Adaptive multilevel iterative techniques for
nonconforming finite element discretizations
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Abstract  We consider adaptive multilevel methods for the nonconforming P1 finite element approx-
imation of linear second order elliptic boundary value problems. Emphasis is on the efficient solution of
the discretized problems by multilevel preconditioned conjugate gradient iterations with respect to an
adaptively generated hierarchy of possibly highly nonuniform triangulations. Local refinement of the ele-
ments of the triangulations is done by means of an efficient and reliable element-oriented a posteriori error
estimator that can be derived by a defect correction in a higher order ansatz space and its hierarchical
two-level splitting. The performance of the preconditioners and the error estimator is illustrated by some
test examples. Further, numerical results are given for the reverse biased pn-junction in semiconductor

device simulation and the two-group diffusion equations modeling the neutron fluxes in nuclear reactors.
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1. INTRODUCTION

In recent years there has been a considerable interest in the construction and implementa-
tion of multilevel methods for the iterative solution of linear second order elliptic boundary
value problems discretized by the lowest order Crouzeix-Raviart elements. As far as the
application of classical multigrid methods with respect to a hierarchy of uniformly refined
simplicial triangulations is concerned, we refer to the pioneering work done by Braess and
Verfiirth [9] and by Brenner [11]. In the context of multilevel preconditioned conjugate
gradient iterations, substantial developments have been achieved by Oswald who consid-
ered both a hierarchical basis multilevel method [25] and a multilevel preconditioner of
BPX-type [27] (cf. also Oswald’s monograph [28] and Zhang’s survey article [39]). We
refer to the authors’ article [35] for a comparison of these preconditioners. However, for
nonconforming discretizations less work has been done concerning the realization of adap-
tive grid refinement based on appropriate a posteriori error estimators. In particular, in
[18] the authors have developed both edge-oriented and element-oriented a posteriori er-
ror estimators using the well-known principle of defect correction in a higher order ansatz
space adapted to the nonconforming setting.

In this paper, we shall be concerned with the construction and implementation of both
a hierarchical and a BPX-type preconditioner that can be obtained by taking advantage
of techniques due to Cowsar [13] in the framework of domain decomposition methods (for
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similar ideas cf. also Sarkis [29]). The multilevel iterative solution process will go hand
in hand with an adaptive grid refinement technique relying on the element-oriented error
estimator developed by the authors in [18].

We consider the following boundary value problem for a linear second order elliptic
differential operator

Lu = —div(aVu)+bu = f in Q, (1.1)
u = 0 on I :=090 ’

where Q stands for a bounded, polygonal domain in the Euclidean space R? and f €
L?(Q). Furthermore, we assume a = (ag;);,; to be a symmetric, matrix-valued function
with a;; € L>(Q), 1 <1i,j <2, and b € L>*(Q) satisfying

2
aglé]” < 421(11:]‘(-77)57:@ <mlE)? EeR? 0<ag<a, (1.2)
)= .

0 < by < b(z) < b

for almost all x € €. We note that only for simplicity we have chosen homogeneous
Dirichlet boundary data. All subsequent results carry over to more general boundary
conditions without major difficulties.

Denoting by a (-, -) the bilinear form on H}(Q2) x H;(£2) given by

a(u,v) = / (aVu - Vv +buv)dr, u,v € Hy(Q),
0

the variational formulation of (1.1) is to find u € Hy(f2) such that
a(u,v) = (f,v)o0 vEH;) (1.3)

where (-, +)o.q stands for the standard inner product on L?*(Q).

In the sequel, for D C Q we refer to ||-[|y.;, as the standard L*-norm whereas ||,
and ||-||,., stand for the H'-seminorm and H'-norm, respectively. Finally, we mention
the well-known Poincaré-Friedrichs inequality

[v]le < Crlvliq. ve Hy(Q). (1.4)

Concerning the nonconforming P1 approximation of (1.1), we assume that (7;)_,,
j € IN, is a hierarchy of simplicial triangulations of {2 generated by the refinement process
due to Bank et al. (cf. e.g. [3], [4]). For &k > 0 we denote by &, the set of the edges of
Ti, by M,, the set of the midpoints of the edges and by N} the set of the vertices of the
elements. We set £9 := £, N Q and L], := L, N[ where £}, € {&, My, N,.}. Further, for
T €Ty, k> 0, we refer to P(T), | € IN, as the linear space of polynomials of degree <[
on T, to hr as the diameter of T" and to m; and p;, 1 <17 < 3, as the midpoints of the
edges of T and the vertices of T, respectively. Moreover, for p € N, k > 0, we denote
by D, the set of all adjacent elements, i.e., the set of all 7" € 7} having p as a common
vertex.

