
Adaptive multilevel iterative techniques fornonconforming �nite element discretizationsR.H.W. HOPPE and B. WOHLMUTH1
Abstract | We consider adaptive multilevel methods for the nonconforming P1 �nite element approx-imation of linear second order elliptic boundary value problems. Emphasis is on the e�cient solution ofthe discretized problems by multilevel preconditioned conjugate gradient iterations with respect to anadaptively generated hierarchy of possibly highly nonuniform triangulations. Local re�nement of the ele-ments of the triangulations is done by means of an e�cient and reliable element-oriented a posteriori errorestimator that can be derived by a defect correction in a higher order ansatz space and its hierarchicaltwo-level splitting. The performance of the preconditioners and the error estimator is illustrated by sometest examples. Further, numerical results are given for the reverse biased pn-junction in semiconductordevice simulation and the two-group di�usion equations modeling the neutron 
uxes in nuclear reactors.Keywords: nonconforming �nite elements, multilevel preconditioners, adaptive grid re�nementAMS(MOS) subject classi�cation. 65F10, 65N30, 65N50, 65N55.1. INTRODUCTIONIn recent years there has been a considerable interest in the construction and implementa-tion of multilevel methods for the iterative solution of linear second order elliptic boundaryvalue problems discretized by the lowest order Crouzeix-Raviart elements. As far as theapplication of classical multigrid methods with respect to a hierarchy of uniformly re�nedsimplicial triangulations is concerned, we refer to the pioneering work done by Braess andVerf�urth [9] and by Brenner [11]. In the context of multilevel preconditioned conjugategradient iterations, substantial developments have been achieved by Oswald who consid-ered both a hierarchical basis multilevel method [25] and a multilevel preconditioner ofBPX-type [27] (cf. also Oswald's monograph [28] and Zhang's survey article [39]). Werefer to the authors' article [35] for a comparison of these preconditioners. However, fornonconforming discretizations less work has been done concerning the realization of adap-tive grid re�nement based on appropriate a posteriori error estimators. In particular, in[18] the authors have developed both edge-oriented and element-oriented a posteriori er-ror estimators using the well-known principle of defect correction in a higher order ansatzspace adapted to the nonconforming setting.In this paper, we shall be concerned with the construction and implementation of botha hierarchical and a BPX-type preconditioner that can be obtained by taking advantageof techniques due to Cowsar [13] in the framework of domain decomposition methods (for1Math. Institute, University of Augsburg, D-86135 Augsburg, Germany.E{mail: hoppe@math.uni-augsburg.de, wohlmuth@math.uni-augsburg.de



similar ideas cf. also Sarkis [29]). The multilevel iterative solution process will go handin hand with an adaptive grid re�nement technique relying on the element-oriented errorestimator developed by the authors in [18].We consider the following boundary value problem for a linear second order ellipticdi�erential operator Lu := �div (aru) + bu = f in 
;u = 0 on � := @
 (1.1)where 
 stands for a bounded, polygonal domain in the Euclidean space IR2 and f 2L2(
). Furthermore, we assume a = (aij)2i;j=1 to be a symmetric, matrix-valued functionwith aij 2 L1(
), 1 � i; j � 2, and b 2 L1(
) satisfying�0j�j2 � 2Pi;j=1 aij(x)�i�j � �1j�j2; � 2 IR2; 0 < �0 � �1;0 � b0 � b(x) � b1 (1.2)for almost all x 2 
. We note that only for simplicity we have chosen homogeneousDirichlet boundary data. All subsequent results carry over to more general boundaryconditions without major di�culties.Denoting by a (�; �) the bilinear form on H10(
)�H10 (
) given bya (u; v) := Z
 (aru � rv + buv) dx; u; v 2 H10 (
);the variational formulation of (1.1) is to �nd u 2 H10 (
) such thata (u; v) = (f; v)0;
; v 2 H10 (
) (1.3)where (�; �)0;
 stands for the standard inner product on L2(
).In the sequel, for D � 
 we refer to k�k0;D as the standard L2-norm whereas j�j1;Dand k�k1;D stand for the H1-seminorm and H1-norm, respectively. Finally, we mentionthe well-known Poincar�e-Friedrichs inequalitykvk20;
 � CP jvj21;
; v 2 H10 (
): (1.4)Concerning the nonconforming P1 approximation of (1.1), we assume that (Tk)jk=0,j 2 IN, is a hierarchy of simplicial triangulations of 
 generated by the re�nement processdue to Bank et al. (cf. e.g. [3], [4]). For k � 0 we denote by Ek the set of the edges ofTk, by Mk the set of the midpoints of the edges and by Nk the set of the vertices of theelements. We set L0k := Lk \ 
 and L�k := Lk \ � where Lk 2 fEk;Mk;Nkg. Further, forT 2 Tk, k � 0, we refer to Pl(T ), l 2 IN, as the linear space of polynomials of degree � lon T , to hT as the diameter of T and to mi and pi, 1 � i � 3, as the midpoints of theedges of T and the vertices of T , respectively. Moreover, for p 2 Nk, k � 0, we denoteby Dp the set of all adjacent elements, i.e., the set of all T 2 Tk having p as a commonvertex.As a consequence of the re�nement process the triangulations Tk, k � 0, are locallyquasiuniform, i.e., there exists a constant �0 > 0 depending only on the local geometry ofthe initial triangulation T0 such that hThT 0 � �0 (1.5)



