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Abstract. We study the following problem: How to verify Brillinger-mixing of stationary point processes
in R? by imposing conditions on a suitable mixing coefficient? For this, we define an absolute regularity (or
B-mixing) coefficient for point processes and derive an explicit condition in terms of this coefficient which
implies finite total variation of the kth-order reduced factorial cumulant measure of the point process for fixed
k > 2. To prove this, we introduce higher-order covariance measures and use Statulevi¢ius’ representation
formula for mixed cumulants in case of random (counting) measures. To illustrate our results, we consider

some Brillinger-mixing point processes occurring in stochastic geometry.

Keywords: Palm distribution, (reduced) factorial cumulant measure, Brillinger-mixing, higher-order covari-
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1 INTRODUCTION AND BASIC DEFINITIONS

Point processes (briefly PPs) are adequate models to describe randomly or irregularly scattered
points in some Euclidean space R? (often d = 1,2,3 in applications). Statistics of PPs is mostly
based on a single observation of a point pattern in some large sampling window which is assumed
to expand unboundedly in all directions, see Chapt. 4 in [17]. Provided the underlying PP model
is homogeneous (i.e. stationary) the asymptotic behaviour of parameter estimators and other em-
pirical characteristics can only be determined under ergodicity and (strong) mixing assumptions,
respectively. We encounter a similar situation in statistical physics, where stationary PPs are used
to describe limits of configurations of interacting particles given in a “large (expanding) container”,
see [12, 15].

Throughout, let ¥ := >.o,dx, ~ P denote a simple stationary PP on R¢ with distribution P
defined on the o-algebra A generated by sets of the form {1 € N : ¢(B) = n} for any n € NU {0}
and B € Bg (= bounded sets of the Borel-o-algebra B¢ in R?), where N denotes the family of locally
finite counting measures 1 on B% satisfying ¢({z}) < 1 for all z € R?. In other words, ¥ is a random
counting measure with random atoms {Xj;,7 > 1} of multiplicity one which nowhere accumulate.
Shortly spoken, ¥ is a random element defined on some probability space [2, F,P] taking values
in [N,N,P] with P = P o W™l Stationarity of ¥ ~ P means that T,V = > .o 0x,—0 ~ P



or, equivalently, that P({Ty% : ¢ € Y}) = P(Y) for any Y € N and all € RY, where T,¢(-) =
¥((-)+z). For an all-embracing and rigorous introduction to the theory of PPs the reader is referred
to [2]. Further, we define the reduced Palm distribution P, of ¥ ~ P by

(1.1) PL(Y) ::%//f(x) 1y (T — 69) b(da) P(de) for any Y €N,
N

where the intensity A := E¥(E,) is assumed to be positive and finite and f can be any non-negative,
Borel-measurable function satisfying [ f(x)dx = 1. Here and below, [ stands for integration over
R? and E, denotes the half-open unit cube [—1/2,1/2)? centered at the origin o = (0,...,0). Note
that the left-hand side of (1.1) does not depend on the choice of f due to the stationarity of ¥ ~ P
and the shift-invariance of the Lebesgue measure v4 on R%.

The stationary Poisson process ¥ ~ II, with intensity A > 0 is the most important PP model which
is defined by the following two properties:

1. P(¥(B) =n) = (n)"! (Ava(B))" exp{—Av4(B)} for n € NU {0} and B € B{ and
2. U(By),..., ¥(By) are mutually independent for any pairwise disjoint By, ..., By € BY, k > 2.

We recall that a stationary Poisson process ¥ ~ P = II, is characterized by the identity P} = P
(Slivnyak’s theorem), see Chapt. 13 in [2].

Next, we define the absolute regularity or S-mixing coefficient B(F1, Fa) to measure the dependence
between two sub-o-algebras F; and F3 of F by

I J
1
(1.2) BF1, o) =5 sup » Y |P(4;N B;) — P(4;) P(B)) ],
i=1 j=1
where the supremum is taken over all pairs of finite partitions {A1,...,Ar} and {Bi,...,Bs}

of {1 such that A; € Fy for each ¢ and B; € F3 for each j. This measure of dependence has
been introduced by Volkonskii and Rozanov [20] (to prove asymptotic normality of sums of weakly
dependent random variables) and later studied and used by many others, see e.g. [5, 7, 16, 21].