As a consequence of the refinement process the triangulations 7, k£ > 0, are locally
quasiuniform, i.e., there exists a constant kg > 0 depending only on the local geometry of
the initial triangulation 7y such that

oy

B

< Ko (1.5)



forall T,T" € T, with TNT" # (). Moreover, there exists a further constant x; depending
only on the local geometry of 7y such that for all p € N, k > 0

cardD, < k. (1.6)

Finally, in the sequel we will take advantage of the following norm equivalences: There
exist constants 0 < ¢, < C,,, 0 < v < 1, depending only on the local geometry of 7; such
that for allv e P(T), T € T, k>0

3 3
coh% ; v (qi) < ||7’||3;T < Coh’ ; v*(qi),

e 3 (o) = vlg)) < Jolly < C1 S (ular) = v(gy))’

i,j=1 ij=
i<j 1<j

(1.7)

where either ¢; = p; or ¢; = m;, 1 <17 < 3.
After these prerequisites we refer to

CRio(%T) = {w € L*Q)| vlr€P(T), TeT.
vilr(m) = vilpi(m), m € (TNT) N MY, v(m) =0, me ML}

as the lowest order nonconforming Crouzeix-Raviart finite element space (cf. e.g. [12]).
We further define aqy (-, -) as the bilinear form on C'Ry o(€2; 7x) x C' Ry ¢(£2; 7;) given by

Aop (U, vg) = TZT Aor|r (Uk, v6),  wk, vp € CRy (0 Ty),
S
toplr (ug, vg) = / (aVug - Vo + bugvy) de,  ug,vp € CRyo(2 Ty).
T

Then, the nonconforming P1 approximation of (1.1) with respect to the finest triangula-
tion 7; amounts to the computation of u; € CRy (£2; 7;) such that

acr (u;,v;) = (f,v5)00, v; € CRyo(4T;). (1.8)

We note that under the assumptions (1.2) there exists a unique solution to (1.8). More-
over, if the solution u € H}(Q) of (1.3) satisfies u € H*(Q), then u; approximates u of
order O(h), h := maxpez, hy, with respect to the energy norm |[|-||; := acr (-, V2 (e,
e.g. [12]).

In the following section, (1.8) will be solved by preconditioned conjugate gradient
methods constructed with respect to an associated hierarchy of conforming finite element
spaces. For that purpose we refer to

5110(9;%) = {Uk € O()(Q)| vk|T € Pl(T), T e 77@}

as the standard conforming finite element space of continuous, piecewise linear functions
vanishing on the boundary I' = 9f2.

2. THE MULTILEVEL PRECONDITIONERS

It is well known that in case of the standard conforming P1 approximation of linear second
order elliptic boundary value problems both Yserentant’s hierarchical basis preconditioner
[37] and the BPX-preconditioner are based on the fact that the hierarchy of finite element
spaces S10(€2;7), 1 < k < j, represents a nested sequence of subspaces of Hj(£2). This



property does not hold true in the nonconforming setting. In fact, the non-nestedness of
the sequence of Crouzeix-Raviart spaces C Ry ¢(€2; 7;), 1 < k < j, constitutes an inherent
difficulty for the development of appropriate multilevel preconditioners. A convenient rem-
edy to overcome this problem is to embed the nonconforming ansatz space C'Ry (€2 7;)
into an appropriate conforming finite element space and to construct a multilevel precon-
ditioner based on the associated hierarchy of conforming ansatz spaces (cf. e.g. [27, 28]).
In this paper, we will follow the same approach. However, in contrast to the technique
presented in [27], we will use an embedding that has been proposed by Cowsar [13] in the
context of domain decomposition methods for nonconforming P1 approximations.

We consider a fictitious triangulation 7,4, obtained from 7; by uniform refinement.
Obviously, the midpoints of the edges of 7; turn out to be vertices of 74, and conse-
quently, the nodal points with respect to C'R;(€2;7;) represent a subset of the nodal
points of S (€2;7;41). Following [13], we introduce a pseudo-interpolation operator

rt CRy1o(;7;) — S10(€;7,41) which is defined by means of its values in interior
vertices p of T;44

(Pety) (9) S (2.1)
crUj = r 2.1
i) (P i UZ] v;(mb), pE _7-+1 \ /\/l(;

Here, m?, € MY, 1 < v < v, denote the midpoints of those edges in £} containing the
interior vertex p € N7, \ M).