for all T; T 0 2 Tk with T \T 0 6= ;. Moreover, there exists a further constant �1 dependingonly on the local geometry of T0 such that for all p 2 Nk, k � 0cardDp � �1: (1.6)Finally, in the sequel we will take advantage of the following norm equivalences: Thereexist constants 0 < c� � C�, 0 � � � 1, depending only on the local geometry of T0 suchthat for all v 2 P1(T ), T 2 Tk, k � 0c0h2T 3Pi=1 v2(qi) � kvk20;T � C0h2T 3Pi=1 v2(qi);c1 3Pi;j=1i<j (v(qi)� v(qj))2 � jvj21;T � C1 3Pi;j=1i<j (v(qi)� v(qj))2 (1.7)where either qi = pi or qi = mi, 1 � i � 3.After these prerequisites we refer toCR1;0(
; Tk) := fvk 2 L2(
)j vkjT 2 P1(T ); T 2 Tk;vkjT (m) = vkjT 0(m); m 2 (T \ T 0) \M0k; vk(m) = 0; m 2 M�koas the lowest order nonconforming Crouzeix-Raviart �nite element space (cf. e.g. [12]).We further de�ne aCR (�; �) as the bilinear form on CR1;0(
; Tk)� CR1;0(
; Tk) given byaCR (uk; vk) := PT2Tk aCRjT (uk; vk) ; uk; vk 2 CR1;0(
; Tk);aCRjT (uk; vk) := ZT (aruk � rvk + bukvk) dx; uk; vk 2 CR1;0(
; Tk):Then, the nonconforming P1 approximation of (1.1) with respect to the �nest triangula-tion Tj amounts to the computation of uj 2 CR1;0(
; Tj) such thataCR (uj; vj) = (f; vj)0;
; vj 2 CR1;0(
; Tj): (1.8)We note that under the assumptions (1.2) there exists a unique solution to (1.8). More-over, if the solution u 2 H10 (
) of (1.3) satis�es u 2 H2(
), then uj approximates u oforder O(h), h := maxT2Tj hT , with respect to the energy norm jjj�jjjj := aCR (�; �)1=2 (cf.e.g. [12]).In the following section, (1.8) will be solved by preconditioned conjugate gradientmethods constructed with respect to an associated hierarchy of conforming �nite elementspaces. For that purpose we refer toS1;0(
; Tk) := fvk 2 C0(
)j vkjT 2 P1(T ); T 2 Tkgas the standard conforming �nite element space of continuous, piecewise linear functionsvanishing on the boundary � = @
.2. THE MULTILEVEL PRECONDITIONERSIt is well known that in case of the standard conforming P1 approximation of linear secondorder elliptic boundary value problems both Yserentant's hierarchical basis preconditioner[37] and the BPX-preconditioner are based on the fact that the hierarchy of �nite elementspaces S1;0(
; Tk), 1 � k � j, represents a nested sequence of subspaces of H10 (
). This