Our first result illustrates that (1.2) is the appropriate mixing coefficient (which is not replaceable
by the a-mixing coefficient, see [1, 16]) to estimate the distance between expectations w.r.t. P
and expectations w.r.t. P. In particular, it yields effective bounds of the total variation distance
between P, and P on the o-algebra N (G) = N N N(G) with N(G) = {¢ € N : (G°) = 0} for
sets G € B? being far away from the origin o. For any B € B?, put ¢5(:) := ¥((-) N B) and
Fy(B) :={¥U~Y : Y € N(B)} denotes the sub-o-algebra of F generated by the restriction ¥p of
the PP W on B € B9.

Theorem 1. Assume that the support F of the function f in (1.1) is bounded such that FN(GBF) =
0. Then, for any N -measurable function g|N — R and p,q > 1 satisfying p+q < pq, the bound

| [ oo (P - P)av)|
N

B =

(Eigg|9<<Tx‘1’>c>\q)3 (B(Fu(F), Fo(G @ F)) 77

(13) <= (B rx0))

i>1



holds, which remains valid for p =1 and q = oo, if g(1g) is bounded P-a.s. In particular, for any
60>0,

! ! e 14+6) 155
(1.4) YGS'}\l/’I()G) P (Y)—P(Y)| < Noa(F) (B(Fy(F), Fy(G® F))) ™ (E(U(F)) )T

2 FACTORIAL MOMENT AND CUMULANT MEASURES AND
B,-MIXING

Assume that E¥(E,)* < oo for some fixed k € N. The kth-order factorial moment measure ¥
(on [R%, BH*]) of ¥ = 3.5, 6x; ~ P is defined by

k
k # #
25)  oW(x B):=E Y " 1p/(Xy) - 15,(Xs,) :/ > [115.(2:) P(dy)
= i1 >1 N 1.,k Esupp(y) i=1
for any Bi,...,By € Bg, where the sum Z7£ runs over all k-tuples of pairwise distinct elements.
According to the general relationship between mixed moments and mixed cumulant, see [11] or [16],

the kth-order factorial cumulant measure is a locally finite, signed measure (on [R%, B%]) given
by

k J
k .
2.6 ®(x B):=Y (=17 — 1) 5)(By, , X -+ X By,
26  AW(x B) =Y (0= Y [[a" (B, x o x B,
7j=1 KiU--UKj=K i=1
for any By, ..., By € B, where the inner sum is taken over all decompositions of K := {1,...,k}
into j disjoint non-empty subsets Ki,...,K; and k; := #K; denotes the number of elements of

K; :={ki1,... ki, }. Further, note that P = II) implies a®) = Xk yy for k> 1 and vice versa,
and this in turn is equivalent to ’y(l) = Ayg and 7(’“) =0 for k > 2.

By stationarity of ¥ ~ P, it follows that both a®) and 4*) are invariant under diagonal shifts,
ie.
Rk k) (k ) ok
P2 B) =P Bire)) and X Bi) =P x (Bt a)

for any By,...,By € B‘bi and all z € R?. This enables us to introduce the (uniquely determined) re-
(k) (k)

duced kth-order factorial moment (and cumulant) measure o4 (and 7,.;) by disintegration w.r.t. vy

giving

=1

Bl Bl

a(k)(g B;) = A/aiﬁi(iEQ(Bi —z))dz and 'y(k)( >]2 B;) = )\/'yg()i(ii(Bi —z))dz.

By standard measure-theoretic arguments and using the uniqueness of aiﬁi and 75:217 it follows from
(2.5) and (1.1) that a(kc)l coincides with the (k — 1)st-order factorial moment measure w.r.t. P and

re
7r(§c)1 can be expressed by fy(k) as follows:

1
27) Y8 (Byx -+ x By) =

/ 1p(2) 1p,(z2 — 2) -+ 1, (xx — 2) YW (d(z, 22, ..., 28))
(Re)F



for any F € B‘bi with v4(F) > 0. In view of Jordan’s decomposition theorem, the signed measure

753:21 (on [R4F=D) BAE=1]) can be expressed as the difference of measures 'yg()f (positive part) and

(k)

Vreq (negative part) and the corresponding total variation measure \’yﬁfﬂ is then the sum of its
positive and negative part:

