
                                               
           
                        

E x t r i n s i c  s y m m e t r i c  s p a c e s  a n d  o r b i t s  o f  s - r e p r e s e n t a t i o n s

J.-H. Eschenburg and E. Heintze

                     

1. I n t r o d u c t i o n

A suhma~ifold M of euclidean space is called eztrinsic symmetric if it is invariant
under the reflection at each afflne normal space p + u p M  , p 6 M .  In particular M with
its induced metric is a Riemannian syrmnetric space and the orbit of a certain subgroup
of euclidean motions. A simple argument shows that M is the product of a euclidean
space with a compact extrinsic symmetric space which lies in a round sphere. By using a
direct construction, Ferus IF1] proved in 1974 that compact extrinsic symmetric spaces
are orbits of s-representations, i.e. of isotropy representations of semlslmple symmetric
spaces. In 1980 he gave another, very elegant proof of this using Jordan triple systems
IF2]. Still another proof follows from Dadok's classification of polar representations [D]
and Olmos result [O] on normal holonomy groups (see the remark after Theorem 1).

Our main purpose here is to give an elementary and simple proof of the above
result of Fetus. It is in spirit close to IF1] but avoids all cumbersome computations.
We also study orbits of s-representations and prove in particular that each strongly
isotropy irreducible orbit is extrinsic symmetric. In fact we characterize the extrinsic
symmetric orbits as those which split locally into a product of isotropy irreducible ones.

One motivation for this note came from our at tempt to understand more geomet-
rically the main result of Dadok [D] which says that any polar representation is orbit
equivalent to an s- representation, i.e. it has the same orbits as an s- representation
after an isometric identification of the vector spaces. An orthogonal representation is
called polar if there exists a linear subspace (called a section) which meets every orbit
and each time orthogonally. In this context, our result can be interpreted as a simple
proof of the special case where the polar representation has an extrinsic symmetric
orbit (actually, most of them do,'yf. Remark 2).

It is quite obvious that an extrinsic symmetric submanifold has parallel second
fundamental form, but also the converse is true for complete submanifolds. (A direct
proof of this is due to Strlibing [St].)

2. C o n s t r u c t i o n  of  t h e  s - r e p r e s e n t a t i o n

T h e o r e m  1. (I). Fetus) Let  M C ~ N  be a compact extrinsic symmetric space
which lles in a sphere around the origin but in no proper a///ne suhspace. Then M is
the orbit of  an s-represen6atlon.

P r o o f .  (a) Let V := ~N and K C O(V) be the group of orthogonal transformations
which leave M invariant. Since under the above assumption, the afllne normal spaces
are linear subspaces, K contains the reflections at the normal spaces and thus acts
transitively on M. On the vector space $ := e (9 V , (where t denotes the Lie algebra
of K)  we extend the bracket on t to one on g by the requirement [V,V] C {~ and by
putting

[A,,,] : =  -[,,, A]:= A~
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for all A E ~,  v ,w E V ,  where ( , )~ denotes an Ad(K)-invariant inner product on t~
which wiU be specified later. If ~1 satisfies the Jacobi identity then g with this bracket is
a Lie algebra and the inner product on 9 extending the inner products on ~ and V with
ILLV is Ad(G)-invariant. Since M does not lie in a proper affine subspace, K has no
fixed vector. From this and the definition of the bracket it follows that  ~l has no center
and hence is semlsimple. Let G := Aut( t  0 . Then K C G and G / K  is a semlsimple
symmetric  space whose isotropy representation can be identified with the given action
of K on V.

(b) Since the bracket on ~ is equivariant with respect to the action of K on
it follows by differentiating that  it satisfies the Jacobi identity whenever at least one
element lies in ~. Thus it remains to show

Zac(= , , ,~ )  := [~, ,q~ + [ . ,~]= + [~,=]~ = 0

for all u , v , w  E V .
We fix some ;~ E M and let r = r= be the tangent space and v = I.,= the normal

space of M at z . We have V = r (9 v . Moreover, let I~ = t= + p= be the Caf tan
decomposit ion of t with respect to the geodesic symmetry at z . The mapping p= --}
T , A ~-~ Az , is a linear isomorphism whose inverse mapping we denote by T . Thus
for each v E r , T~ is the so called infinitesimal transvection in the direction of v . The
1-parameter group exp t .  T~ acts by parallel translation in the tangent as well as in the
normal bundle along the geodesic (exp t �9 T~).z . Thus we get for any w E r and ~ E v
by differentiating w(t) := (exp t .  T~).w and ~(t) := (exp t .  T~).~ respectively,