property does not hold true in the nonconforming setting. In fact, the non-nestedness ofthe sequence of Crouzeix-Raviart spaces CR1;0(
; Tk), 1 � k � j, constitutes an inherentdi�culty for the development of appropriate multilevel preconditioners. A convenient rem-edy to overcome this problem is to embed the nonconforming ansatz space CR1;0(
; Tj)into an appropriate conforming �nite element space and to construct a multilevel precon-ditioner based on the associated hierarchy of conforming ansatz spaces (cf. e.g. [27, 28]).In this paper, we will follow the same approach. However, in contrast to the techniquepresented in [27], we will use an embedding that has been proposed by Cowsar [13] in thecontext of domain decomposition methods for nonconforming P1 approximations.We consider a �ctitious triangulation Tj+1 obtained from Tj by uniform re�nement.Obviously, the midpoints of the edges of Tj turn out to be vertices of Tj+1 and conse-quently, the nodal points with respect to CR1;0(
; Tj) represent a subset of the nodalpoints of S1;0(
; Tj+1). Following [13], we introduce a pseudo-interpolation operatorPCR : CR1;0(
; Tj) �! S1;0(
; Tj+1) which is de�ned by means of its values in interiorvertices p of Tj+1: (PCRvj) (p) := 8><>: vj(p); p 2 M0j � N 0j+11�p �pP�=1 vj(mp�); p 2 N 0j+1 nM0j : (2.1)Here, mp� 2 M0j , 1 � � � �p, denote the midpoints of those edges in E0j containing theinterior vertex p 2 N 0j+1 nM0j .Lemma 2.1. (cf. [13; Thm. 2.1]). Let PCR be the linear mapping given by (2.1).Then there exist constants 0 < 
CR � �CR depending only on �i, bi, 0 � i � 1, from (1.2)and on the local geometry of T0 such that for all vj 2 CR1;0(
; Tj)
CRaCR (vj; vj) � a (PCRvj; PCRvj) � �CRaCR (vj; vj) : (2.2)Proof: In view of (1.2) and (1.7) it is su�cient to prove the existence of constants0 < 
i � �i, 0 � i � 1, depending only on the local geometry of T0 such that
0 XT2Tj h2T 3Xi=1 v2j (mi) � XT2Tj+1 3Xi=1 (PCRvj)2 (pi) � �0 XT2Tj h2T 3Xi=1 v2j (mi) (2.3)
1 PT2Tj h2T 3Pk;l=1k<l (vj(mk)� vj(ml))2 � PT2Tj+1 3Pk;l=1k<l (PCRvj(pk)� PCRvj(pl))2PT2Tj+1 3Pk;l=1k<l (PCRvj(pk)� PCRvj(pl))2 � �1 PT2Tj h2T 3Pk;l=1k<l (vj(mk)� vj(ml))2 : (2.4)Since M0j � N 0j+1 and (PCRvj) (p) = vj(p), p 2 M0j , the lower bounds in (2.3) and (2.4)are readily established. For the proof of the upper bound in (2.3) let T 2 Tj+1 andp 2 N 0j+1 \ @T . Observing (2.1), we only have to consider the case p 2 N 0j+1 nM0j . Bythe Cauchy-Schwarz inequality it follows thath2T (PCRvj)2 (p) � 1�ph2T �pX�=1 v2j (mp�):



Taking into account the local quasiuniformity (1.5) of Tj and �p � �1 which is a conse-quence of (1.6), we conclude by summing over all triangles T 2 Tj+1. The proof of theupper bound in (2.4) follows the same line of arguments. 2By means of the previous result we may identify PCRCR1;0(
; Tk) with a closed sub-space of S1;0(
; Tj+1). This enables us to use appropriate multilevel preconditioners withrespect to the hierarchy of nested conforming ansatz spaces S1;0(
; Tk), 0 � k � j+1. Inparticular, we consider both Yserentant's hierarchical basis preconditioner CHB and theBPX-preconditioner CBPX (for a detailed discussion of these preconditioners cf. e.g. [6],[8], [10], [14], [36], [37]). Since we want to apply the preconditioners in the framework ofthe nonconforming P1 approximation, we de�ne IS : S1;0(
; Tj+1)! CR1;0(
; Tj) as thepseudo-inverse of PCR by (ISvj+1) (m) := vj+1(m), m 2 M0j . We then obtain the desired`nonconforming' preconditioners NHB and NBPX by settingN�1HB := ISC�1HBI�S; N�1BPX := ISC�1BPXI�S (2.5)where I�S stands for the adjoint of IS.We note that in algebraic terms the operator IS represents a rectangular matrixof the form (Id; 0). Consequently, the evaluation of I�Svj, vj 2 CR1;0(
; Tj), does notrequire additional arithmetical operations. Altogether, the computational complexity isthe same as in the conforming case except that we are dealing with the additional levelj+1. As far as spectral condition number estimates of the preconditioned sti�ness matrixare concerned, the special construction of the preconditioners NHB and NBPX enables usto take advantage of the corresponding results in case of the standard conforming P1approximation. In particular, denoting by AL the sti�ness matrix associated with theconforming P1 approximation of (1.3) with respect to S1;0(
; Tj+1), there exist constants0 < �HB � �HB and 0 < �BPX � �BPX depending only on �i, bi, 0 � i � 1, in (1.2) andon the local geometry of T0 such that for all v 2 S1;0(
; Tj+1)�HB(j+2)2a (v; v) � a (C�1HBALv; v) � �HBa (v; v) ;�BPXa (v; v) � a (C�1BPXALv; v) � �BPXa (v; v) : (2.6)The condition number estimates (2.6) have been established by various authors (cf. e.g.[8], [14], [15], [24, 26, 28], [36], [37], [38], [39]). For the proof one may either rely on theDryja-Widlund theory of additive Schwarz methods [16] or one may use Nepomnyaschikh's�ctitious domain lemma [22, 23] as has been done by Oswald in [24]. In the nonconformingsetting under consideration, analogous estimates can be easily derived by means of thefollowing abstract version of the �ctitious domain lemma.Lemma 2.2. Given two Hilbert spaces S, V with inner products (�; �)S and (�; �)V ,let aS : S � S �! IR and aV : V � V �! IR be symmetric, positive de�nite bilinear formswith associated operators AS : S �! S and AV : V �! V . Assume that there exist alinear operator R : V �! S, an operator T : S �! V and constants 0 < c0 � c1 suchthat RTv = v; v 2 S; (2.7 a)c0aV (Tv; Tv) � aS(v; v); v 2 S; (2.7 b)aS(Rv;Rv) � c1aV (v; v); v 2 V: (2.7 c)Then there holds c0aS(v; v) � aS(RA�1V R�ASv; v) � c1aS(v; v) (2.8)