(k) _  (k)+ (k)— k) _ (B)+ (k)=
Tred = Tred — Vred and |’Yred = Vred + Vred -

(k)+

In view of the corresponding Hahn decomposition, the locally finite measures v,  and 'yr((];)f are

concentrated on two disjoint Borel sets H,:il and H,_, with H,:il UH, |, = (RYE=1. The total

variation Hyr(fc)lHTv of yr(fc)l can then be expressed by

k k _ k k)— _ k k _
I v = (R = A% F () +48 () = &) - A8

Definition. (see e.g. [6, 10]) A simple stationary PP WV ~ P satisfying EV(E,)F < oo for some
integer k > 2 is said to be By-mizing if ||’y§g()1\|Tv < oo forj=2,...,k. The PPV ~ P is called
Brillinger mixing if it is By-mizing for all k > 2.

To formulate our main result we need assumptions on the decay of dependence between the restric-
tions Up, and Wpe, of the PP W for large r, where F, = [—a, a]? and F¢ := R?\ [~a,a]? for
a>0.

Theorem 2. Let ¥ ~ P be a simple stationary PP on R®. Assume that there exists a non-increasing
B-mizing rate By|[1/2,00) + [0, 1] such that

ayd—1
(2.8) B(Fu(Fy), Fo(FE,,)) < max {1, ;} Bo(r) for ar>1/2.

Then V¥ ~ P is Bi-mizing for some k > 2 if additionally
(2.9) EV(E,)*? < 0o and /T(k_l)d_l By (1)) dr < 0o for some § > 0.
1

In the particular cases k = 2 and k = 3 condition (2.8) is only needed forr >a>1/2.

Corollary 1. Assume that EV(E,)* < oo for all k € N. Further, let the B-mizing rate in (2.8)
satisfy the bound By(r) < e 90) for r > 1/2, where the function g|[1/2,00) +— [0,00] is non-
decreasing such that g(r)/logr — oo. Then ¥ ~ P is Brillinger-mizing.

r—00

3 HIGHER-ORDER COVARIANCE MEASURES AND A
COVARIANCE INEQUALITY

~@)
In this section we derive a representation of v*) in terms of higher order covariance measures ¢
Such representations of higher-order mixed cumulants Cum,, (Y, ..., Y;, ), see e.g. [11], of (discrete-

—~

time) stochastic processes {Y;,t € N} in terms of higher-order covariances E Y} Y}, - - - Y}, have been



introduced in the early 1960s by V. A. Statulevicius first to prove large deviations relations for sums
of random variables connected in a Markov chain and later for other types of weakly dependent
random sequences, see [16] for a survey of these results. In [3] the equivalence of the original
with the following recursive definition of the kth-order covariance ]f?: Y1Y5---Y), has been shown:
E Y; = EY; and

— k—1 —

EYiYs Y 1:EY1Y2"'Yk—ZE VYo Y; EYjy--- Yy

j=1

for k > 2. By induction on k € N it follows that E Y, Ya--- Y, =E Yj--- Y3 Y.

In analogy to these higher-order covariances of random variables we introduce the kth-order (fac-
~(k) ~(1)
torial) covariance measure ¢ of ¥ ~ P by recursion: ¢ (B;) := oY (B;) = E¥(B;) and

N

~(k) ®) —\ ~0) (b—i)
(310) C (le--'XBk)::Oé (Bl><"'><Bk)— C (Bl><'-'><Bj)Oé ](Bj+1><~~~><Bk)

j=1

for any By,..., By € Bg and k > 2. Note that a(%) as well as the signed measure v*) are completely
~(k)
symmetric in their arguments while this is not true for the signed measure ¢ , but the relation
~(k) & ~(k) K ~(1) ~(k)
¢ (x Bj) =C (X Bg_;y1) holds. It is easily seen that ( = Aygand ¢ =0 for k > 2
i=1 i=1

~(k)
yields a further characterization of ¥ ~ II,. The total variation of the signed measures {  in case

of renewal processes on R! has been studied in [9]. For such type of one-dimensional stationary
PP we have By (r) rjo 0 if and only if the distribution of the typical inter-renewal time possesses a
convolution power with an absolutely continuous part, see [13]. Rates of decay of By (r) have been
obtained in [4].

