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1. Introduction

The paper is an attempt to understand and extend some known results on optimal

block designs from the viewpoint of the approximate optimality theory, as well as the

exact optimality theory. An in-depth discussion of the exact theory is given by Shah

and Sinha (1989), while the approximate theory is presented in Pukelsheim (1993).

Use of the approximate optimality theory for regression designs is an established

fact. To the contrary, in exact (combinatorial) designs it appears to be more natural

to employ discrete optimization techniques. However, the juxtaposition of the two
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approaches is much less pronounced than would seem at first glance, and Section 14.9

of Pukelsheim (1993) makes an attempt towards deriving optimality properties of block

designs within the approximate theory.

This note has the primary objective to have a fresh look into the technical proof

of optimality of balanced incomplete block designs (BIBDs) and related block designs

from the two different viewpoints, and develop from this a wider appreciation for such

optimality properties. We strengthen some known optimality statements on BIBDs,

and discuss their domain of validity. We also correct an erroneous statement in Section

14.9 of Pukelsheim (1993).

2. Optimality of BIBDs in the approximate theory

The classical proof of universal optimality of a BIBD rests on two properties. Firstly,

the associated contrast information matrix (also known as C-matrix) is completely

symmetric, that is, the on-diagonal elements are the same and the off-diagonal elements

are the same. Secondly, the contrast information matrix has maximum trace among the

competing C-matrices. The proof uses the fact that the frequencies nij for observing

treatment i in block j trivially satisfy

n2
ij ≥ nij . (1)

In the approximate theory, the frequencies nij are replaced by weights wij that are

nonnegative and add to one. However, inequality (1) no longer holds true with arbitrary

wij ∈ (0, 1) replacing nij . This is the first obstacle towards a direct derivation of

optimality properties of BIBDs using the approximate theory.

In an attempt to circumvent this difficulty, Pukelsheim (1993, Section 14.9) makes

the total support assumption to restrict the class of competing designs to those which

have the same or a smaller support than the given BIBD.

The technical effect is the following. Every BIBD is binary, that is its frequencies

nij are either 0 or 1. Let wij be the weights of a competing design that satisfies the

total support assumption, that is

nij = 0 ⇒ wij = 0. (2)

Then the given BIBD and the competing design are tied together through the relation

wij = nijwij . This seems to lead the rescue operation in the approximate theory.
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We begin by relaxing the total support assumption (2) while dealing with the

approximate theory. Instead we impose the block support assumption that no more

than k entries in any block are positive. Within this class, a given BIBD with

parameters b, v, r, k, λ remains universally optimal. The concept of universal optimality

is discussed in detail by Shah and Sinha (1989, Chapter 2), while Pukelsheim (1993,

Section 14.9) subsumes it under the more general notion of Kiefer optimality.

Theorem 1. Let N = ((nij)) be the incidence matrix of a BIBD for v varieties in b

blocks, with replication number r, block size k, and concurrence number λ, for a total

of n = bk = vr observations. Let W(k) be the class of those v ×B weight matrices W

that have an arbitrary number B of columns each of which has at most k positive

entries. Then the approximate version of the BIBD, N/n, lies in the set W(k), and is

universally optimal for inference on the varietal contrasts within the class W(k).

Proof. First observe that the approximate BIBD allocates uniform weight 1/n over

the nonvanishing entries in N . For a competing design with B blocks, let W be the

weight matrix of order v ×B. The block support assumption means that the number

tj of positive entries in column j of W satisfies tj ≤ k, for j = 1, . . . , B.

The trace of the C-matrix that belongs to W is given by 1 −
∑B

j=1

∑
i w

2
ij/w·j ,

where w·j is the sum of the entries in column j of W . For each j, the Cauchy inequality

yields w2
·j ≤ tj

∑
i w

2
ij . This is used to bound the trace of the C-matrix from above,

1−
B∑

j=1

∑
i w

2
ij

w·j
≤ 1−

B∑
j=1

w·j

tj
≤ 1− 1

k
. (3)

The second inequality in (3) uses the block support assumption tj ≤ k.

We find it remarkable that, in the presence of the block support assumption, no

restriction is placed on the number of blocks B. The block support assumption itself

cannot be entirely omitted as, otherwise, a design with uniform weight 1/(Bv) will

turn out to be better than a BIBD whenever B > b.