where R� : S �! V denotes the adjoint of R given by means of (Rv;w)S = (v; R�w)V ,v 2 V , w 2 S.Proof: cf. e.g. [23]. 2Now, if we specify the Hilbert spaces S, V , the bilinear forms aS, aV and the operatorsR, T according to the nonconforming setting and use (2.6), we are able to prove thefollowing spectral condition number estimates:Theorem 2.1. Let NHB and NBPX be the `nonconforming' preconditioners givenby (2.5). Then there exist constants 0 < 
HB � �HB and 0 < 
BPX � �BPX dependingonly on �i, bi, 0 � i � 1, from (1.2) and on the local geometry of T0 such that for allv 2 CR1;0(
; Tj) 
HB(j+2)2aCR (v; v) � aCR (N�1HBACRv; v) � �HBaCR (v; v) ;
BPXaCR (v; v) � aCR (N�1BPXALv; v) � �BPXaCR (v; v) (2.9)where ACR : CR1;0(
; Tj) �! CR1;0(
; Tj) is the operator associated with the bilinearform aCR (�; �).Proof: We apply Lemma 2.2 with S = CR1;0(
; Tj), V = S1;0(
; Tj+1), aS = aCR,aV = a and R = IS, T = PCR. Obviously, ISPCRv = v, v 2 CR1;0(
; Tj), so that (2.7 a)is satis�ed. Moreover, from Lemma 2.1 it follows readily that (2.7 b) holds true withc0 = ��1CR. Finally, as far as (2.7 c) is concerned, for v 2 S1;0(
; Tj+1) we get in view of(1.2), (1.4) and (1.7)aCR (ISv; ISv) � �1C1 PT2Tj 3Pi;j=1i<j (ISv(mi)� ISv(mj))2 + b1C0 PT2Tj h2T 3Pi=1 (ISv(mi))2= �1C1 PT2Tj 3Pi;j=1i<j (v(mi)� v(mj))2 + b1C0 PT2Tj h2T 3Pi=1 (v(mi))2� �1C1 PT2Tj+1 3Pi;j=1i<j (v(pi)� v(pj))2 + b1C0 PT2Tj+1 h2T 3Pi=1 (v(pi))2� �1c�11 C1jvj21;
 + b1c�10 C0kvk20;
 � �Sa(v; v)where �S := 1�0 ��1C1c1 + b1C0CPc0 �. Now, Lemma 2.2 implies��1CRaCR (v; v) � aCR �ISA�1L I�SACRv; v� � �SaCR (v; v) ; v 2 CR1;0(
; Tj):The assertion then follows from (2.6) with the constants given by 
HB := ��1CR�HB, 
BPX :=��1CR�BPX and �HB := �S�HB, �BPX := �S�BPX 23. ERROR ESTIMATOR BASED ON LOCAL SUBPROBLEMSReliable and e�cient a posteriori error estimators are an indispensable tool for e�cientadaptive algorithms. We refer to the pioneering work done by Babu�ska and Rheinboldt[1, 2] and the recent survey articles by Bornemann et al. [7] and Verf�urth [32, 33]. In thissection we will focus on an element-oriented error estimator which is based on the solutionof local subproblems. In the standard conforming setting this kind of error estimator isdue to Bank and Weiser [5]. It relies on a defect correction with respect to the higher orderansatz space of continuous, piecewise quadratics and an appropriate localization based on



