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Abstract. A dually nondeterministic refinement algebra with a nega-
tion operator is proposed. The algebra facilitates reasoning about total-
correctness preserving program transformations and nondeterministic
programs. The negation operator is used to express enabledness and
termination operators through a useful explicit definition. As a small
application, a property of action systems is proved employing the alge-
bra. A dually nondeterministic refinement algebra without the negation
operator is also discussed.

1 Introduction

Refinement algebras are abstract algebras for reasoning about program refine-
ment [18, 21, 22, 20]. Axiomatic reasoning can, in a certain sense, provide a sim-
pler reasoning tool than the classical set and order-theoretic frameworks [1, 5,
16]. Different classes of predicate transformers over a fixed state space form the
motivating models, but should not be seen as exclusive.

The first papers on refinement algebras, in our sense of the term, were von
Wright’s initial paper [21], followed by [22], which builds on the aforementioned.
In these papers von Wright outlines an axiomatisation with the set of isotone
predicate transformers as an intended model. He also proposes the introduction
of angelic choice as a separate operator in the algebra.

This paper proposes a refinement algebra that extends the original framework
with three operators: the angelic choice (as suggested by von Wright), angelic
iterative choice and a negation operator. Looking at the predicate-transformer
models, the negation operator demands that the set of all predicate transformers
be a model, whereas the iteration operator demands that the predicate trans-
formers be isotone (as a consequence of needing to establish the existence of fix-
points via the Knaster-Tarski theorem). To solve this conflict, we let the carrier
set be the set of all predicate transformers over a fixed state space and impose
isotony conditions on elements of axioms involving iteration. Taking one step
further, we also add ways of imposing conjunctivity and disjunctivity conditions
on elements. Thus one could say that the algebra we propose is an algebra in-
tended for reasoning about isotone predicate transformers, but having the whole
class of predicate transformers as a model.

⋆ Currently visiting Institut für Informatik, Universität Augsburg.



In the earlier frameworks, assertions were always defined in terms of guards.
In the framework we propose here, guards can also be defined in terms of as-
sertions. The guards and the assertions thus have equal status. Together with
von Wright we have investigated an enabledness and a termination operator in
refinement algebra [20]. The enabledness operator applied to a program denotes
those states from which the program is enabled, that is those states from which
the program will not terminate miraculously. The termination operator, on the
other hand, yields those states from which the program is guaranteed to ter-
minate in some state, that is, the program will not abort. In this paper, these
operators are defined in terms of the other operators as opposed to our earlier
work where they were introduced with an implicit axiomatisation. Thus, the
framework of this paper subsumes the one of [20].

Action systems comprise a formalism for reasoning about parallel programs [2,
4]. The intuition is that an action system is an iteration of a fixed number of
demonic choices that terminates when none of the conjunctive actions are en-
abled any longer. In the refinement algebra, an action system can be expressed
using the enabledness operator. An action system can be decomposed so that
the order of execution is clearly expressed; this has been shown by Back and von
Wright using predicate transformer reasoning [6]. In the axiomatisation of [20]
we were able to prove one direction of action system decomposition, but the
other direction seems to be harder. Using the framework we present here, both
directions can be derived quite easily.

When the negation operator is left out we obtain a dually nondeterminis-
tic refinement algebra for which the isotone predicate transformers constitute
a model. This means that no special conditions need to be imposed on the el-
ements to guarantee the existence of fixpoints. Also in this framework guards
and assertions can be defined in terms of each other. On the other hand, explicit
definitions of the enabledness and termination operators, upon which the proof
of action-system decomposition relies, seem not to be possible.

