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A bstract. We discuss a conjecture of R. Bartnik saying that a spacetime containing a 
compact spacelike acausal hypersurface S  and satisfying the strong energy condition is 
static or timelike geodesically incomplete. We show that this is the Lorentzian analogue 
of a theorem of Cheeger and Gromoll which states that a Riemannian manifold with 
nonnegative Ricci curvature and two or more ends is geodesically incomplete or isometric 
to some cylinder. Transferring the Riemannian arguments to the Lorentzian case, we show 
that Bartnik’s conjecture can be proved if S  lies in the past of points with sufficiently 
large Lorentzian distance from S.

1991 Mathematics Subject Classification: 83C75, 53C50, 53C20.

Riemannian and Lorentzian geometry display many similarities. However, at a first 
glance , the singularity or incompleteness theorems which have been discovered by 
Hawking and Penrose (cf. [10]) seem to describe a phenomenon which only occurs 
in spacetime geometry. But this is not really true. As an example, consider the 
well known Splitting Theorem in Riemannian geometry (cf. [2], [7]):

Theorem . (J. Cheeger, D. Gromoll 1972) Let (M,g) be a noncompact Riemannian 
manifold with (a) two or more ends and (b) nonnegative Ricci curvature. Then 
either (M, g) is geodesically incomplete or (M, g) is a cylinder:

(M .g) =  ( R x M ^ d ^ + y )

where g() is a compact Riemannian manifold.

Recall that an end of a noncompact manifold M  is roughly a connected com
ponent of the complement of a sufficiently large compact subset. More precisely, 
an end is a mapping E  which assigns to each compact subset K  C M  a con
nected component E (K )  of M  \  K  such that E {K r) C E (K ) whenever K  C K l . 
Nonnegative Ricci curvature means that the Ricci tensor Rij = R ^ k  is positive 
semi-definite. M  is called geodesically incomplete if there are inextendible geodesics 
with an affine parameter defined on a proper subset of the real line.

For the proof, one assumes that (M,g) is geodesically complete. Then there 
are two steps.
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Step 1. Choose diverging sequences (p¿), (qi) which run into two different ends. 
“Divergence” means that no subsequences are contained in a compact subset. Let 
7i be a minimal (i.e. length-minimizing) geodesic connecting pi and q  ̂ this exists 
by the completeness assumption (theorem of Hopf and Rinow). Since all 7» are 
passing through the same compact region K  separating the ends, they converge to 
a minimal geodesic 7  which is inextendible. Hence by geodesic completeness, 7 is 
a so called line, i.e. a complete geodesic minimizing length on each of its segments.

Step 2. Recall that on a Riemannian manifold, an interior metric (distance) d 
is defined as follows: The distance d(p, q) between two points p,q is the infimum of 
the lengths of all curves connecting p and q. Let 7 be a line. We consider two open 
metric balls B + , B -  in M  with large radius r and centered at points p+,p~ G 7  
with distance d(p+ ,p -) = 2r. They are seperated by a point p G 7 which has 
distance r from p+  and p_. Since 7 is a line, the triangle inequality says that 
B +  O B_ = 0. On the other hand, the curvature condition (“nonnegative Ricci 
curvature” ) says that metric balls B  of large radius r become mean concave in the 
limit r —> 00. Recall that a domain is called mean concave if its complement is mean 
convex, and a domain is mean convex if at each boundary point, there is a smooth 
supporting hypersurface whose mean curvature vector p satisfies g(N, p) < c where 
N  is the outer unit normal vector (cf. [5]). E.g. in the euclidean unit sphere, the 
metric balls are concave for r > TF/2. In euclidean space, the balls of any finite 
radius are strictly convex, but a “ball of infinite radius” , i.e. the union of all balls 
with a common tangent hyperplane (a half space) is mean concave. In M  we 
consider balls B +  and B -  with larger and larger radii while fixing the separating 
point p; in fact we take the union over all such balls. These limit domains and 
D_ are still separated by p and mean concave. But no two mean concave domains 
are separated by a point unless their boundaries agree (maximum principle, cf. 
[5]). Hence we get an equidistant family of minimal hypersurfaces perpendicular 
to 7. This together with the curvature hypothesis shows that M  is isometric to 
R X M ' with M f =  dD +  =  dD_ (see [7] for details). M ' is compact since M  has 
two ends.

There is an analogue in Lorentzian geometry where the two ends are replaced 
with the past and the future of a “closed universe” :

Conjecture. (R. Bartnik, 1988, [1]) Let (M,g) be a spacetime with (a) a com
pact acausal spacelike Cauchy hypersurface S  C M  and (b) nonnegative timelike 
Ricci curvature. Then either (M,g) is timelike geodesically incomplete or (M,g) 
describes a static closed universe:

(M,g) = ( ^ x M ’ ,- d t 2 + g f)

where (M ', g') is a compact Riemannian manifold.