a hierarchical two-level splitting. However, in contrast to the standard conforming set-ting we have to take into account the discontinuity of the nonconforming approximation.This will be done by means of an additional error term involving an appropriate quasi-interpolation operator. It turns out that the estimator can be computed elementwise bythe solution of three scalar equations representing a localized defect correction problemand by the evaluation of that quasi-interpolant (cf. [18], [34] and [35]).In the sequel, we will need the jump [v]J and the average [v]A of a function v alongan edge of the triangulation. Denoting by e the common edge of two adjacent elementsTin and Tex and by ne the unit normal on e directed towards the interior of Tex, we de�ne[v]J je := (vjTin � vjTex) je;[v]Aje := 12 (vjTin + vjTex) je:Moreover, if e � @Tin \ �, we set[v]J je := (vjTin) je; [v]Aje := 12 (vjTin) je:Throughout the rest of this section we assume that the solution u of (1.3) lives in H2(
)\H10(
) and satis�es [ne � aru]J je = 0, e 2 E0j .The construction of the error estimator is based on the following saturation assump-tion jjju� uQjjjj + 0@Xe2Ej Ze [ne � ar(u� uQ)]2A d�1A1=2 � �jjju� ujjjjj; 0 < � < 1; (3.1)where uQ stands for the continuous, piecewise quadratic �nite element approximation of(1.3). This saturation assumption is supported by well known a priori error estimates.In particular, if u 2 H3(
) the conforming �nite element solution uQ does provide anapproximation of u of order O(h2) whereas the nonconforming solution uj approximatesu only of order O(h) (cf. [12]).In a �rst step, we consider the linear functional F̂ : S�12;0(
; Tj) �! IR, de�ned asF̂ (v) := XT2Tj ZT (f � L(ûj)) v dx� Xe2Ej Ze [ne � arûj]J [v]A d�;where ûj stands for the nonconforming approximation obtained by the iterative solutionprocess as described in section 2 and S�12;0(
; Tj) denotes the space of piecewise quadraticfunctions vanishing on the boundary �.Since F̂ does not take into account the discontinuity of ûj, we introduce a modi�ed linearfunctional F (v) := F̂ (v � PLv) + aCR (PSûj � ûj; v)where PL and PS are appropriately de�ned operators.In particular, PL : S�12;0(
; Tj) �! S�11;0(
; Tj) is given locally as the Lagrangian interpola-tion operator PLvjT := 3Xi=1 vjT (pi) i;T ; v 2 S�12;0(
; Tj)where S�11;0(
; Tj) is the space of piecewise linear ansatz functions vanishing on the bound-ary � and  i;T , 1 � i � 3 stand for the local nodal basis functions of P1(T ). Obviously,the operator PL has the following three properties:



(i) There exists a positive constant 
L independent of the re�nement level j such thatjjjPLvjjjjj � 
Ljjjvjjjjj; vj 2 S�12;0(
; Tj);(ii) PLvj 2 C(
) for vj 2 S�12;0(
; Tj) \ C(
);(iii) PLvj = vj for vj 2 S�11;0(
; Tj).Due to (i), (ii) and (iii) we obtainaCR (v � PLv; w) � �2jjjv � PLvjjjjjjjwjjjj; v 2 S�12;0(
; Tj); w 2 S�11;0(
; Tj) (3.2)where �2 := p
2L�1
L < 1. For a detailed proof see [18].On the other hand, the operator PS : CR1;0(
; Tj) �! S1;0(
; Tj) will serve as ameasure for the discontinuity of the nonconforming �nite element functions. For thispurpose we choose the quasi-interpolant as proposed by Oswald in [27].(PSv) (p) := 8><>: 0; p 2 N �j1�p �pP�=1 vjTl(p); p 2 N 0j (3.3)where �p is the number of triangles Tl 2 Tj containing p as a vertex. It is easy to see thatPSv = v if and only if v is continuous and satis�es the homogeneous Dirichlet boundaryconditions.Now, if we de�ne e 2 S�12;0(
; Tj) as the solution of the following variational problemaCR (e; v) = F (v); v 2 S�12;0(
; Tj);e gives sharp lower and upper bounds for the total error u � ûj provided the iterationerror ûj � uj is small enough. We remark that, if bjT � 0 on an interior triangle T 2 Tj,then ejT is not uniquely determined. To obtain uniqueness we require that ejT satis�esZT e dx = ZT (PSûj � ûj) dx: (3.4)It is easy to see that e can be calculated locally as the solution of an at most 6� 6 linearsystem: aCRjT (e; v) = F̂T (v � PLv) + aCRjT (PSûj � ûj; v) ; v 2 P 2(T );where P 2(T ) := fv 2 P2(T )j vj@
\@T = 0g. Again, we require (3.4) in case bjT � 0,T 2 Tj \ 
.The de�nition of the local functional F̂T , T 2 Tj,F̂T (v) := (f; v)0;T � aCRjT (ûj; v) + Xe2Eje�@T Ze [ne � arûj]AvjT d�; v 2 S�12;0(
; Tj)is consistent with the global de�nition of F̂ (�) in the sense that F̂ (v) = PT2Tj F̂T (v),v 2 S�12;0(
; Tj).Lemma 3.1. Under the saturation assumption (3.1) there holdjjju� ûjjjjj � Cl (jjjejjjj + �ljjjûj � ujjjjj) ;jjju� ûjjjjj � cl (jjjejjjj � 
ljjjûj � ujjjjj) (3.5)