The following work can be traced in the history of this paper. Kozen’s ax-
iomatisation of Kleene algebra and his introduction of tests into the algebra has
been a very significant inspiration for us [12, 14]. Von Wright’s non-conservative
extension of Kleene algebra with tests was the first abstract algebra that was gen-
uinely an algebra for total correctness (it drops right-annihilation) [21]. It rests
upon previous work on algebraic program reasoning by Back and von Wright [6].
Desharnais, Möller, and Struth extended Kleene algebra with a domain opera-
tor [8], upon which Möller relaxed Kleene algebra by giving up right-annihilation
(as in [21]) and right-distributivity of composition. These two papers laid a firm
ground to the the developments in [20], where the enabledness and termination
operators were introduced. Angelic nondeterminism takes off in the theory of
nondeterministic automata and Floyd’s nondeterministic programs [10]. In the
context of program refinement, Broy and Nelson [15, 7], Back and von Wright [3],
and Gardiner and Morgan [11] are early names. The present paper extends an
earlier workshop version [19].
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The paper is set up as follows. First the abstract algebra is proposed and a
program intuition is given. Then a predicate-transformer model for the algebra
is provided, which serves as a program-semantical justification. After the model,
basic properties of the algebra are discussed. The third section extends the alge-
bra by guards and assertions. After this the termination and enabledness opera-
tors are introduced. Action systems are considered under the abstract-algebraic
view in Section 4. The final section before the concluding one, remarks on a
dually nondetereministic refinement algebra without the negation operator.

The purpose of this paper is not to provide more grandiose applications nor
to give a complete algebraic treatment; the purpose is to lay down the first
strokes of the brush, the purpose is to get started.

2 A dually nondeterministic refinement algebra with

negation

In this section we propose a dually nondeterministic refinement algebra with
negation, give a predicate transformer model, and have a glance at some basic
properties that should be taken into account.

2.1 Axiomatisation

A dually nondeterministic refinement algebra with negation (dndRAn) is a struc-
ture over the signature (⊓,⊔,¬, ; ,ω ,† ,⊥,⊤, 1) such that (⊓,⊔,¬,⊥,⊤) is a
Boolean algebra, (; , 1) is a monoid, and the following equations hold (; left

implicit, x ⊑ y
def

⇔ x ⊓ y = x):

¬xy = ¬(xy)

⊤x = ⊤ ⊥x = ⊥

(x ⊓ y)z = xz ⊓ yz (x ⊔ y)z = xz ⊔ yz

Moreover, if an element x satisfies y ⊑ z ⇒ xy ⊑ xz we say that x is isotone
and if x and y are isotone, then

xω = xxω ⊓ 1 xz ⊓ y ⊑ z ⇒ xωy ⊑ z

x† = xx† ⊔ 1 z ⊑ xz ⊔ y ⇒ z ⊑ x†y

hold. If x satisfies x(y⊓z) = xy⊓xz and x(y⊔z) = xy⊔xz we say that x is con-
junctive and disjunctive, respectively. Of course, conjunctivity or disjunctivity
implies isotony.

The operator ¬ binds stronger than the equally strong ω and †, which in
turn bind stronger than ;, which, finally, binds stronger than the equally strong
⊓ and ⊔.

Let us remark that the signature could be reduced to (⊓,¬, ; ,ω , 1), since the
other operators can be defined in terms of these. Some of the axioms could also
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be left out, since they can be derived as theorems. For clarity, we choose to have
the more spelled-out axiomatisation.

As a rough intuition, the elements of the carrier set can be seen as program
statements. The operators should be understood so that ⊓ is demonic choice
(a choice we cannot affect), ⊔ is angelic choice (a choice we can affect), ; is se-
quential composition, ¬x terminates in any state where x would not terminate
and the other way around, ω, the strong (demonic) iteration, is an iteration
that either terminates or goes on indefinitely, in which case it aborts; and †, the
strong angelic iteration, is an iteration that terminates or goes on indefinitely,
in which case a miracle occurs. If y establishes anything that x does and pos-
sibly more, then x is refined by y: x ⊑ y. The constant ⊥ is abort, an always
aborting program statement; ⊤ is magic, a program statement that establishes
any postcondition; and 1 is skip. A conjunctive element can be seen as facili-
tating demonic nondeterminism, but not angelic, whereas a disjunctive element
can have angelic nondeterminism, but not demonic. An isotone element permits
both kinds of nondeterminism.