Lemma 2.1. (¢f. [13; Thm. 2.1]). Let P.yp be the linear mapping given by (2.1).
Then there exist constants 0 < vor < T'or depending only on «;, by, 0 < i <1, from (1.2)
and on the local geometry of Ty such that for all v; € CRy ((2; 7;)

Yerton (V,0;) < a(Pogvj, Porvj) < Topacy (v5,0;). (2.2)

Proof: In view of (1.2) and (1.7) it is sufficient to prove the existence of constants
0<v <T,,0<1i<1, depending only on the local geometry of 7, such that

%ZhQZv mi) < Y Z Porvy)* (pi) <Fth22v m) (2.3)

T€eT; 1=1 T€eTjq1 =1 1T€eT; =1

> h% 23: (Uj(mlc)*”j(ml))2 < X i (Porvj(pr) — PCRUj(pl)>2

T K TeTim Kig
3 9 , 3 ) (2.4)
S % (Ponty(r) — Porty()) < T X 03 S (u(me) — vmn)?.
T€eTj41 k/;l<:z] TeT; klél<:l]

Since MY C N}, and (Perv;) (p) = v;(p), p € M}, the lower bounds in (2.3) and (2.4)
are readlly established. For the proof of the upper bound in (2.3) let T € 7,41 and
p € N}, NdT. Observing (2.1), we only have to consider the case p € N7, \ MJ. By
the Cauchy-Schwarz inequality it follows that

Vp

W (Pexv;)” (p) < L > vi(my).

UP v=1



Taking into account the local quasiuniformity (1.5) of 7; and v, < k; which is a conse-
quence of (1.6), we conclude by summing over all triangles T € 7, ;. The proof of the
upper bound in (2.4) follows the same line of arguments. O

By means of the previous result we may identify P.,CR;¢(£2;7;) with a closed sub-
space of Sy o(£2; 7;41). This enables us to use appropriate multilevel preconditioners with
respect to the hierarchy of nested conforming ansatz spaces S1(€2;7;), 0 <k <j+1. In
particular, we consider both Yserentant’s hierarchical basis preconditioner C},, and the
BPX-preconditioner Cypx (for a detailed discussion of these preconditioners cf. e.g. [6],
8], [10], [14], [36], [37]). Since we want to apply the preconditioners in the framework of
the nonconforming P1 approximation, we define Ig : Sy (2 7;41) — CRy0(Q;7;) as the
pseudo-inverse of Pyy by (Igvj41) (m) := vj11(m). m € MJ. We then obtain the desired
‘nonconforming’ preconditioners Ny, and Ny by setting

BPX BPX

N, )\ =150, I% N\ = 1sC,} Ik (2.5)
where [ stands for the adjoint of Ig.

We note that in algebraic terms the operator Is represents a rectangular matrix
of the form (Id,0). Consequently, the evaluation of Ijv;, v; € CRy(Q;7;), does not
require additional arithmetical operations. Altogether, the computational complexity is
the same as in the conforming case except that we are dealing with the additional level
j—+1. As far as spectral condition number estimates of the preconditioned stiffness matrix
are concerned, the special construction of the preconditioners N, , and N,y enables us
to take advantage of the corresponding results in case of the standard conforming P1
approximation. In particular, denoting by A, the stiffness matrix associated with the
conforming P1 approximation of (1.3) with respect to Sy (€2; 7;41), there exist constants
0 <Ay < Aypand 0 < A\gpx < Agpx depending only on «a;, b;, 0 <7 < 1, in (1.2) and
on the local geometry of 7y such that for all v € Sy o(€2: 7;41)

(;‘j{’—Q’}a(v,v) < a(CrlApv,v) < Agga(v,v),

Apx@ (0,0) < a(CLL Arv,v) < Agpxa(v,v).

BPX

(2.6)

The condition number estimates (2.6) have been established by various authors (cf. e.g.
8], [14], [15], [24, 26, 28], [36], [37], [38], [39]). For the proof one may either rely on the
Dryja-Widlund theory of additive Schwarz methods [16] or one may use Nepomnyaschikh’s
fictitious domain lemma [22, 23] as has been done by Oswald in [24]. In the nonconforming
setting under consideration, analogous estimates can be easily derived by means of the
following abstract version of the fictitious domain lemma.