~(1)
For any stationary PP W ~ P the first-order measures (), v and ¢ coincide with A v4, and we

~(2)
have (2 =¢ . For k = 3 and any By, Ba, B3 € BY, the above definitions (2.6) and (3.10) give

’)/(3)(31 X B2 X Bg) = a(g) (Bl X B2 X Bg) — Oé(l)(Bl)Oé(Q)(BQ X Bg) — a(l) (BQ)OZ(Q)(Bl X Bg)

— o W(B3)a®(B; x By) +2aM (By) oV(By) aM (Bs),
~(3)
C (Bl X B2 X Bg) = a(g) (Bl X B2 X Bg) — Oé(l)(Bl)Oé(Q)(BQ X Bg)

— o (By x By) oM (Bs) + oM (By) aM (By)aM (Bs)

(3.11)
o ~®) SO
YW (B1 x By x B3) =C (B1 xBayxB3)— ( (B2) ¢ (B1xBz).

~(k)
For general k > 2, there are the following representations of ¢ and 7, see [16], p. 13, for the
case of random processes,

~(k) k . J
(312) ¢ (Bix--xBp)=)» (-1 > [T * By, 41 x - x By,)

j=1 O=ko<k1<---<kj=k i=1



and

b . ()
(313) A/ W(Bix-xBy) = (=171 Y Nj(Kp, K] ¢ (B x - x Bi)
7=1 K1U~~~UK]'=K =1
for any By, ..., B) € B where the inner sum is taken over all decompositions of K = {1,...,k}

into j disjoint non-empty subsets K1,...,K; and K; = {kj1,... ki, } with ki1 < -+ < k;,. We
always assume that k11 = 1. The non-negative integers N;(Ki,...,K;) depend on all the sets
Ki,...,K; and are positive if and only if either j = 1 (since N1(K) = 1) or for any ¢ = 2,...,j
there exists an £ € {1,...,j} such that k1 < ki1 < ky,, see p. 80 in [16], for a detailed description
and calculation of these numbers.

After some rearrangement on the right-hand side of (3.12) we are led to the following representation

~(k)
of the signed measure ¢
(3.14)
~(k) E ~(k=r)
¢ (Bix---xBy) :ZZ ¢ (Bix---xBp) Ay(Bpr1x---xBy) ¢ (Bry1 X -+ %X By)
p=0r=g+1

~(0)
with the convention that ¢  (Bgy1 X Bg) = —1 for k =0,1,... and

(3.15) Ay(Bpr1x---xBy) = a"™P(Byy1x---xB,)—a 9P (B, 1 x---xBy) "~ (Byy1x- - -x By)

for 0 < p < g <r < k. Formula (3.14) can be proved by induction on ¥ > 2 and 1 < ¢ < k-1
~(k

using the above recursive definition of { . The details are left to the reader.

~(k)
In order to obtain bounds of ¢ we need estimates of the covariances (3.15). We may rewrite

verbatim the proof of Lemma 1 in [21] to our point process setting leading to the subsequent bound
of a general covariance-type expression in terms of the S-mixing coefficient (1.2), see also [7].

Lemma 1. Let Vg, Wp be the restrictions of a simple stationary PP ¥ ~ P to Borel subsets
B,B' c R Furthermore, let ‘I/B and \IJB/ be independent copies of ¥ and Vg, respectively.
Then for any N'® N -measurable function f|N x N +— R! and for anyn >0,

< 2 (B(Fu(B), Fu(B)) T
X max { (EIf(Tp, Up)|"*) ﬁ» (Elf (T, Up)["™) ﬁ} :

|Ef(Tp,Up) —Ef(Up,Up)

In combination with Lemma 1 we will use several times the following result.

Lemma 2. Under the assumptions of Lemma 1 put B = Fl/QUU;]-:Q(Fl—i—zj) and B' = U?:qH(Fl—i—
zj) forsomeq=1,... k=1 and z9,..., 2 € Z2. If the function f|N x N + R admits the estimate
| f(¥Up, Up)| < W(F ) U(FL + 22) - W(F1 + 25) , then

l
max { (B| f(Vp, W) [57) 700, (B £ (@, U ) [17) 700 b < 20708 (BW(EQ)* D) ™7 for any > 0.



Proof of Lemma 2. By Hélder’s inequality and the fact that W(F/, \ Eo) = 0 P-a.s., we obtain

1k F
I1 (E\IJ(Fl + zj)’f““?))