where cl, Cl and 
l, �l are positive constants independent of the re�nement level j.Proof: cf. [18]. 2Lemma 3.1 states that e provides sharp lower and upper bounds for the energy normof the total error if the iteration error is small enough. But e is only of academic interestand has no practical importance, because the computational amount is too expensive.The rest of this section is devoted to establish an error estimator which requires lesscomputational work. For this purpose, we �rst consider the elliptic projection of theso-called continuous part of ejT onto the three-dimensional subspace of quadratic bubblefunctions associated with the midpoints of the edges. In a second step, we neglect thecoupling between the bubbles and obtain three scalar equations to solve.We de�ne ê as the solution ofaCR (ê; v) = F̂ (v � PLv); v 2 S�12;0(
; Tj): (3.6)and ZT ê dx = 0;if bjT � 0 on an interior element T 2 Tj. Then, it is easy to see that ê = e + ûj � PSûjand jjjejjj2j = jjjêjjj2j + jjjûj � PSûjjjj2j : (3.7)Now, we will concentrate on the construction of an adequate replacement of ê which canbe obtained by the solution of scalar equations. We decompose S�12;0(
; Tj) into the directsum of S�11;0(
; Tj) and the hierarchical surplus ~S�12;0(
; Tj) := fv 2 S�12;0(
; Tj)j PLv = 0g.Based on this splitting, we obtain ~e 2 ~S�12;0(
; Tj) as the uniquely de�ned solution ofaCRjT (~e; v) = F̂T (v); v 2 ~S�12;0(
; Tj): (3.8)The following lemma shows the equivalence of jjjêjjjj and jjj~ejjjj.Lemma 3.2. Let ê, ~e be given by (3.6) and (3.8), respectively. Then there holdsjjj~ejjjj � jjjêjjjj � 1(1� �2)1=2 jjj~ejjjj:Proof: In view ofaCR (~e; v) = F̂ (v) = F̂ (v � PLv) = aCR (ê; v) ; v 2 ~S�12;0(
; Tj)it follows that ~e is the elliptic projection of ê onto ~S�12;0(
; Tj) whence jjj~ejjjj � jjjêjjjj.Hence, only the second inequality remains to be shown. For that purpose we decomposeê according to ê = (ê� PLê) + PLê. By means of (3.6) we obtainaCR (ê; PLê) = 0;yielding aCR (PLê; PLê) = �aCR (PLê; ê� PLê). Using (3.2) it follows thatjjjêjjj2j = aCR (ê� PLê; ê� PLê) + aCR (ê� PLê; PLê)� jjjê� PLêjjjj (jjjê� PLêjjjj � �2jjjPLêjjjj)� (1� �2) jjjê� PLêjjj2j :



Altogether, we get jjjêjjj2j = aCR (ê; ê� PLê) = aCR (~e; ê� PLê)� 1(1� �2)1=2 jjjêjjjj jjj~ejjjj: 2The local 3�3 sti�ness matrices of the variational problem (3.8) are spectrally equiva-lent to their diagonal matrices. Note, that the constants are independent of the re�nementlevel and only depend on �i, bi, 0 � i � 1, in (1.2) and the local geometry of the initialtriangulation. We de�ne �iT := $i�eijT , 1 � i � 3, where $i 2 IR is given as$i := F̂T (�ei)aCRjT (�ei; �ei)and �ei denote the quadratic bubble functions associated with the edges ei, 1 � i � 3.Due to the spectral equivalence we obtaincjjj~ejjjj;T � 3Xi=1 jjj�iT jjjj;T � Cjjj~ejjjj;T ; T 2 Tj; (3.9)with some constants 0 < c � C independent of the re�nement level j. In view of thepreceding results we are led to the following error estimator el:�el�2 := PT2Tj �elT�2 ;�elT�2 := 3Pi=1 jjj�iT jjj2j;T + jjjûj � PSûjjjj2j;T :The following theorem states that el is an e�cient and reliable error estimator, if theiteration error uj � ûj is small enough.Theorem 3.1. Under the assumption (3.1) there exist positive constants ĉl, Ĉl and
̂l, �̂l independent of the re�nement level j such thatjjju� ûjjjjj � Ĉl �el + �̂ljjjuj � ûjjjjj� ;jjju� ûjjjjj � ĉl �el � 
̂ljjjuj � ûjjjjj� : (3.10)Proof: The theorem is a direct consequence of Lemma 3.1, Lemma 3.2, the orthog-onality relation (3.7) and the equivalence (3.9). 2The computational amount for el is signi�cantly less than that for jjjejjjj. We only haveto solve three scalar equations per element and to take into account the discontinuity ofûj which is taken care of by the additional term jjjPSûj � ûjjjjj.4. NUMERICAL RESULTSIn this section, we will illustrate the adaptive re�nement process and the performanceof both the multilevel preconditioners and the error estimator by numerical results fortwo selected test problems. Further, we will document the application of the adaptivealgorithm in semiconductor device simulation and in reactor kinetics.