Lemma 2.2.  Given two Hilbert spaces S, V' with inner products (-,+)s and (-, )y,
letag: S xS — R and a, : V XV — R be symmetric, positive definite bilinear forms
with associated operators Ag : S — S and A, : V. — V. Assume that there exist a
linear operator R : V. — S, an operator T : S — V and constants 0 < ¢q < ¢ such
that

RTv = v, wveES, (2.7 a)
coay (Tv, Tv) < ag(v,v), wv€ES, (2.7 D)
as(Rv, Rv) < ciay(v,v), veV. (2.7 ¢)

Then there holds
coas(v,v) < as(RA,'R*Agv,v) < cras(v,v) (2.8)



where R* : S — V denotes the adjoint of R given by means of (Rv,w)s = (v, R*w),,
veV,weS.

Proof: cf. e.g. [23]. O

Now, if we specify the Hilbert spaces S, V, the bilinear forms ag, a,, and the operators
R, T according to the nonconforming setting and use (2.6), we are able to prove the
following spectral condition number estimates:

Theorem 2.1. Let Ny, and Ngpx be the ‘nonconforming’ preconditioners given
by (2.5). Then there exist constants 0 < Ypp < Ipp and 0 < ygpx < Dypx depending
only on «;, b;, 0 < i <1, from (1.2) and on the local geometry of Ty such that for all
v € CRy (N T;)

(_71{—2'320,03 (v,0) < aer (N, LAcrv,v) < Thpacy (v,v),
<

TepxUcr (Uu U) Aor (N;;XALU, U) < DI'gpxlcor (Uu U)

(2.9)

where Acr @ CRyo(2;7;) — CRy14(;7;) is the operator associated with the bilinear
form acy (-, -).

Proof: We apply Lemma 2.2 with S = CR; (% 7;), V = S10(2;7j51), as = acp,
ay =a and R = Ig, T = Pgg. Obviously, IsPopv = v, v € CRy (€ 7;), so that (2.7 a)
is satisfied. Moreover, from Lemma 2.1 it follows readily that (2.7 b) holds true with
co = L. Finally, as far as (2.7 ¢) is concerned, for v € Sy (;7;11) we get in view of

(1.2), (1.4) and (1.7)

3 3
aor (Isv, Isv) < Oy % (Isv(m;) — Isv(m;))* +b,Cy 3 h > (Isv(m;))?

TET; =1 TeT; i
3 3
= ,C ¥ ¥ (v(mi) —v(m;))” +bCy ¥ b2 S (v(m))?
TET; 1= TeT; =1
3 3
< ml 22 () - up) +hCo S g S (0(p)’
TG'Z}‘+1 7';]<:j] TG'Z}‘+1 =1

< ooy ' Cilulig +bicy ' Collvllq < Tsa(v, v)

where I'g := - (—O”C] + nColr (’:%CP

(67 c1

). Now, Lemma 2.2 implies
F;}%am (v,v) < acp (ISAZIIL;A(;RU, v) <Tgacr (v,v), veE CRH(QT;).

The assertion then follows from (2.6) with the constants given by vu5 := U2  A\gs, Vepx =
FE}]?)\BPX and I'yp := DgAyg, Tgpx = IgAgpx O

3. ERROR ESTIMATOR BASED ON LOCAL SUBPROBLEMS

Reliable and efficient a posteriori error estimators are an indispensable tool for efficient
adaptive algorithms. We refer to the pioneering work done by Babuska and Rheinboldt
[1, 2] and the recent survey articles by Bornemann et al. [7] and Verfiirth [32, 33]. In this
section we will focus on an element-oriented error estimator which is based on the solution
of local subproblems. In the standard conforming setting this kind of error estimator is
due to Bank and Weiser [5]. It relies on a defect correction with respect to the higher order
ansatz space of continuous, piecewise quadratics and an appropriate localization based on



a hierarchical two-level splitting. However, in contrast to the standard conforming set-
ting we have to take into account the discontinuity of the nonconforming approximation.
This will be done by means of an additional error term involving an appropriate quasi-
interpolation operator. It turns out that the estimator can be computed elementwise by
the solution of three scalar equations representing a localized defect correction problem
and by the evaluation of that quasi-interpolant (cf. [18], [34] and [35]).