Jj=2

1/k
B f(Up W) |7 < (B (E) ) .

Together with BW(F) + z;)F 4 = EW (1)) < 2k000) B (B for j = 2,k it is
easily seen that
E| f(\Iij ‘IIB’) ‘1+77 < Q(kil)d(lJrn)E‘I’(Eo)k(lJrn).

The same upper bound can be shown for E| f(¥ g, ¥/ [**" which completes the proof of Lemma
2. O

4 THE SPECIAL CASES By- AND B;3-MIXING

Forany z = (21,...,24) € Zput E, := Eo+z = i [ 1/242;,1/24z;) and |z| := max{|z],. .., |zq|}
For k € {2,3}, Condition (2.8) is only needed for r > a > 1/2, which means that §(F(F,), ,7:(F§+T)) <
B (r) for r>a> 1/2 Since ’y(e()i = 045321 Avg with aged = [y (B P.(dy) and Avy(B) =
oM (B = [y¥(B)P(dy) for B € B¢, we may apply (1.3) Wlth F = Eo, G = E, for |z| > 2,
f(z ) = 1Eo( ) (1/1@) Y(E,NHY) —(E,NHy)and p=q =2+ 0§ and get the estimates

WANE) = A (E. 0 B =B (B. 0 H)

< ; (E‘I’(Eo)2+6 EV(E, ¢ E )2+6)L5 (B(Fu(Eo), Fu(E, © E )))%
dt1 , )
< 2)\ (E\IJ(Eo)2+5)_5(ﬁq;(‘Z|—3/2))_5 for |z| > 2.

The last line is a consequence of (2.8) and E, @ E, C F,

|Cz|71 UOF;|—1, where U(0F|;|_;) = 0 P-as.

due to the stationarity of ¥. From
(4.16) #{zeZ%: zl=m}=2m+ 1) - 2m -1 <2d2m+ 1) for meN

and (2.9) for k¥ = 2 we obtain immediately that \'yg()l\(Rd) < 00. This result has already been proved
by slightly different arguments in [7].

Next we derive a bound of \fyr(z’g\(Rd x RY) = 'yr(g’c)l(H+) fyr(z’g(HQ_). Using (2.7) for k£ = 3 and
F = E,, and (3.11) we find for any y, z € Z¢,

AVES&((EZJ x E;)N H2+) = ///1E0($)1(nyEz)mH; (xg — x, 3 — ) 7(3)(d(x,a:2,x3))
~(3)

(4.17) = ///1E0(a:)1(nyEz)mH;(a:2—m,ac3—x)C (d(z, x2,23))
~2)
—)\///1Eo($)1(Ey><EZ)mH2+(332—1‘71‘3—33)(11‘2 ¢ (d(z,x3))



The first term I; can be rewritten as

jo- / / / 15, ()15, i+ (22 — 2,23 — 2) 0@ (d(, 22, 23)) — A 0@ (B, x F.) 0 H)

- ///1150(3;) L, x iy (T2 — 2,23 — ) P (d(@, 22)) dag
+ A (@Y x aWY(E, x E.) N HY)

(4.18)
=E Z Ly (XY g, s pyng (Xj = Xis Xp, = Xi) = AP (B, x E.) 0 HY)
i,5,k>1
/EZ 1Eo E XEZ)ﬂH+(X Xi,l‘g—Xi) dl‘g—l—)\(a(l) X Oé(l))((Ey X EZ)HHQJF),

i,5>1

and the second term Iy becomes
I = )\//IEO(J:) g, By (z9 — z, x5 — @) dzo P (d(z, 23)) — A (aV) x a(l))((Ey x E,) N HY)

/EZ Li, (X)L, gy (2 — Xy Xp = X;) darz — A (@M x oY (E, x E,) N HY).
i,k>1

We have now to distinguish different cases according to the norms of y and z. The set Sy := {(y, 2) €
73 x 7% : |y| < |z|} decomposes into three disjoint sets S(l) ={(y,2) € S2: |yl <1,|2| < |y|+2},

SO = {(y,2) € St |yl > 2,12l <2Jyl}, and S = {(y,2) € Sy : |2 > max{2|y|+1, y|+3}}.