As test examples we have chosen the following model problems from [21] where thesolutions exhibit singularities of di�erent order.Problem 1a (reentrant corner). We consider the Laplace equation on the L-shaped domain
 = (�1; 1) � (�1; 1) n (0; 1) � (�1; 0). In polar coordinates the solution is given byu = r2=3 sin �2�3 �.Problem 1b (slit domain). The Laplace equation is considered on a hexagon with a slitalong the line y = 0 and 0 < x < 1 (cf. Figure 4.2). In polar coordinates the solution isgiven by u = r1=4 sin � �4�.Starting from the initial coarse triangulations as shown in Figures 4.1, 4.2, the dis-cretized problems have been solved by the adaptive multilevel algorithm as described inthe preceding sections. In particular, on level k + 1, 0 � k � j � 1, the startiterateû0k+1 is obtained from the computed solution ûk on level k by means of the prolongationû0k+1(m) := 12 (ûkjT1(m)+ ûkjT2(m)) wherem 2 M0k+1 is the midpoint of the common edgeof two adjacent triangles T1, T2 2 Tk+1. The iteration on level k + 1 has been stoppedwhen the estimated iteration error "k+1 satis�ed "2k+1 � � �2k NkNk+1 where �k denotes theestimated error on level k, Nk the number of nodes on level k and � is a safety factorwhich has been chosen as � = 1:E � 2. For the adaptive re�nement process we haveused the meanwhile standard technique due to Bank et al. [4] with a slight modi�cation.Instead of the simple mean-value strategy we have taken into account the area of thetriangles which results in some kind of an extrapolation strategy. A triangle T 2 Tk hasbeen marked for re�nement if �elT�2jT j � �j
j XT2Tk �elT�2where jT j, j
j stand for the area of T and 
, respectively, and � = 0:95. Finally, the

Level 0, N = 13 Level 9, N = 6141Figure 4.1: Initial triangulation T0 and �nal triangulation T9 (Problem 1a)re�nement process has been stopped when the ratio of the estimated error and the normof the iterative approximation was less than the required accuracy TOL times a safetyfactor �. In particular, we have chosen TOL = 2:75E�2 (Problem 1a), TOL = 2:75E�1(Problem 1b) and � = 0:98.



Figure 4.1 and Figure 4.2 represent the initial and �nal triangulations for Problem 1a,1b. We observe a pronounced re�nement in the vicinity of the reentrant corner (Problem1a) and the origin (Problem 1b).

Level 0, N = 13 Level 11, N = 9160Figure 4.2: Initial triangulation T0 and �nal triangulation T11 (Problem 1b)Figure 4.3 and 4.4 display the number of multilevel preconditioned cg-iterations as afunction of the total number of nodes thus illustrating the performance of the precondi-tioners.
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Figure 4.3: Performance of the preconditioners (Problem 1a)
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Figure 4.4: Performance of the preconditioners (Problem 1b)