To~o = ~,'(0) = a( , , ,~)  (1)
T d  = ~'(0) = - & ~ ,  (2)

where a denotes the second fundamental  form and A~ the shape operator in the direc-
tion of ~ . In particular the action of elements of p= interchange the subspaces r and v
whereas  those  of ~, leave t h e m  invariant,  of  course.  Since the  geodes ic  s y m m e t r y  at
lies in K and acts on g with eigenspaces e= and p= we have et_l_p= and thus

[r, ~'1 + [,,, ,,1 C t= (3)
k,~'] c p,  (4)

The mappings r -+ p= : v ~-+ T, and v - +  S(r)  : ~ ~-~ A~ ( w h e r e S ( r )  is the space
of self adjoint endomorphisms of r)  are equivariant with respect to the isotropy group
K=. Hence we have for all B E ~

[B, To] = T~,  (5)
[B, Ad = A~,  (6)

(c) Now we choose the inner product  on t as follows. Since ~ = ~= + p= is a
Car tan decomposition any Ad(K=)-invariant inner product on p= extends uniquely to
an Ad(K)-invariant inner product on e. This is clear if K ,  acts irreducibly on p=
and follows in general by decomposing p= into irreducible summands. Hence we may
choose the inner product on t such tha t  the canonical K=-equivariant isomorphism
p= -} r : v ~-} T~ , becomes an isometry.
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(d) Claim: for all v , w  6 r and ~,~/6 v,

[,,, ~,] = [To, T..], (7)
Iv, ~] = T&, , ,  (8)

[~, 71. = - [ & ,  A &  (9)
In fact, for all B 6 e~ we have

(B,[T,,,T,,,]) = ([B,T,,I,T,~) = (TB,,,T~,) = (Bv,va)  = (S , [v ,~] ) .

This proves (7). From

(T,~,[v,~]) = (T,~v,~) = (a(w,v),~) = (w,A~v) = (T.,T&~)

we get (8). Finally, we have

([~,,7]v,w) ---- ([G1?],[v,w]) = ([v,w]~,~?) = -([A~,An]v,w )
since

[~,~]~ = T ~ T ~ -  T ~ T ~  = -~( , , ,  & ~ )  + o(~,  &,,) .
(e) Now we can compute triple products in order to prove the Jacobl identity. By

(Z) we get [v,~,]u = [T~,T~]u for any , , ,w,u  6 ~-. Since B := [T~,T~] 6 e~, we may
apply (5) and obtain

TC.,~ b = lIT., T..], T~]
which proves J a c ( v , w , u )  = O. Similar]y, we have for three normal vectors

A[e,,]r = [[G ~], Ar = - [ [ & ,  A~], Ar
by (3), (6) and (9), and hence A,~ = 0 where ta := Jac(~,~/,~). Thus (by (2)), T,w = 0
for all v 6 r which shows p..w = 0. From (9) we get [w,d]v = 0 for all v 6 % d 6 v
and thus [w,d] = 0 since any isometry of V which fixes M is the identity. Therefore
0 = (t=,[w,d]) = (e,.w,d), hence ~,.w = 0 and therefore t.~a = 0. Thus Jac(~,W,r =
t43 ~ 0.

From (7), (8), (i), the symmetry of a and (2) we get
Jac(v,w,~) = [T~, T~]~ + T,,A~w - T~,A~v = 0,

and from (9), (8) and (2),

Jacff,,7,~) = - [ & ,  A & ,  + & A , , ~  - A , & , ,  = O.