Since Sél) is finite with cardinality #Sél) = 5% 4 (37 — 1)(7¢ — 1), we need only a uniform bound
of (4.17). Replacing v in (4.17) by a® 4+ 2aM) x ) x oY) and the fact that X; € E, and
(X; — Xi, Xp —X;) € (BEy x E.)NHY imply X; E B @ Ey CFi+yand Xy, € Eo®E, CFi+ 2
yield the estimate

I — I, < o (Ey x (Fy +y) x (F1 + 2)) + 2)\3///1E0(3:) 1g,(z2 — z) 1p, (x5 — x) dog das dz.

By applying Holder’s inequality and the stationarity of W (like in the proof of Lemma 2) we obtain
that
I — I <22 EU(E,)? +2) =0 < .

For any pair (y,z) € Sg) we get the relations
L =Ef(Ye,, Y(r1ypuri+2) — Ef(YEy Y (F 4y)uri+2))

_)\/ [ngg(\yEo,\le1+y)—Eng(\Ion,\IIFHy) das
Fi+z

and

-[2 = )\ / [EhIQ(\PEc)? \IJF1+Z) - EhIQ({I\}Eou ‘/i}F1+Z) d$2 )
Fi+y



where U and Up are defined as in Lemma 1 with B = E, and B’ € {Fi+y,Fi+2z (FH+y) U
(Fy + 2)}, respectively, and

FYEe ¥ (ry ) U(Fi42)) ZZ 1, (Xi) L, x gy (X5 — Xi, Xp — Xi)
i>1 jk>1

SU(Eo) Y (Fy +y)VU(F + 2),

#*
9oy (Vs Uriy) = Y 1o (X) L ynmy (X5 — Xivws — Xi) < U(Eo)U(F +y),
ij>1

and

#
hay (U, Upyyz) = Y 15, (X5) L, sy (T2 = Xis Xp = X;) < W(Eo)¥(F1 + 2) .
i,k>1

Since ¥(0F;) = 0 P-a.s., the foregoing formulas with f, g, and hy, remain unchanged when F} is

replaced by the open square F{"* = (—1,1)?. In view of E, C Fy 9 and (Fint 4y U(Fint+2) C F‘Cy|71,

we may apply Lemma 1 and obtain together with Lemma 2 and (2.8) the following estimates:

_1 _1
1| < 2240 By ([y| — 3/2) T (BU(Ee)H7) T 4 Avg(Fy) 294 By (|y| — 3/2) 1 (BW(E,)*+21) T

and

(4.19)
L] < Ava(Fy) 2! B (2] — 3/2) 75 (B (Eo)>+27)

For n = §/3 the expressions on the right-hand sides are finite so that

Ayr(g’c)l+(Ey x E,) <|L|+|I2] < C2Bu(ly| — 3/2)% for some constant Cy > 0.

In case of (y,z2) € Ség) we swap the second and third term in (4.18), and may rewrite I as follows:

L= Ef(‘IlEoU(Fl—I—y)a ‘IJF1+Z) - Ef(‘IlEoU(Fl—I—y)a ‘IJF1+Z) - A Eg(‘IIF1+y7 \IJFlJrZ) - Eg(‘IIF1+y7 \IJFlJrZ) )

where

f(\IJEoU(Fl-I—y)) ‘IlFl-I—Z = Z Z 1E0 E XEZ)OH+ (X XZ)X]C - XZ)

4,j>1 k>1

and

9(Vrty, Vi) = ) Y, xmynmg (X5 Xa) -
Jk>1

In the same manner as above, the Lemmas 1 and 2 combined with (2.8) yield the estimate

1 1
L] < 2241 By (l2] = [yl — 2077 (BU(Ee)* 1) 750 + A2 By (2] — Jy| — 2) 77 (BU(Eo)>*>7) 7 .
The bound of I5 is the same as in (4.19) and therefore, by setting n = §/3, we arrive at

/\Vr(zc)lJr(Ey x E,) < ||+ |I2] < C3Bu(|z] — |y — 2)#55 for some constant C3 > 0.



