Theorem 2 is a special case of  the so called replacement
(cf. [BS], [W], [OU]). Let ~ : M --* Gp be a smooth map. Suppose that we have
a decomposition of _~ and _~• into subbundles

such that
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~i " dt~i+l  = 0

for i -- 1,2, 3 , 4mod  4. It is known [OU] that ~ is pluriharmonic if and only if
= ~2 + ~3 is pluriharmonic. We extend this result to (1,1)-geodesic maps:

Theorem 3 ~ is p l u r i c o n f o r m a l  i f  a n d  only i f  so is g~. Moreover ,  both ~ and
are i m m e r s i o n s  i f  the 1- form g)3 �9 dqo2 + CD4 �9 dqol has zero kernel .

P r o o f  Put  Aij = ~i  �9 dqoj = - d ~ i "  ~j and define A~, A~] accordingly. By assump-
tion, A~,i+ 1 = 0. Note that A~'.Y = (A~i.Y)* for Y E T " M  since f o r f  C F~gi and
i ~ j we have

( (a~i~ Y )fj ,3~) = ( Orf j  ,f~ ) = - ( f j  , O-f-r J}) = - ( f j  , (A~i Y ) f  . ).

I tTherefore, Ai+ l,i = 0. Thus

" ~ l t  a l /  l /  11~&d'qo =A~| +A~2 +A~2 , qo a ~ =~a31 +A41 +A42.

Since for any X C T M  | C, we have Ox~p = ~ •  + ~Oxcp with

~Ox~ = Ox~ . ~ l  : (~• %~),
and since ( A * , B * )  = ( B , A )  for any A , B  E C n• we get for all X ,  Y c T M  |

(Ox~, 0r~) = (~• ~• ~) + (~• ~, (~• ~)'

Hence, if X E T ! M  and Y E T " M ,  we have

( O x ~ , O r ~ )  ( A ~ I . X , A ~ ! I . Y ) +  ! " ' - -  " ' - -  !' - -  = ( A 4 2 . X , A 4 2 . Y )  + (A31 .Y,A31 .X-) + (A42.Y, A42.X).

Similar we get

(OX@,Oy@) ' " (AtI3.X, !! ' - -  ,! - -  , - -  t ! -  = ( A 4 2 . X , A 4 2 . Y )  + A 1 3 . Y )  + ( A 4 2 . Y , A 4 2 . X )  + ( A 1 3 . Y , A I 3 . X ) .

Since
, r! (At 3 .y ,  A,[3.~-),(A31 .X,A31-Y) =

(A~I.Y, " --  A31 .X) (A!13 ,t = . X , A 1 3 . Y ) ,

we get (d!% d ' ~ )  = (d!~, d"~) .  So ~p is pluriconformal iff.so is ~. Since dqo
and d ~  have A32 + A4! and its adjoint in common, the "moreover" statement
follows.

Example .  Let cp = q)l : M --~ Gp be a (1,1)-geodesic immersion such that d !~  �9 cp
has image of  constant rank q. Then r := ~ : M ~ Gq defines a subbundle of
_~• Let ~ := cp• N ~ .  Then ~4 "d !~  = 0. Moreover we claim that ~4 "dttq~3 = 0
which is equivalent to r �9 dt~94 = 0. In fact, let s = 0z ,~  ' f  be a section of  ~3'
where Z ! ~ T ~ M  a n d f  as section of  cp. Then for Z "  ~ T ' M  with [ Z r , Z  "] = O,

Oz,,S = O z , , ( O z , ~  " f )  = (Oz, ,Oz,qa)f  + Oz,r . qo . O z , , f  + Oz, q~ . ~ -  �9 Oz , , f  .

The first and the third term at the fight hand side take values in ~ (cf. I_emma
2) while the second term lies in -~3 = 6~"  Thus Oz,,s ~ ~ + ~ 3  which proves the
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claim. Now ~l  = ~,  qo2 = 0, ~3 and q~94 satisfy the assumptions of  Theorem 3
which shows that ~ = ~3 = 6rcP is a (1,1)-geodesic map. This is the generalization
of the O-transform introduced by Wolfson [Ws].

5 ( l ,1 ) -geodes ic  m a p s  into real G r a s s m a n n i a n s

Let G a = Gp(lI~ '~) be the Grassmannian of  real p-dimensional  subspaces of  It~ ~.
We consider G ~ as a subset of G = Gp(C ~) in the following way:

G ~ = {/z E G I/~ =/z}.

When do the (1,1)-geodesic immersions g) constructed in Theorem 2 actually lie
in G~?  Recall that ~p = (4 + q)•  where ~ is holomorphic and r/antiholomorphic.
Apparently ~ E G ~ if r? = ~. So our problem is to find holomorphic immersions
4 : M ~ G with 4, ~5'~• We give two such constructions.

Let F : M --~ ~n be an isometric immersion. Let 4 = 7- : M ~ Gm(C n)
denote the (1,0) GauB map, i.e.

Zp = dF(T~M)

for any p E M.  Since F is isometric, Zp is an isotropic subspace of  •n, i.e. the
bundles r_ and ~ are perpendicular with respect to the hermitean inner product of
C n. Moreover, ~5~-lr  -,  since for arbitrary (1,0) vector fields W ~ and Z ~ we have

Ow,Oz,F = d F ( D w , Z  ~) + a ( W  t, Z ' )  E 7- + v

where u is the real normal bundle o f F .  Note that qo = (7-+r • : M --~ Gn_2m(~ n)
is the usual normal GauB map of F .  There are two cases where 4 = ~- is holo-
morphic:

1. If F itself is ( l ,1)-geodesic then 7- is holomorphic [RT], i.e. d" t  E Z for
any section t E F Z  (cf. Lemma 1). In fact, if  t = Oz,F for some (1,0) vector
field Z t, then

Oz,, t = Oz,, Oz, F = O

for any (0,1) vector field Z "  with [Z~,Z "] = 0. It is known [DR] that any
isometric minimal immersion of a K~ihler manifold M into R ~ is (1,1)-geodesic.
Examples are considered by Dacjzer and Gromoll  [DG].

2. If  F is (2,0)-geodesic, i.e. c~ (2,~ = 0, then ~- is antiholomorphic since for
t = Oz,F E F Z  we have

Ow,t = Ow,Oz,F = c~(W' ,Z ' )  + d F ( D w , Z '  ) E Z

since ct (2,~ = 0 and D w , Z  r E TIM.  It is known (cf. [F], [ET]) that an immersed
K~ihler manifold in R n is (2,0)-geodesic if and only if it is an extrinsic hermitean
symmetric space.

We have shown:
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Theorem 4 The normal Gaufl map o f  a minimally immersed KiJhler manifold or
an extrinsic hermitean symmetric space in ~n is a (1,1)-geodesic map into a real
Grassmannian.
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