In the sequel, we will need the jump [v]; and the average [v]4 of a function v along
an edge of the triangulation. Denoting by e the common edge of two adjacent elements
T;, and T,, and by n, the unit normal on e directed towards the interior of T,,, we define

TP’I‘) ‘P’
vl ) e

[W]sle = (v
[oale = 3 (vl

Moreover, if e C 9T;, N 1", we set

Tim — U

1
[wlsle = (lr) e [olale := 5 (vlr,) e
Throughout the rest of this section we assume that the solution u of (1.3) lives in H?(Q)N
H;(©) and satisfies [n. - aVu], |. =0, e € &\
The construction of the error estimator is based on the following saturation assump-
tion

1/2
llw = uqll; + (Z /[ne -aV(u— uQ)]ida) < Oflu—ull;, 0<p<1 (3.1

eefj e

where u, stands for the continuous, piecewise quadratic finite element approximation of
(1.3). This saturation assumption is supported by well known a priori error estimates.
In particular, if v € H?*(Q) the conforming finite element solution u, does provide an
approximation of u of order O(h?) whereas the nonconforming solution u; approximates
u only of order O(h) (cf. [12]).

In a first step, we consider the linear functional F: S{&(Q 7,) — R, defined as

Z/f L(u;) vdT—Z/ -aVi | v a do,

TeT; ec&j e

where ; stands for the nonconforming approximation obtained by the iterative solution
process as described in section 2 and S{S(Q 7,) denotes the space of piecewise quadratic
functions vanishing on the boundary I'.
Since F' does not take into account the discontinuity of ;. we introduce a modified linear
functional

F(v) == F(v — PLv) + acy (Psii; — i, v)

where P;, and Ps are appropriately defined operators.
In particular, Py : Si&(Q; 7,) — Sf&(Q 7,) is given locally as the Lagrangian interpola-

tion operator
3

Prolp == vlr(p)tir, v € Syy(%T;)

i=1
where S[é(Q; 7,) is the space of piecewise linear ansatz functions vanishing on the bound-

ary I' and ¢, r, 1 < i < 3 stand for the local nodal basis functions of P, (7). Obviously,
the operator Pp has the following three properties:



(i) There exists a positive constant 7y, independent of the refinement level j such that

IPLojlll; < vellvsll;, v € Sy(T);

(i) Pru; € C(Q) for v; € Sy4(2T) N C(Q);
(iii) Prv; = v; for v; € Sy (2 T;).
Due to (i), (ii) and (iii) we obtain

aon (v — Pro,w) < n?llo — Ppoll;|lwll;, v € Sog(T), w e Sip(2:T)) (3.2)

where n? ;= ¥Y—t— < 1. For a detailed proof see [18].

On the o’rher hand, the operator Ps : CRyo(;7;) — S10(2;7;) will serve as a
measure for the discontinuity of the nonconforming finite element functions. For this
purpose we choose the quasi-interpolant as proposed by Oswald in [27].

0, peN;

Psv)(p) = Yr 3.3
PO F 0 80 el 33)
where v, is the number of triangles T; € 7; containing p as a vertex. It is easy to see that
Psv = v if and only if v is continuous and satisfies the homogeneous Dirichlet boundary
conditions.

Now, if we define e € S, O(Q 7,) as the solution of the following variational problem

o (e,v) = F(v), v € S;(2T;),

e gives sharp lower and upper bounds for the total error v — ; provided the iteration
error 4; — u; is small enough. We remark that, if b|; = 0 on an interior triangle T' € 7;,
then e|r is not uniquely determined. To obtain uniqueness we require that e|r satisfies

/e dx = / (Psti; — 1) da. (3.4)

T T

It is easy to see that e can be calculated locally as the solution of an at most 6 x 6 linear
system:

aorlr (€,v) = Fr(v — Ppov) + acg|r (Psty; — i,v), v € Py(T),
where Py(T) := {v € Py(T)| v|sanar = 0}. Again, we require (3.4) in case bl; = 0,
TeT,NA.
The definition of the local functional Fr, T € 7.

Fr(v) = (f,v)or — acalr (4;,v) + > / -aViglavlrdo, v e Syp(T)

e€t;
PC@’T‘ ¢

is consistent with the global definition of F(-) in the sense that F(v) = YreT, Fr(v),
v € Sy (0 T)).