This completes the construction of the Lie algebra structure on ~ = ~ ~ g and finishes
the proof. [:]
R e m a r k  A proof of Theorem 1 using results of Dadok [D] and Olmos [O] as men-
tioned in the introduction could be given as follows. By Olmos [O], the action of the
isotropy group at z 6 M is polar on the normal space v , M .  Let ~ C v~M be a section
for this representation. Then 2~ is a section for the K-action on V as well. In fact,
every K-orbi t  meets v~M and thus YL Let y = z + ~ 6 ~. Since ~ is a section for K , ,
we have ~z.y-l-~. Consider the Caftan decomposition {~ = e~ + Pz where pc is the space
of infinitesimal transvections at z, i.e. for every T 6 p~, the group element exp t �9 T
acts by parallel transport in the tangent and the normal bundle along the geodesic
(exp t .  TJ.z.  This shows that T y  = T z  + T~  is perpendicular to v~M and hence to 52..
Thus also p~.y.l.~ and therefore the K-act ion is polar with section l~, and the theorem
follows from Dadok's main result [D].



520                           

3. C h a r a c t e r i s a t i o n  o f  e x t r i n s i c  s y m m e t r i c  s - o r b i t s

Let K be a connected Lie group and  H C K a closed subgroup. The  homogeneous
space K / H  is called (strongly) isotropy irreducible if H (the connected component  of
H containing the identity) acts irreducibly on the  tangent  space or equivalently on [/[}
where l~ and  [} are the Lie algebras of K and  H ,  respectively. We say t ha t  the universal
cover M of M = K / H  decomposes into a product of isotropy irreducible spaces if  we have

= ./17/'1 x ... x j~r with isotropy irreducible Mi = Ki /Hi  such t h a t / ~  = K1 x ... • K~
is a connected covering group of K.  Note t ha t  / t  := H1 x ... x H~ is connected since
otherwise j~r = / ~ ' / ~  would have a nontr iv ia l  covering. Therefore, this  condition is
equivalent to the splitting of the  Lie algebras into ideals

~ = h $ . . . $ e ~ ,  [} = [}a @-.. ~ [}r

wi th  [}i C h ,  such that  el/Oi is an irreducible [}i-module. Examples are symmetr ic  spaces
K / H  where ( K , H )  is a symmetric pair ,  and  of course strongly isotropy irreducible
spaces.

L e m m a  Let H C K be as above and assume in addition that ~ carries a biin-
var iant  metr ic  and that K acts e~ctively on K / H .  Then the following conditions are
equivalent:

O) The universal cover of K / H  decomposes into a product of  isotropy irreducible
spaces,

(il) [W,W • = 0 for any ad([})- in~r iant  subspace W or[} • where W j- denotes the
orthogonM complement of W in [}•

P r o o f .  Assume (i). Let ~i be the center  of ei and  ml the or thogonal  complement  of [}i
in [i.  The  image of the orthogonal project ion of 3i to rnl commutes wi th  I~i. Therefore
it is zero or ral, by the irreducibility assumpt ion.  In the first case, ~i C [}i C [} and  hence
31 = 0, since [} does not contain any nontr ivia l  ideal of ~, by the  effectivity assumption.
In the  second case, I~ i acts trivially on ml which implies [}i = 0 (by effectivity) and
~i = ml. Hence el is ei ther semlsimple or a (one-dimensional) subspace of the center.
Since the  semislmple ideals are or thogonal  to each other  as well as to the center,  we get

Iy t = ~ + ~s m/
./=1

where ~ is the center of t and  [h, . . - , t ,  are precisely the semisimple ideals among the
tl. Since [}j acts only on mi, the [}-modules mr, . . . ,  rn, are not  only irreducible but  also
inequivalent.  Hence after a suitable renummera t ion ,  there exists some t < a such tha t

W = W N 3 + E m i ,  W l = W •  m i
i=1 i = t + t

and  (ii) follows.
Now assume (ii) and let [}.t. = ml + ... + mr be an  orthogonal  decomposi t ion into

ag(Ij)-irreducible subspaces. Let ~( := ml + [mi,ml]. Then  from [m(,mj] = 0 we get
(~(,m$) = 0 and  [~i,mj] = 0 for all i ~ j .  Hence ~i C [} + m i  and  ~( is an  ideal of ~.
Fur thermore ,  ~ = el + ... + e~ since for any  X E ~ perpendicular  to ~1 + -.. + er we have
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X E [~ and  ([X, ml],m~) = (X,[m~,mr = 0, i.e. [ X , b ' ]  = 0 and thus X = 0 by the
effectivity assumption.  Moreover, ti-Ltj for i ~ j .  Let [~i := []nt~. Then  b = D1 + - " + [ J r
since any X E [~ can be wri t ten as X = ~5-~= 1 Xi  with  Xi E t~, and  each Xi  in t u rn  as
X~ + X "  with X~ E b and  X~' E m~. But  X~' = 0 since ~ = 1  X "  = 0. Fur thermore ,  b
and thus bl act irreducibly on mi ---- ~/bl .  This  finishes the proof. [3