2.2 A model

A predicate transformer S is a function S : ℘(Σ) → ℘(Σ), where Σ is any set.
Programs can be modelled by predicate transformers according to a weakest
precondition semantics [9, 5]: S.q denotes those sets of states from which the
execution of S is bound to terminate in q.

If p, q ∈ ℘(Σ) and S satisfies p ⊆ q ⇒ S.p ⊆ S.q then S is isotone. If
S for any set I satisfies S.(

⋂
i∈I pi) =

⋂
i∈I S.pi and S.(

⋃
i∈I pi) =

⋃
i∈I S.pi

it is conjunctive and disjunctive, respectively. There are three named predicate
transformers abort = (λq • ∅), magic = (λq • Σ), and skip = (λq • q). A predicate
transformer S is refined by T , written S ⊑ T , if (∀q ∈ ℘(Σ) • S.q ⊆ T.q). This
paper deals with six operations on predicate transformers defined by

(S ⊓ T ).q = S.q ∩ T.q

(S ⊔ T ).q = S.q ∪ T.q

¬S.q = (S.q)C

(S; T ).q = S.(T.q)

Sω = µ.(λX • S; X ⊓ skip)

S† = ν.(λX • S; X ⊔ skip)

where C is set complement, µ denotes the least fixpoint with respect to ⊑, and
ν denotes the greatest.

That our isotony condition of the axiomatisation actually singles out the
isotone predicate transformers is settled by the next lemma. Similarly it can
be proved that our conjunctivity and disjunctivity conditions single out the
conjunctive and disjunctive predicate transformers, respectively.
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Lemma 1. Let S : ℘(Σ) → ℘(Σ). Then S is isotone if and only if for all
predicate transformers T, U : ℘(Σ) → ℘(Σ), if T ⊑ U then S; T ⊑ S; U .

Proof. If S is isotone, then clearly T ⊑ U ⇒ S; T ⊑ S; U . Assume now that for
all predicate transformers U and T it holds that T ⊑ U ⇒ S; T ⊑ S; U . We show
that this implies that S is isotone. Indeed, suppose that p, q ∈ ℘(Σ) and p ⊆ q.
Then construct two predicate transformers I and J such that for any r ∈ ℘(Σ)
it holds that I.r = p and J.r = q. Since p ⊆ q, we then have that I ⊑ J . By the
assumption, this means that S; I ⊑ S; J , that is (∀r ∈ ℘(Σ) • S.I.r ⊆ S.J.r), or
in other words (∀r ∈ ℘(Σ) • S.p ⊆ S.q). Removing the idle quantifier, this says
exactly that S.p ⊆ S.q. ⊓⊔

With the aid of the above lemma and the Knaster-Tarski theorem, it is easily
verified that the set of all predicate transformers forms a model for the dndRAn

with the interpretation of the operators given as above.

Proposition 1. Let PtranΣ be the set of all predicate transformers over a set
Σ. Then

(PtranΣ ,¬,⊓,⊔, ; ,ω ,† , magic, abort, skip)

is a dndRAn, when the interpretation of the operators is given according to the
above.

2.3 What is going on?

The basic properties of the algebra differ from the algebras in [21, 20] in the
fact that not all operators are isotone any longer and that some propositions are
weakened.

The ; is not right isotone for all elements, but for isotone elements it is. In
fact, the isotony condition on elements says exactly this. All other operators are
isotone, except the negation operator which is antitone

x ⊑ y ⇒ ¬y ⊑ ¬x

This is to be kept in mind when doing derivations. The leapfrog property of
strong iteration (strong angelic iteration is dual) is weakened, but the decompo-
sition property is not. That is, if x and y are isotone, then

x(yx)ω ⊑ (xy)ωx (1)

is in general only a refinement, whereas

(x ⊓ y)ω = xω(yxω)ω (2)

is always an equality. If x and y are conjunctive, then (1) can be strengthened
to an equality [21].
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3 Guards and assertions

This section extends the algebra with guards and assertions, shows that they
can be defined in terms of each other, and provides an interpretation in the
predicate-transformer model.