Lemma 3.1. Under the saturation assumption (3.1) there hold

= a]ll; Cr(llell; +Tulla; — ujll;)

= (3.5)
lu—all; > el -l - wll,)



where ¢;, C; and v, 'y are positive constants independent of the refinement level j.

Proof: cf. [18]. O

Lemma 3.1 states that e provides sharp lower and upper bounds for the energy norm
of the total error if the iteration error is small enough. But e is only of academic interest
and has no practical importance, because the computational amount is too expensive.
The rest of this section is devoted to establish an error estimator which requires less
computational work. For this purpose, we first consider the elliptic projection of the
so-called continuous part of e|; onto the three-dimensional subspace of quadratic bubble
functions associated with the midpoints of the edges. In a second step, we neglect the
coupling between the bubbles and obtain three scalar equations to solve.

We define é as the solution of

aer (€,0) :F(U—PLU), v E 558(9,77) (3.6)
and
/édw =0,
T

if b|y = 0 on an interior element 7' € 7;. Then, it is easy to see that é = e + @; — P,
and
llell5 = Mell; + i — P 5. (3.7)

Now, we will concentrate on the construction of an adequate replacement of ¢ which can
be obtained by the solution of scalar equations. We decompose Sié(Q; 7,) into the direct
sum of S (€2 7;) and the hierarchical surplus S, 3 (2 7;) == {v € S, (% T;)| Prv = 0}.
Based on this splitting, we obtain € € g{(])(Q, 7,) as the uniquely defined solution of

acrlr (6,v) = FT(U), vE 5{&(9,’]’7) (3.8)
The following lemma shows the equivalence of ||é]|; and |[[é]|;-

Lemma 3.2. Let é, € be given by (3.6) and (3.8), respectively. Then there holds

1

|MW§W%§ajﬁWﬂ%¢

Proof: In view of

~ ~

aer (6,0) = F(v) = F(v — Ppv) =acp(é,v), vE€ S{UI(Q,Z)

it follows that ¢ is the elliptic projection of é onto S;(2;7;) whence [|&]l; < [é]l;-
Hence, only the second inequality remains to be shown. For that purpose we decompose
¢ according to é = (é — Pré) + Pré. By means of (3.6) we obtain

acr (6, Pré) =0,

vielding acp (PLé, Pré) = —acp (Pré, é — Pré). Using (3.2) it follows that

el = aon (6 — Pré,é — Pré) + acp (¢ — Pré, Pré)
> [l — Prell; (e — Prefl; — n*l[Prel;)
> (L=n*)lle = Prell3.



Altogether, we get

\H@H\f = acp (6,6 — Pré) = acy (6,6 — Pré)

< mmém]‘ lletl-

O

The local 3 x 3 stiffness matrices of the variational problem (3.8) are spectrally equiva-
lent to their diagonal matrices. Note, that the constants are independent of the refinement
level and only depend on a;, b;, 0 < i < 1, in (1.2) and the local geometry of the initial
triangulation. We define ¢1T = w;P. |7, 1 <i <3, where w; € R is given as

FT(¢61:)
aOR‘T (d)em ¢ei)

and ¢., denote the quadratic bubble functions associated with the edges e;, 1 < i < 3.
Due to the spectral equivalence we obtain

wW; =

cllle]

3
i <Y vl < Cllellr. T eT;, (3.9)
=1

with some constants 0 < ¢ < C independent of the refinement level j. In view of the
preceding results we are led to the following error estimator e':

() = %%@m?

()" = Tl

G+ ity — Py

2
JiT

The following theorem states that e is an efficient and reliable error estimator, if the
iteration error u; — ; is small enough.

Theorem 3.1. Under the assumption (3.1) there exist positive constants ¢;, C; and
1, 'y independent of the refinement level j such that

Co (e + Tuflluy — il ) -

lluw —a;l; <
lu—all; > & (e = Al — ;)

(3.10)

Proof: The theorem is a direct consequence of Lemma 3.1, Lemma 3.2, the orthog-
onality relation (3.7) and the equivalence (3.9). O

The computational amount for ¢’ is significantly less than that for [ e[|;. We only have
to solve three scalar equations per element and to take into account the discontinuity of
@; which is taken care of by the additional term ||Pst; — a;]|;-

4. NUMERICAL RESULTS

In this section, we will illustrate the adaptive refinement process and the performance
of both the multilevel preconditioners and the error estimator by numerical results for
two selected test problems. Further, we will document the application of the adaptive
algorithm in semiconductor device simulation and in reactor kinetics.