In the  following theorem, we characterize the extrinsic symmetric orbits  of an  s-
representat ion as those which split locally into a product  of isotropy irreducible ones.
Since it is no extra work, we include other  known characterizations.

T h e o r e m  2. Let G / K  be an irreducible symmetric space of compact type with
Cartan decomposition g = ~ + p and let M = K.m -- Ad (K)z  for some m E p. Then the
following con~tJons are equivalent:
(i) (K,~C=) is a symmetric pair,
(ii) the uni versa] cover of M = K /  K= decomposes into a product of isotropy irreducible

spaces,
(iii) sac=) s = - ~ 2 a d ( = )  f o r  s o m e  ~ > o,
(iv) M is extrinsic symmetric, and the transvections of M belong to K .

P r o o f .  "(i)  =~ (ii)" is obvious.
"(ii) # (iii)": For arbi t rary  z E p, the  endomorphism ad(m) of g is skew-symmetric

with respect to an Ad(G)-invariant  metric ( , ). Let E:~ C g | C be the eigenspace
corresponding to an eigenvMue M with .~ E R and  put  g:~ = (E;~ + E_;~) N g. By the
Jacobi identity,

for any two eigenvalues Ai, #i. Since the  involut ion of g corresponding to the Car t an
decomposition g = t + p maps z onto -m,  it preserves g.~, and so we obta in  g~ = tx + p~
where ~:~ and  p~ are the intersections of g;~ with ~ and  p, respectively. Thus we gel
orthogonal decompositions

A>O A>O

which are Ad(K=)-invariant since m is fixed and  ~ and  p are invariant under  A d ( K , ) .
We have

Moreover, ad(z)  is an isomorphism between ~x and  PX for A > O, and

P 0 = v = M ,  po l = r=M

since ~ E v=M is equivalent to 0 = (Az,~)  = (A,[z,~]) for all A E ~ and  thus to
~d(=)~ = 0.

Now assume tha t  m E p satisfies (ii). We claim

[e~,,e,.] = o, [p: , , ,p . ]  = o, [e:,,,p,.] = o

for different A, # > 0.
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In fact, the first equation follows from the lemma above. Moreover, since ad(z) 2 pre-
serves ex and ~ ,  we get

Finally, since
ad(z)[ex,p~] C [Px,Ps] + [ex,eu] = O,

we have [t~, p~] C Po which shows [ex, pu] = 0 since A = •  is excluded.
Thus

p~ := p~ + [~,p~] + [~ ,  [~,p~]] + . . .

is a binvariant subspace of p which is perpendicular to any p~ for p # +A. Since the
symmetric space G / K  is irreducible by assumption, we have pX = p and so there are
no eigenvalues for ad(z) on $ | C other than • and O. This proves (iii).

"(iii) =~ (iv)": Normalizing z suitably, we may assume A = 1, i.e. ad(z) s = -ad ( z ) .
Thus we have

~k
Ad(exp tz) = y~. ~[ad(z) k = I + ad(z) 2 + sinCt)adCz) - cosCt)ad(z) 2,

hence tr= := Ad(exp ~rz) = I4-2ad(a:) 2. So qx =- I on v=M (recall that ad( z ) l v zM -= O,
see above), and for any Az  E T=Ka: (where A E t),

tr=Az = - ( I  4- 2ad(x)2)ad(z)A = ad(z)A = - A z .

Thus ~= preserves p and e and is the reflection at the subspace v= : z + u= in p. In
particular, exp ~rz normalizes K, and hence trffi preserves M --- Kz. So the subgroup/~
of G generated by K and exp 7rz is K or an extension of K with index 2, and Ad(l~)
preserves p and M and contains the reflectlons at all normal spaces of M. Hence
M is extrinsic symmetric and the transvections (being the compositions of any two
reflections) lie in K.