3.1 Definitions and properties

First, some notation. If an element of a dndRAn is both conjunctive and disjunc-
tive, then we say that it is functional. A functional element thus permits no kind
of nondeterminism.

Guards should be thought of as programs that check if some predicate holds,
skip if that is the case, and otherwise a miracle occurs.

Definition 1. An element g of a dndRAn is a guard if

(1g) g is functional
(2g) g has a complement ḡ satisfying

gḡ = ⊤ and g ⊓ ḡ = 1
(3g) for any g′ also satisfying (1g) and (2g) it holds that

gg′ = g ⊔ g′

Assertions are similar to guards, but instead of performing a miracle when the
predicate does not hold, they abort. That is to say, an assertion that is executed
in a state where the predicate does not hold establishes no postcondition.

Definition 2. An element p is an assertion if

(1a) p is functional
(2a) p has a complement p̄ satisfying

pp̄ = ⊥ and p ⊔ p̄ = 1
(3a) for any p′ also satisfying (1a) and (2a) it holds that

pp′ = p ⊓ p′

It is easily established that the guards and the assertions form Boolean alge-
bras, since guards and assertions are closed under the operators ⊓,⊔, and ;.

Proposition 2. Let G be the set of guards and let A be the set of assertions of
a dndRAn. Then

(G,⊓, ; , ,̄ 1,⊤) and (A, ; ,⊔, ,̄⊥, 1)

are Boolean algebras.

From this we get the following useful fact, by verifying that g⊥⊔ 1 is the unique
complement of ḡ in the sense of (2g).

Corollary 1. For any guard g of a dndRAn, we have that g = g⊥ ⊔ 1.

We will also need the following lemma.
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Lemma 2. For any x in the carrier set of an dndRAn it holds that x⊥ and x⊤
are functional.

Proof. The first case is proved by

x⊥(y ⊓ z) = x⊥ = x⊥ ⊓ x⊥ = x⊥y ⊓ x⊥z

and the other three cases are similar. ⊓⊔

With the aid of the previous lemma, the guard and assertion conditions yielding
the following proposition are easily verified.

Proposition 3. Let g be a guard and let p be an assertion in a dndRAn. Then

ḡ⊥ ⊓ 1 is an assertion with the complement g⊥ ⊓ 1, and

p̄⊤ ⊔ 1 is a guard with the complement p⊤ ⊔ 1

We can now prove the following the following theorem.

Theorem 1. Any guard/assertion can be defined in terms of an assertion/guard.

Proof. Let G be the set of guards and let A be the set of assertions in a dndRAn.
We establish a bijection between the set of guards and the set of assertions. First
define ◦ : G → A by

g◦ = ḡ⊥ ⊓ 1

and ⋄ : A → G by

p⋄ = p̄⊤ ⊔ 1

Clearly, the mappings are well-defined by Proposition 3. Now, we show that they
are surjective and each other’s inverses, thus bijections. Take any g ∈ G. Then
(g◦)⋄ = g⊥ ⊔ 1 = g, by Proposition 3 and Corollary 1. Thus ⋄ is surjective and
is the inverse function of ◦. The case for ◦ is analogous. ⊓⊔

This means that the set of guards and the set of assertions can be defined in
terms of each other.