By a spacetime we mean a time oriented Lorentzian manifold. Recall that a 
subset S  c  M  is called acausal if there is no causal curve which starts and ends 
on S. It is called a Cauchy set if any inextendible causal (i.e. everywhere time
like or lightlike) curve meets S. Nonnegative timelike Ricci curvature means that
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R ijV ^  > 0 for any timelike tangent vector v = (i?) on M . This is sometimes 
called strong energy condition. So the conjecture can be rephrased as follows: Any 
nonstatic compact universe with strong energy condition is timelike geodesically 
incomplete. This would generalize the Singularity Theorem 2, Ch. 8.2 of [10]; it 
omits the “generic condition” .

Which of the previous Riemannian arguments do work in the new Lorentzian 
context?

Step 2: Yes! If (M, g) is a timelike geodesically complete spacetime with strong 
energy condition containing a timelike line, i.e. a complete maximal (i.e. length 
maximizing) timelike geodesic, then

(M ,s) = ( R x M ', - d i 2 + p ')

where (M f , gf) is a complete Riemannian manifold. This was proved in [4] under 
the assumption that M  is also globally hyperbolic. Later, G. Galloway [9] and 
R.P. Newman [11] showed that one can omit either the timelike geodesic com
pleteness assumption or the global hyperbolicity. The idea of the proof is the same 
as in the Riemannian case; however one has to replace the Riemannian distance 
d = dR by — d i where dt is the Lorentzian distance: For two points p, q G M  with 
q in the causal future of p, the distance d^ p ^ )  is the supremum of the lengths 
of all causal curves from p to q. This “distance” satisfies the reversed triangle in
equality, so the ordinary triangle inequality holds for - d i .  The metric balls which 
are sublevel sets of dR are replaced by sublevel sets of — d^, and basically the same 
arguments work.

Step 1: No! P. Ehrlich and G. Galloway gave a 2-dimensional counterexample 
[3]. What goes wrong with Step 1? We start as before: We assume that (M,g) is 
timelike geodesically complete and we choose divergent sequences (pf) in the past 
and (qi) in the future of S. If qi is in the future of pi, there is a maximal timelike 
geodesics 7̂  from pi to qp, recall that our spacetime is globally hyperbolic since 
it contains a Cauchy hypersurface. Since all 7, pass through the compact set S, 
they accumulate to an inextendible maximal geodesic 7. But we are facing two 
problems:
(a) Is qi really in the future of pi?
(b) Is 7  timelike?

In fact, in the counterexample of Ehrlich and Galloway, we cannot choose (pi) 
and (qi) such that (a) becomes true, so we do not get the geodesics 7,. Therefore, 
a further hypothesis is necessary:
Assumption (A): There is a constant R such that S  is in the past of any point 
q with di(S,q) > R.

This assumption certainly settles Problem (a). But it turns out that also Prob
lem (b) is solved so that Step 1 can be executed: The limit geodesic 7 of the 
geodesic segments 7¿ from pi to qi is an inextendible maximal timelike or null 
geodesic. Choose a future directed diverging sequence (77) on 7. Since S  is compact, 
there exists a geodesic segment Xj from rj to S  of maximal length. In particular, 
Xj meets S  perpendicularly. Again by compactness, these geodesics accumulate 
to a future inextendible geodesic A which is still perpendicular to S  and hence
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timelike. By timelike geodesic completeness, A has infinite length, and therefore 
dL (S,rj) —> oo. Thus d ^ S .r j) > R for large j ,  and therefore 5  is in the timelike 
past of Tj by Assumption (A). In particular, the point ro where 7  meets S  is in 
the timelike past of Tj, so d^ ro^ j)  > 0. Since 7 is a maximal geodesic between 
ro and rj, it must be timelike. Thus we have shown:

Theorem, (cf. [6]) Let (M^g) be a timelike geodesically complete spacetime con
taining a compact acausal spacelike Cauchy hypersurface S  satisfying (A). Then 
M  contains a timelike line, i.e. a complete maximal timelike geodesic.

Corollary. The conjecture is true if one further assumes (A).

Remark 1. In [6] actually a stronger statement was proved. It is sufficient instead 
of (A) to assume that S  lies in the past of a future complete timelike geodesic A 
starting on S  and maximizing the distance from S  to each of its points (A is a 
so called S-ray). Now we have to choose the sequence (qf) on A. Moreover, fthe 
Cauchy property of S  is not needed. By a previous argument of Galloway [8], we 
may choose the sequence (pf) inside the past Cauchy domain D~(S); this is the 
set of points p G M  such that any future inextendible causal curve starting at p 
meets S. Since now M  is no longer globally hyperbolic, we might have no maximal 
geodesics from Pi to qi, but we may use almost maximizing timelike curves 7, 
whose length is not less then, say, d^Pi, qi) — These curves also accumulate to 
a line.

Remark 2. The counterexample of Ehrlich and Galloway does not disprove the 
original Bartnik conjecture since it does not satisfy the strong energy condition. 
So, this conjecture is still open.
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