Equality throughout (3) forces each block to have k weights equal to w·j/k, and

v − k weights equal to zero. This is not enough to characterize BIBDs, and other

designs may perform just as well. For instance, the BIBD

N =

 1 1 0 1 1 0

1 0 1 1 0 1

0 1 1 0 1 1


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leads to the approximate design N/12 ∈ W(2). It has the same C-matrix as the

competing approximate design

W =
1

18

 2 2 0 1 1 0

2 0 2 1 0 1

0 2 2 0 1 1

 ∈ W(2)

which does not arise from a BIBD! The approximate design W is interpreted as taking

18 observations on 3 varieties in 6 blocks, where block 1 (=column 1) contains 2

observations on each treatment 1 and 2, block 2 contains 2 observations on treatments

1 and 3, etc.

3. Optimality of BIBDs in the exact theory

The exact version of Theorem 1 says that a BIBD is universally optimal within the

class of those block designs for which each block is at most of size k.

In the exact theory the block support assumption can be dispensed with provided

the number of blocks B of the competing designs is greater than or equal to the

number of blocks b of the given BIBD. This intuitively plausible relation means that

more blocks are detrimental to the information that is available on the treatments.

The precise result is contained in the following theorem.

Theorem 2. Let N = ((nij)) be the incidence matrix of a BIBD for v varieties in

b blocks, with replication number r, block size k, and concurrence number λ, for a

total of n = bk = vr observations. Let D(b) be the class of those exact designs for n

observations on v varieties that have B ≥ b blocks (and each block has at least one

positive entry).

Then the BIBD N lies in the set D(b), and is universally optimal for inference on

the varietal contrasts within the class D(b).

Proof. The usual argument based on the trivial inequality (1) immediately yields the

upper bound 1−B/n for the trace of the C-matrix of a (standardized) competing design.

This is further dominated by the corresponding quantity 1−b/n for the (standardized)

BIBD.
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Theorem 2 does not permit a statement on uniqueness. All we can say is

that a block design which is universally optimal in D(b) must be binary, and must

be supported on exactly b blocks. But it need not necessarily be a BIBD! A

counterexample is design N4 of Exhibit 14.2 in Pukelsheim (1993, page 370).

A more general family of counterexamples occurs with the BIBDs in the Yates’

orthogonal series of Section 5.9 in Raghavarao (1971), having the parameters

v = s2, b = s2 + s, r = s+ 1, k = s, λ = 1.

Note that n = bk = s(s2 + s) = sv + s2. Therefore, as a competitor design, we may

have one with s complete blocks and an additional set of s2 blocks each of size 1 with

entirely arbitrary composition. This provides a completely symmetric C-matrix with

trace 1− b/n. Hence all such designs are equivalent to the BIBD!

4. Nonoptimality of BIBDs in the exact theory

We now express more serious concern when the number of blocks B is allowed to be

strictly less than the number of blocks b in the candidate BIBD. Optimality of the

BIBD fails immediately when B is as small as possible, B = 1. For example, in

Exhibit 14.2 of Pukelsheim (1993, page 370) the one-block design N1 is better than

the BIBD N2.

But even if B is just somewhat smaller than b, at best B = b−1, we can no longer

claim optimality of the BIBD. This disappointing fact is brought out by the following

example, with parameter values

v = 4, b = 12, r = 6, k = 2, λ = 2.

It is readily seen that two copies of the unreduced BIBD composed of four treatments

taken two at a time provides a BIBD with parameters as given above. We now opt for

B = 11. Following Cheng (1979) the blocks of our competing design are taken to be

(1, 2) (1, 3) (1, 4) (2, 3) (2, 4) (3, 4) (1, 3) (1, 4) (2, 3) (2, 4) (1, 2, 3, 4).

It is easy to verify that the C-matrix of the competitor design has positive eigenvalues

4, 4, 5, while the C-matrix of the BIBD has eigenvalues 4, 4, 4. Hence the competitor

uniformly dominates the BIBD!
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It must be noted that in the case of a binary design for n observations in B blocks,

the trace of the C-matrix is given by n − B. This is larger than the corresponding

quantity n− b of the BIBD whenever B is smaller than b. The example above further

shows that the competing design has uniform dominance over the BIBD even though

its C-matrix is not completely symmetric.

It is also possible to construct examples of binary designs with B smaller than b

that do possess a completely symmetric C-matrix. Interesting examples are built from

component designs which have unequal block sizes. The C-matrix of such components

is far from being completely symmetric. One such example is the following.