3.2 A predicate-transformer model

Consider the function [·] : ℘(Σ) → (℘(Σ) → ℘(Σ)) such that [p].q = pC∪q, when
p, q ∈ ℘(Σ). For every element p ∈ ℘(Σ) there is thus a predicate transformer
Sp : ℘(Σ) → ℘(Σ), q 7→ pC ∪ q. These predicate transformers are called guards.
There is also a dual, an assertion and it is defined by {p}.q = p∩q. Complement ¯
is defined on guards and assertions by [p] = [pC] and {p} = {pC}.
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It follows directly from the definitions that the complement of any guard is
also a guard, and moreover, that the guards are closed under the operators ⊓,⊔,

and ; defined in Section 2.2. If [p] is any guard, it holds that

[p].(q1 ∩ q2) = pC ∪ (q1 ∩ q2) = (pC ∪ q1) ∩ (pC ∪ q2) = [p].q1 ∩ [p].q2

for any q1, q2 ∈ ℘(Σ). Similarly one can show that [p].(q1 ∪ q2) = [p].q1 ∪ [p].q2,
so any guard is functional. Finally, it is easily verified that the axioms (g2) and
(g3) also hold when the guards are interpreted in the predicate-transformer sense
above. This means that guards in the predicate-transformer sense constitute a
model for the guards in the abstract-algebraic sense. A similar argumentation
shows that assertions in the predicate-transformer sense are a model for asser-
tions in the abstract-algebraic sense.

4 Enabledness and Termination

We here introduce explicit definitions of the enabledness and the termination
operators and show that, in this framework, the explicit definitions are equivalent
to the implicit ones of [20].

4.1 Definitions

The enabledness operator ǫ is an operator that maps any program to a guard
that skips in those states in which the program is enabled, that is, in those states
from which the program will not terminate miraculously. It binds stronger than
all the other operators and is a mapping from the set of isotone elements to the
set of guards defined by

ǫx = x⊥ ⊔ 1 (3)

To see that the operator is well-defined, note that x⊥ ⊔ 1 can be shown to be a
guard with

¬x⊥ ⊔ 1 (4)

as the complement.
In [20] the enabledness operator was defined implicitly similarly to the do-

main operator of Kleene algebra with domain (KAD) [8]. The next theorem
shows that, in this framework, the implicit definition found in [20] is equivalent
to the explicit definition above (in fact, as shown below only the two first axioms
of the implicit axiomatisation are needed). Note that a similar move could not
be done in KAD, since the explicit definition (3) relies on the lack of the right
annihilation axiom for ⊤.

Theorem 2. For any guard g and any isotone x in the carrier set of an dndRAn,
ǫx satisfies

ǫxx = x (5)

g ⊑ ǫ(gx) (6)
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if and only if

ǫx = x⊥ ⊔ 1 (7)

Proof. The first two axioms of ǫ can be replaced by the equivalence

gx ⊑ x ⇔ g ⊑ ǫx (8)

This can proved by reusing the proofs from [8]. Uniqueness of ǫx then follows
from the principle of indirect equality and (8). Then it suffices to show that the
right hand side of the explicit definition satisfies (5–6). This is verified by

(x⊥ ⊔ 1)x ⊑ x

⇔ {axiom}
x⊥x ⊔ x ⊑ x

⇔ {axioms}
x⊥ ⊔ x ⊑ x1 ⊔ x

⇐ {isotony}
⊥ ⊑ 1

⇔ {⊥ bottom element}
True

and

g ⊑ gx⊥ ⊔ 1
⇔ {Corollary 1}

g⊥ ⊔ 1 ⊑ gx⊥ ⊔ 1
⇔ {axiom}

g⊥⊥ ⊔ 1 ⊑ gx⊥ ⊔ 1
⇐ {isotony}

⊥ ⊑ x

⇔ {⊥ bottom element and left annihilator}
True

which proves the proposition. ⊓⊔

Moreover, in contrast to the domain operator of [8], the compositionality
property

ǫ(xy) = ǫ(xǫy) (9)

can be shown to always hold for the enabledness operator in a dndRAn (in [20]
this was taken as an axiom of ǫ):

ǫ(xy) = ǫ(xǫy)
⇔ {definitions}

xy⊥ ⊔ 1 = x(y⊥ ⊔ 1)⊥ ⊔ 1
⇔ {axiom}

xy⊥ ⊔ 1 = x(y⊥⊥ ⊔⊥) ⊔ 1
⇔ {⊥ bottom element}

xy⊥ ⊔ 1 = xy⊥ ⊔ 1
⇔ {reflexivity}

True
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Using the explicit definition, the properties