"(iv) =~ (i)" is obvious, r3

R e m a r k s  1. If we assume that the symmetric space G / K  has rank > 2, then we
may replace (iv) in the above theorem by

(iv') M is extrinsic symmetric.
In fact, (up to connected components) the isotropy group K of an irreducible symmetric
space of rank > 2 is the maximal subgroup of O(p) preserving one of its (nontrivial)
orbits. This is a consequence for example of Simons' holonomy theorem IS]: In fact, any
larger group K '  D K together with the same curvature tensor (the curvature tensor of
G / K  at the point eK) would still give an irreducible holonomy system which must be
symmetric unless the group acts transitively on the unit sphere, but this is impossible
if K '  and K have a common orbit. Hence K '  also preserves the curvature tensor
and thus the connected components of K '  and K agree. In particular, K contains the
transvections of the orbit M. However, if G / K  is a rank-one symmetric space, then (iv)
and (iv) '  are no longer equivalent since all nontrivial K-orbits  are extrinsic symmetric
(round spheres) but K does not contain all transvections of the sphere unless G / K  has
constant curvature.
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2. It  is easy to get the classification of all extrinsic symmetric spaces from condit ion
(iii) (cf. [KN]). If cq , . . . , a~  are the simple roots of the symmetric space with respect
to a Weyl chamber  G and  if ~ = n la l  + ... + n,a~ is the highest root, then z E
obviously satisfies (iii) wi th  A = 1 if and  only if

ai ( z  ) = 1, nj  = 1

for exactly one j 6 (1 , . . . , r}  while ai(z)  = 0 for all i r j .  Thus K.z  is extrinsic
symmetr ic  for z E C if and  only if z lies on a (one-dimensional) edge of G' for which
the opposite face corresponds to a root a j  wi th  n j  = 1. These roots can be read off for
example from the table in [H], p. 476.

3. Theorem 2 says in part icular  tha t  strongly isotropy irreducible orbits of K
in p are extrinsic symmetric.  However, the  converse is not true: If G / K  is the  real
Grassmannian  of p-planes in l~P+q, there are isotropy reducible extrinsic symmetric  K-
orbits  which are covered by S v-1 x S q-1. Bu t  these spaces do not split as Riemannian
manifolds as follows from the next theorem:

T h e o r e m  3. Let M C V --- ~.N be an  extrlnsic syrtu'netrlc space which splits
intrinsically as a R/emann/an product M = 3/11 x M2. Then the splitting is extrinsic,
i.e. Me lies in some subspace Vi C V (i = 1,2) with Va lV~ such that

M = { z l  + z a ;  zl  E MI,  zs 6M~} .

P r o o f .  Since M has parallel second fundamenta l  form a ,  the same holds for any
totally geodesic submanifold, so the factors M1 = M1 • {zs} and Ms = {zl}  • Ms (for
some fixed z = ( z l , z s )  E M) are also extrinsically symmetric. Let o',r : V --4 V
denote the  extrinsic symmetries of M, M1, Ms at the point z. Then  cr. fixes v=M and
reflects r=M = r=MI+r=Ms while ~r fixes v=Mr = v=M+r=M i ( f o r j  # i e {1,2}) and
reflects r=Mi. Thus oral = tr i which shows tha t  Mi is fixed by trj. Hence Mi C v=M i.
Moreover, for all v~ E r=Mi we have

~(~, ,  ~s) = ~(~1 . .1 ,  ~ , . ~ . )  = ~ ( - ~ 1 ,  ~2),

hence aCvl,v2) = 0. Then  by the Gauss equations,  a(vl ,va)•  since the mixed
curvature K(vl ,v2)  is zero in the  R iemannian  product  M = M1 • M2. Since a is
parallel, the  normal bundle  v - v M  splits into two parallel orthogonal subbundles
vl and  r's such that  a]M~ takes values in vl. Due to Erbacher 's  theorem (cf. [E]),
the  codimension of M~ C v=M i = T=M~ + v~M can be reduced by dlm(vj) ,  hence
Mi C ~ := r=M~ + v~(z). We have V2 = V~ and  the result now follows easily. [3
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