Consider the design d1 with n = 1530 observations spread over 51 copies of a

BIBD with parameters

v = 6, b = 15, r = 5, k = 2, λ = 1.

The competitor design d2 consists of 10 copies of the component design d3 given by

2 copies of the subcomponent design d31, 6 copies of the subcomponent design d32,

and 3 copies of the subcomponent design d33. The subcomponent designs are defined

through their blocks:

d31 : (1, 4) (1, 5) (1, 6)

(2, 4) (2, 5) (2, 6)

(3, 4) (3, 5) (3, 6),

d32 : (4, 4) (5, 5) (6, 6),

d33 : (1, 2, 4) (1, 3, 4) (2, 3, 4)

(1, 2, 5) (1, 3, 5) (2, 3, 5)

(1, 2, 6) (1, 3, 6) (2, 3, 6).

The C-matrices of the designs d1 and d2 are of the form ρiK6, where K6 = I6−161
′
6/6.

The coefficients are found to be ρ1 = 153 and ρ2 = 180, respectively, so that the design

d1 is dominated by d2 outright!
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5. Nonoptimality of BIBDs in the approximate theory

In our final analysis of optimality of the BIBDs, we turn to the approximate theory to

reexamine some of the results established in the exact theory. Theorem 2 states that,

for B ≥ b, the BIBDs are optimal in the class of all competing designs with B blocks,

irrespective of the block compositions. In the exact theory, it is clear that when we

speak of the presence of B blocks, we then mean that each block contains at least

one observation. In the approximate theory, there are at least three distinct ways of

expressing this phenomenon.

Firstly, we may demand that each column of a v × B weight matrix W should

have at least one positive entry. This immediately negates the optimality of the BIBD

since the design with uniform weight 1/(Bv) is better.

Secondly, we may demand that every entry wij must satisfy the requirement that

nwij is a nonnegative integer. This retains the unique optimality property of the

BIBDs, for the evident reason that it is just a disguised form of embedding the exact

theory into the approximate theory.

Thirdly, we may demand for every column j of W that nwmax,j ≥ 1, where wmax,j

stands for the largest weight among w1j , . . . , wvj . This ensures that each of the B

blocks of W contains at least one observation. Even with this understanding, it turns

out that there are competing designs with larger traces unless B is really large. We

examined this situation for k = 2 and k = 3, only to find that we need B ≥ n − 2 at

least. This comes as a highly discouraging fact.

What all this amounts to, in our eyes, is that the exact optimality theory

and the approximate optimality theory for block designs are not entirely identical.

Both approaches contribute to our understanding of optimal block designs, but in a

complementary fashion. The approximate theory emphasizes the optimality properties

which are shared between block designs and regression designs, on the grounds that

both are instances of the general design problem. As soon as the inherent discreteness

of block designs enters into the discussion, the approximate theory comes to an end

and the exact theory takes over.
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6. A counterexample

Two of the five parameters that are usually quoted with a BIBD are redundant in

that they can be expressed as functions of the other three. For example, the common

treatment replication number and the common block size can be expressed as r = n/v

and k = n/b. Hence we can speak of a BIBD for n observations on v varieties in b

blocks. These three parameters are also sufficient to formulate the optimality result in

our Theorem 1: There are v − 1 varietal contrasts, and the class of competing designs

is W(n/b).

In contrast, the optimality statement on page 368 in Pukelsheim (1993) relates

optimality of a given BIBD to a set of competing block designs that is restricted by

the support of the given BIBD. On page 369 an attempt is made to extend optimality

from a class of designs restricted by the location of their support points, to a larger

class for which the characterization does not require more knowledge than is supplied

by the three parameters n, v, b.

The following counterexample shows why that optimality extension is in error.

Consider the following two BIBDs N and Ñ for 6 observations on 3 varieties in 3 blocks,

N =

 1 1 0

1 0 1

0 1 1

 , Ñ =

 1 0 1

0 1 1

1 1 0

 .

The union of the support sets of N and Ñ is the full set of all variety block

combinations. The statement on page 369 in the first printing of Pukelsheim (1993)

then asserts optimality of the given BIBDs among all block designs, and this is

apparently false. The appropriate optimality extension is Theorem 1 of the present

paper, as included in the second and subsequent printings of Pukelsheim (1993).
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