ǫ(x ⊓ y) = ǫx ⊓ ǫy (10)

ǫ(x ⊔ y) = ǫx ⊔ ǫy (11)

can be proved by the calculations

ǫ(x ⊓ y) = (x ⊓ y)⊥ ⊔ 1 = (x⊥ ⊓ y⊥) ⊔ 1 = (x⊥ ⊔ 1) ⊓ (y⊥ ⊔ 1) = ǫx ⊓ ǫy

and

ǫ(x ⊔ y) = (x ⊔ y)⊥ ⊔ 1 = x⊥ ⊔ y⊥ ⊔ 1 ⊔ 1 = x⊥ ⊔ 1 ⊔ y⊥⊔ 1 = ǫx ⊔ ǫy

respectively. From this, isotony of enabledness

x ⊑ y ⇒ ǫx ⊑ ǫy (12)

easily follows.
The termination operator τ is a mapping from isotone elements to the set of

assertions defined by

τx = x⊤ ⊓ 1

It binds equally strong as ǫ. The intuition is that the operator τ applied to a
program denotes those states from which the program is guaranteed to terminate,
that is, states from which it will not abort. Analogously to the enabledness
operator, it can be shown that x⊤⊓ 1 is an assertion with complement ¬x⊤⊓ 1,
so τ is well-defined. Moreover, using similar reasoning as above, it can also be
shown that τ can equivalently be defined as

τxx = x (13)

τ(px) ⊑ p (14)

That τ satisfies the properties

τ(x ⊓ y) = τ ⊓ τy (15)

τ(x ⊔ y) = τ ⊔ τy (16)

x ⊑ y ⇒ τx ⊑ τy (17)

can be proved as for enabledness.

4.2 A predicate-transformer model and a digression

In [5] the miracle guard is defined by ¬(
⋂

q∈℘(Σ) S.q) and the abortion guard by
⋃

q∈℘(Σ) S.q. Intuitively, the miracle guard is a predicate that holds in a state
σ ∈ Σ if and only if the program S is guaranteed not to perform a miracle, that
is S does not establish every postcondition starting in σ. The abortion guard
holds in a state σ ∈ Σ if and only if the program S will always terminate starting
in σ, it will establish some postcondition when starting in σ. When S is isotone
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the least S.q is S.∅ and the greatest S.Σ, so the miracle guard can be written
¬(S.∅) and the abortion guard S.Σ.

A predicate-transformer interpretation of ǫx is [¬S.∅], when x is interpreted
as the predicate transformer S. The termination operator τx is interpreted as
{S.Σ}. The enabledness operator and the termination operator thus correspond
to the miracle guard and the abortion guard of [5], respectively, but lifted to
predicate-transformer level. That the interpretation is sound is seen by the fact
that [¬S.∅] = S; abort ⊔ 1 and {S.Σ} = S; magic ⊓ 1.

The following is a slight digression. What we did above was to turn the
miracle and abortion guards into a guard and an assertion (in the predicate-
transformer and the abstract-algebraic sense), respectively, since predicate trans-
formers make up our concrete carrier set in this model. There is, however, another
way of lifting the miracle and the abortion guard to the predicate-transformer
which is closer to their original definition. This is done by setting the miracle
guard to be ¬S⊥ and the termination guard to be S⊤. This interpretation does
not, however, satisfy the the respective axioms of enabledness and termination,
so the connection to KAD is lost. Nonetheless, in certain applications the pos-
sibility to work with miracle and abortion guard without turning them into a
guard and an assertion could prove useful.

4.3 Expressing relations between programs

The enabledness and the termination operator can be used to express relations
between programs. We list here some examples of the use of the first-mentioned
operator. First note that ǫx is a guard that skips in those states where x is
disabled.