As test examples we have chosen the following model problems from [21] where the
solutions exhibit singularities of different order.

Problem 1a (reentrant corner). We consider the Laplace equation on the L-shaped domain
Q= (-1,1) x (=1,1) \ (0,1) x (=1,0). In polar coordinates the solution is given by

u = r?/3gin (%)

Problem 1b (slit domain). The Laplace equation is considered on a hexagon with a slit

along the line y = 0 and 0 < x < 1 (cf. Figure 4.2). In polar coordinates the solution is

given by u = r'/*sin (g)

Starting from the initial coarse triangulations as shown in Figures 4.1, 4.2, the dis-
cretized problems have been solved by the adaptive multilevel algorithm as described in
the preceding sections. In particular, on level £ + 1, 0 < k < j — 1, the startiterate
i, is obtained from the computed solution @y on level k by means of the prolongation
@y (m) =1 (|7, (m)+ g7, (m)) where m € M), is the midpoint of the common edge
of two adjacent triangles Ty, Ty € 7T;1. The iteration on level k£ + 1 has been stopped
when the estimated iteration error 41y satisfied ¢, < pe; N]Zi] where ¢, denotes the
estimated error on level k, N, the number of nodes on level & and u is a safety factor
which has been chosen as y = 1.E — 2. For the adaptive refinement process we have
used the meanwhile standard technique due to Bank et al. [4] with a slight modification.
Instead of the simple mean-value strategy we have taken into account the area of the
triangles which results in some kind of an extrapolation strategy. A triangle T" € 7} has
been marked for refinement if

() . S ()

T~ 19 rez,

where |T|, |Q| stand for the area of T and Q, respectively, and 7 = 0.95. Finally, the

Level 0, N =13 Level 9, N = 6141

Figure 4.1: Initial triangulation 7y and final triangulation 75 (Problem 1a)

refinement process has been stopped when the ratio of the estimated error and the norm
of the iterative approximation was less than the required accuracy TOL times a safety
factor a. In particular, we have chosen TOL = 2.75FE — 2 (Problem 1a), TOL = 2.75E — 1
(Problem 1b) and o = 0.98.



Figure 4.1 and Figure 4.2 represent the initial and final triangulations for Problem 1a,
1b We observe a pronounced refinement in the vicinity of the reentrant corner (Problem
) and the origin (Problem 1b).

JAVA
VAV

Level 0, N =13 Level 11, N = 9160

Figure 4.2: Initial triangulation 7, and final triangulation 7;; (Problem 1b)
Figure 4.3 and 4.4 display the number of multilevel preconditioned cg-iterations as a
function of the total number of nodes thus illustrating the performance of the precondi-

tioners.
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Figure 4.3: Performance of the preconditioners (Problem 1a)
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Figure 4.4: Performance of the preconditioners (Problem 1b)



The results for the BPX-type preconditioner are in accordance with the theoretically
predicted O(1) behavior (cf. Theorem 2.1). On the other hand, for both problems the
hierarchical basis type preconditioner exhibits the same asymptotic behavior which is bet-
ter than the theoretically expected quadratic growths in the number of refinement levels.
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Figure 4.5: Behavior of the efficiency index

Figure 4.5 shows the efficiency index 7 := 2=t — 1 as a function of the total number
of nodal points where €.5; and €., stand for the estimated and true error, respectively.
In both cases we observe a slight overestimation of the true error. We also note that the
error estimator is not asymptotically exact, i.e., the efficiency index does not converge to
zero as the total number of nodes goes to infinity.

The next example represents a slightly simplified benchmark problem from the Inter-
national Atomic Energy Authority concerning the computation of the neutron fluxes in a

light water reactor based on the two-group neutron diffusion equations.

—V(D1Vr) + (B +Z2)p1 = %VXI(EfICbl + Y 1a02),

4.1
—V(DyV ) + Xaapy — S0y = %VXQ(E,W@ + Xp209). )

Here ¢; denotes the neutron flux of the energy group 7 and D;, 1 < i < 2, are the asso-
ciated diffusion coefficients. A stands for the critical constant of the reactor (generalized
eigenvalue), v is the number of prompt neutrons and y;, X4, Xy, 19, 1 <7 < 2, represent
the fission spectrum of prompt neutrons and the absorption, fission and scattering cross
sections which are physical parameters. Note that we do not consider external sources
and scattering from the energy group 2 (slow neutrons) to group 1 (fast neutrons).