The results for the BPX-type preconditioner are in accordance with the theoreticallypredicted O(1) behavior (cf. Theorem 2.1). On the other hand, for both problems thehierarchical basis type preconditioner exhibits the same asymptotic behavior which is bet-ter than the theoretically expected quadratic growths in the number of re�nement levels.
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Figure 4.5: Behavior of the e�ciency indexFigure 4.5 shows the e�ciency index � := �est�true � 1 as a function of the total numberof nodal points where �est and �true stand for the estimated and true error, respectively.In both cases we observe a slight overestimation of the true error. We also note that theerror estimator is not asymptotically exact, i.e., the e�ciency index does not converge tozero as the total number of nodes goes to in�nity.The next example represents a slightly simpli�ed benchmark problem from the Inter-national Atomic Energy Authority concerning the computation of the neutron 
uxes in alight water reactor based on the two-group neutron di�usion equations.�r(D1r�1) + (�a1 + �12)�1 = 1���1(�f1�1 + �f2�2);�r(D2r�2) + �a2�2 � �12�1 = 1���2(�f1�1 + �f2�2): (4.1)Here �i denotes the neutron 
ux of the energy group i and Di, 1 � i � 2, are the asso-ciated di�usion coe�cients. � stands for the critical constant of the reactor (generalizedeigenvalue), � is the number of prompt neutrons and �i, �ai, �fi, �12, 1 � i � 2, representthe �ssion spectrum of prompt neutrons and the absorption, �ssion and scattering crosssections which are physical parameters. Note that we do not consider external sourcesand scattering from the energy group 2 (slow neutrons) to group 1 (fast neutrons).D1 D2 �a1 �a2 ��f1 ��f2 �1 �2 �12Region 1 2.0 0.300 0.0 0.010 0.0 0.0 1.0 0.0 0.04Region 2 1.5 0.400 0.01 0.085 0.0 0.135 1.0 0.0 0.02Region 3 1.5 0.209 0.01 0.400 0.0 0.135 1.0 0.0 0.02Table 4.1: Parameters of the benchmark problemFor symmetry reasons, the computational domain can be chosen as the upper rightquarter of the cross section of the reactor core which is shown in Figure 4.6 along with theassociated boundary conditions. We consider two di�erently enriched regions (region 2,



3) and the light water re
ector (region 1). The physical parameters for the three regionsare given in Table 4.1. For more details we refer to [30], [31].
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(Reflector)D @�@n = 0
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Figure 4.6: Geometry of the benchmark problemWe have discretized (4.1) by a mixed �nite element approach based on the lowestorder Raviart-Thomas elements. More speci�cally, we have applied the technique ofmixed hybridization leading to an equivalent nonconforming discretization that has been

Figure 4.7: Neutron 
ux of energy group 1 (left) and 2 (right)



solved by the multilevel algorithm described in section 2. In particular, we have used anouter/inner iterative method featuring a block Gauss-Seidel scheme as the outer iterationand the multilevel preconditioned cg-iteration with the BPX-type preconditioner of section2 as the inner iteration. The adaptive re�nement of the triangulations has been realizedby an error estimator for the L2-norm of the neutron 
ux of the energy group 2 (for detailsabout that error estimator cf. e.g. [19]).Figure 4.7 contains the adaptively generated grid (bottom) and a visualization ofthe neutron 
uxes of both energy groups along with a graphical representation of thecorresponding contour lines (top). We observe an accurate resolution of both the interfacesbetween the di�erent regions and of the layer within the re
ector zone.As another example of practical relevance we consider the numerical simulation ofa reverse biased pn-junction which is a speci�c microelectronic device that is used forblocking purposes in technical applications.
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Figure 4.8: Scheme of a planar pn-junctionFigure 4.8 shows the simpli�ed geometry of the device. In active mode a constantnegative voltage is applied to the anode whereas the other contacts (stop-electrode andcathode) are kept voltage-free. At the pn-junction the electric �eld causes the electronsand holes to move towards the n- and p-region, respectively. In this way, a depletion areaof ideally no carrier concentrations is created in a vicinity of the pn-junction so that thereis no 
ow of a current. The blocking ability of the device can be in
uenced by multistep�eld plates and the placement of the stop-electrode (cf. e.g. [17]).The problem can be formulated as a free boundary problem for a second order ellipticpartial di�erential equation�div (�r ) = qD(1� � ;0 � � ;� 0) (4.2)where  is the potential of the electric �eld, � the electric permittivity, q the elementarycharge, D the dopand pro�le, � 0 the applied voltage at the anode and �x;y stands forthe Kronecker symbol. The boundary conditions are of Dirichlet type at the contacts andof homogeneous Neumann type elsewhere. The free boundary is given by the interfacesbetween the depletion area and the p- and n-region, respectively. In contrast to theapproach used in [20] we have tackled the problem by a front-tracking method based onthe nonconforming P1 approximation of (4.2). The resulting discretized elliptic boundary



Figure 4.9: Adaptive re�ned grid on level 6value problems have been solved by the adaptive multilevel algorithm described in thepreceding sections. In particular, we have used the BPX-type multilevel preconditioner.Figure 4.9 shows the adaptively generated �nal triangulation featuring a signi�cantlocal re�nement in the vicinity of the multistep �eld plates and at the interface betweenthe silicon and the oxide where the electric permittivity has a jump discontinuity. Figure4.10 below displays the distribution of the electric �eld in the area between the �eld platesand the stop-electrode as well as the underlying triangulation.
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