A program x excludes a program y if whenever x is enabled y is not. This
can be formalised by saying that x is equal to first executing a guard that checks
that y is disabled and then executing x: x = ǫyx. A program x enables y if y

is enabled after having executed x: x = xǫy. Similarly as above x disables y if
x = xǫy. The exclusion condition will be used in the application of the next
section.

5 A small application: action-system decomposition

Action systems comprise a formalism for reasoning about parallel programs [2,
4]. The intuition is that an action system dox1[] . . . []xn od is an iteration of a de-
monic choice x0⊓· · ·⊓xn between a fixed number of demonically nondeterministic
actions, x0, . . . , xn, that terminates when none of them are any longer enabled.
In dndRAn, an action system can be expressed as (x0 ⊓ · · · ⊓ xn)ωǫ(x0) . . . ǫ(xn)
where x0, . . . , xn are conjunctive. The actions are thus iterated, expressed with
the strong iteration operator, until none of them is any longer enabled, expressed
with the enabledness operator.

An action system can be decomposed so that the order of execution is clearly
expressed: if x excludes y, i.e. x = ǫyx, then

(x ⊓ y)ωǫx ǫy = yωǫy(xyωǫy)ωǫ(xyωǫy)
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Note that (xyωǫy)ωǫ(xyωǫy) is of the form zωǫz.
Action-system decomposition has been shown by Back and von Wright using

predicate transformer reasoning [6]. We now prove this axiomatically. We begin
by an outer derivation, collecting assumptions as needed:

(x ⊓ y)ωǫx ǫy

= {(2)}
yω(xyω)ωǫx ǫy

= {assumption}
yω(ǫyxyω)ωǫx ǫy

= {guards Boolean algebra}
yω(ǫyxyω)ωǫy ǫx

= {leapfrog, conjunctivity}
yωǫy(xyωǫy)ω ǫx

= {collect: if ǫx = ǫ(xyωǫy)}

yωǫy(xyωǫy)ω ǫ(xyωǫy)

The collected assumption is then, in turn, proved by two refinements. First we
refine the left term into the right by (setting z = yωǫy)

ǫx ⊑ ǫ(xz)
⇔ {definitions}

x⊥ ⊔ 1 ⊑ xz⊥ ⊔ 1
⇐ {isotony}

⊥ ⊑ z⊥
⇔ {⊥ bottom element}

True

and then the right into the left by

ǫ(xyωǫy) ⊑ ǫx

⇔ {definition}
xyωǫy⊥ ⊔ 1 ⊑ x⊥ ⊔ 1

⇐ {isotony}
yωǫy⊥ ⊑ ⊥

⇐ {induction}
y⊥ ⊓ ǫy⊥ ⊑ ⊥

⇔ {definition and (4)}
y⊥ ⊓ (¬y⊥ ⊔ 1)⊥ ⊑ ⊥

⇔ {axioms}
y⊥ ⊓ (¬y⊥ ⊔⊥) ⊑ ⊥

⇔ {⊥ bottom element}
y⊥ ⊓ ¬y⊥ ⊑ ⊥

⇔ {axiom}
(y ⊓ ¬y)⊥ ⊑ ⊥

⇔ {axioms}
True
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Using the implicit definition without the negation operator, the first refinement
of the assumption can also easily be proved [20], but the second refinement seems
to require some additional axioms for the enabledness operator (see below).

6 Leaving out the negation

This section contains some remarks on a dually nondeterministic refinement
algebra wihtout negation. The algebra was suggested by von Wright in [21, 22],
but without the strong angelic iteration. The negation operator with its axiom
is dropped and we strenghten the axioms so that all elements are isotone by
adding the axioms x(y ⊓ z) ⊑ xy ⊓ xz and xy ⊔ xz ⊑ x(y ⊔ z). The structure
over (⊓, ; ,⊤, 1) is thus a left semiring [17]. Dropping the negation means that
we no longer have a Boolean algebra, however we have a complete bounded
distributive lattice over (⊓,⊔,⊥,⊤). The spelled out axiomatisation over the
signature (⊓,⊔, ; ,ω ,† ,⊥,⊤, 1) is thus given by the following:

x ⊓ (y ⊓ z) = (x ⊓ y) ⊓ z x ⊔ (y ⊔ z) = (x ⊔ y) ⊔ z

x ⊓ y = y ⊓ x x ⊔ y = y ⊔ x

x ⊓ ⊤ = x x ⊔ ⊥ = x

x ⊓ x = x x ⊔ x = x

x ⊓ (y ⊔ z) = (x ⊓ y) ⊔ (x ⊓ z) x ⊔ (y ⊓ z) = (x ⊔ y) ⊓ (x ⊔ z)
x(yz) = (xy)z
1x = x

x1 = x

⊤x = ⊤
⊥x = ⊥
x(y ⊓ z) ⊑ xy ⊓ xz x(y ⊔ z) ⊒ xy ⊔ xz

(x ⊓ y)z = xz ⊓ yz (x ⊔ y)z = xz ⊔ yz

xω = xxω ⊓ 1 x† = xx† ⊔ 1
xz ⊓ y ⊑ z ⇒ xωy ⊑ z z ⊑ xz ⊔ y ⇒ z ⊑ x†y

Since the isotone predicate transformers are closed under union, they constitute
a predicate-transfomer model for the algebra under the interpretation given in
Section 2.2.

By examining the proofs of Section 3, it is clear that the results regarding
guards and assertions can be re-proved without the negation operator. On the
other hand, it seems to us that the enabledness operator cannot be cast in
the explicit form, since we cannot express the complement ¬x⊥ ⊔ 1 of x⊥ ⊔ 1
and this is needed for showing that x⊥ ⊔ 1 actually is a guard. Analogously,
the termination operator cannot be given an explicit definition either. Thus,
the operators have to be axiomatised along the lines of [20]. The termination
operator is axiomatized by

x = τxx (18)

τ(g◦x) ⊑ g◦ (19)

τ(xτy) = τ(xy) (20)

τ(x ⊓ y) = τx ⊓ τy (21)
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and the enabledness operator by

ǫxx = x (22)

g ⊑ ǫ(gx) (23)

ǫ(xy) = ǫ(xǫy) (24)

ǫ(x ⊔ y) = ǫx ⊔ ǫy (25)

The last axiom for ǫ was not given in [20], since in that framework angelic choice
is not even present. We conjecture that (21) and (25) are independent from the
other axioms of their respective operators.

In [20] it is noted that to prove action-system decomposition an additional
axiom for the enabledeness operator seems to be required: ǫx⊥ = x⊥. The
addition of the angelic choice operator does not seem to facilitate a proof. Due
to this, the proof of action-system decomposition does not follow as neatly as
when the negation operator is at hand. Dually, it is possible that τx⊤ = x⊤
needs to be postulated for some specific purpose.

The dually nondeterminisitic refinement algebra without negation thus gives
a cleaner treatment of iteration, but as a drawback the enabledness and the
termination operators start crackling.

7 Concluding remarks

We have proposed a dually nondeterministic refinement algebra with a negation
operator for reasoning about program refinement and applied it to proving a
rather humble property of action systems. The negation operator facilitates use-
ful explicit definitions of the enabledness and the termination operators and it
is a powerful technical tool. It is, however, antitone, which perhaps makes the
reasoning a bit more subtle. When dropping the negation operator, but keeping
the angelic choice, guards and assertions can still be defined in terms of each
other, whereas the enabledness and termination operators no longer can be given
explicit definitions.

Finding more application areas of this refinement algebra is one of our in-
tents. Applications that genuinely include angelic nondeterminism (here it only
comes into play indirectly via the definition of enabledness) is a field where the
algebra could be put to use. The strong angelic iteration and the termination
operator beg for application. A systematic investigation striving towards a col-
lection of calculational rules is yet to be done.
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