Dy D, Yat a2 szl Vzﬁ X1 | X2 | Y12
Region 1 || 2.0 | 0.300 | 0.0 | 0.010 | 0.0 0.0 1.0 { 0.0 | 0.04
Region 2 || 1.5 | 0.400 | 0.01 | 0.085 | 0.0 | 0.135 | 1.0 | 0.0 | 0.02
Region 3 || 1.5 | 0.209 | 0.01 | 0.400 | 0.0 | 0.135 | 1.0 | 0.0 | 0.02

Table 4.1: Parameters of the benchmark problem

For symmetry reasons, the computational domain can be chosen as the upper right
quarter of the cross section of the reactor core which is shown in Figure 4.6 along with the
associated boundary conditions. We consider two differently enriched regions (region 2,



3) and the light water reflector (region 1). The physical parameters for the three regions

are given in Table 4.1. For more details we refer to [30], [31].

. Region 1 (Reflector)

0 D Region 2

¢ =

D Region 3

Figure 4.6: Geometry of the benchmark problem

More specifically, we have applied the technique of

We have discretized (4.1) by a mixed finite element approach based on the lowest
mixed hybridization leading to an equivalent nonconforming discretization that has been

order Raviart-Thomas elements.

Figure 4.7: Neutron flux of energy group 1 (left) and 2 (right)



solved by the multilevel algorithm described in section 2. In particular, we have used an
outer/inner iterative method featuring a block Gauss-Seidel scheme as the outer iteration
and the multilevel preconditioned cg-iteration with the BPX-type preconditioner of section
2 as the inner iteration. The adaptive refinement of the triangulations has been realized
by an error estimator for the L2-norm of the neutron flux of the energy group 2 (for details
about that error estimator cf. e.g. [19]).

Figure 4.7 contains the adaptively generated grid (bottom) and a visualization of
the neutron fluxes of both energy groups along with a graphical representation of the
corresponding contour lines (top). We observe an accurate resolution of both the interfaces
between the different regions and of the layer within the reflector zone.

As another example of practical relevance we consider the numerical simulation of
a reverse biased pn-junction which is a specific microelectronic device that is used for
blocking purposes in technical applications.

Cp : Anode Electrode
Oxide )
G v
) w

Silicon

Cy : Cathode

D C

Figure 4.8: Scheme of a planar pn-junction

Figure 4.8 shows the simplified geometry of the device. In active mode a constant
negative voltage is applied to the anode whereas the other contacts (stop-electrode and
cathode) are kept voltage-free. At the pn-junction the electric field causes the electrons
and holes to move towards the n- and p-region, respectively. In this way, a depletion area
of ideally no carrier concentrations is created in a vicinity of the pn-junction so that there
is no flow of a current. The blocking ability of the device can be influenced by multistep
field plates and the placement of the stop-electrode (cf. e.g. [17]).

The problem can be formulated as a free boundary problem for a second order elliptic
partial differential equation

—div (V) = ¢D(1 — Sy — by, y,) (4.2)

where 1 is the potential of the electric field, € the electric permittivity, ¢ the elementary
charge, D the dopand profile, —1), the applied voltage at the anode and 6, , stands for
the Kronecker symbol. The boundary conditions are of Dirichlet type at the contacts and
of homogeneous Neumann type elsewhere. The free boundary is given by the interfaces
between the depletion area and the p- and n-region, respectively. In contrast to the
approach used in [20] we have tackled the problem by a front-tracking method based on
the nonconforming P1 approximation of (4.2). The resulting discretized elliptic boundary



Figure 4.9: Adaptive refined grid on level 6

value problems have been solved by the adaptive multilevel algorithm described in the
preceding sections. In particular, we have used the BPX-type multilevel preconditioner.

Figure 4.9 shows the adaptively generated final triangulation featuring a significant
local refinement in the vicinity of the multistep field plates and at the interface between
the silicon and the oxide where the electric permittivity has a jump discontinuity. Figure
4.10 below displays the distribution of the electric field in the area between the field plates
and the stop-electrode as well as the underlying triangulation.

=1000.00

>

I

Figure 4.10: Zoom of the distribution of the electric field
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