®3)

Using the symmetry of the signed measure 7, ; we can summarize three cases for the position of
(y,z) € S9 and obtain that

AT () = 3 MO (B, x B.)nHS) <2 3 AET (B, x B.)nH)
y,2€Z% (y,2)€S2
_o L
<2(Ci#8" 4G Y0 Bullyl-3/255 + G 30 Bullzl -yl - 25 .
(y.2)eS3” (v.)es;”

By means of (4.16) some simple rearrangements show that

o0

S Bullyl—3/2)55 < 37 2d@m + 1) (2m + 2)d(4m + 1) By (m — 3/2) 5
(y,z)esf) m=2
and
S - 5 223
> Bullyl —3/2)55 <Y Ba(n—2)5 + (37 - 1) Zﬁqf n—3)3+
(y.2)eS n=3
+ 3" 2d@m+ )T ST 2d@n + 1) By(n —m —2)75,
m=2 n=2m+1

By condition (2.9) for k = 3 it is not difficult to see that VESAJF(H;) <Cs > nQd_lﬁ\p(n)%f‘ < 00
for some constant Cy > 0 depending on d, A, § and EW(F,)3t9. In the same way we can prove that
%(;O’C)l (H; ) < oo and thus |7red (R4 x R?) < 0o completing the proof of Theorem 2 for k = 2,3. [

5 PROOFS OF THEOREMS 1 AND 2
Proof of Theorem 1.

Let f|R? — [0,00] be Borel-measurable with bounded support F' and [ f(z)dz = 1. Since F N
(G® F) =, we have o ¢ G implying (1,9 — do)c = (Tx))q for all » € N. By applying the
Campbell-Mecke formula, see Chapt. 13 in [2], to the stationary PP ¥ ~ P we get the equality

/ / F(@) 9Tt — 60)) () P(de) = A / f(z)dz / 9(ta) PL(dw),
N F F

N
which combined with the simple Campbell formula
EY /(X //f 2) Ph) = A [ f()dz =
i>1 j

yields the relation

3 [ atwe) (P~ Pav) = [

N

F@)g((Tot) — 50)c) (d) P(deh) — A / / fl@ o) dz P(dv)
N F

F
=Eh \IJFa ‘IIG@F) Eh(@Fa ‘IIG@F) )

10



where the N’ ® N-measurable function h|N(F) x N(G @ F) — R! is defined by

WUp, Uaar) =Y  f(X )9((Tx,V)a) -

1>1

The independence of the restricted PPs U r and \IIG@ F, Fubini’s theorem, and the stationarity of
VU ~ P allow to write

(T, Gonr) = / / / fl &) o(dx) P(dy) P(dg)
N(GaF)
- / / £(z) p(dz) P(dy) / 9() P(dy) = A / 9(bc) P(di).
N F N N

A straightforward application of Lemma 1 yields the estimate

A( /ng) (P} — P)(dv) ( <2 max{(E\h(\yF, WG@F)|1+77)$7 (E[h(Tp, @G@F”un)ﬁ}

% (B(Fa(F), Fo(G& F))) "™ forany n>0.

Further, for any p,q € [1, 00| satisfying Il] + % = we employ Hoélder’s inequality to show that

1
T
(Blhwr wour)| ) < (E[(Z FOE) T sup g(T,0)e)] 7] )

zeF

1

( Zf ) (Esup‘g (T,V)e )|)E

i>1

Likewise, we get the same upper bound for (E\h(‘ff 7, \IIG@ F)|1+77)ﬁ . This provides immediately
the desired estimate (1.3). To prove (1.4) we consider the Hahn decomposition N*(G) U N~ (G) =
N(G) of the signed measure P.((-)NN(G))—P((-)NN(G)). Inserting g(¢) = Iyt (W) —1n-()(¥)
on both sides of the inequality (1.3) we can take p = 1+ § and ¢ = oo (since |g((Tx¥)q)] < 1
for z € F) and f(x) = 1p(z)/v4(F) on the right-hand side, whereas the left-hand side equals
2 supy enr(@) | PL(Y) — P(Y)]. Hence, (1.4) is shown and the proof of Theorem 1 is finished. [J

Proof of Theorem 2.

We have to show that hﬁgKRd)k_ = 75?1(11:—1) - ’ch)i(Hk 1) < oo for some fixed k > 4, where

H,j_l, H,_, denotes the Hahn decomposition of the signed measure 'yﬁe()i.

(k)

symmetry of v, 4 we have

Due to the complete

k k
W)= Y AN (B, x - x By )N HE)

22,2, €L

k
Sk-DU D A (Bax o x By NHE),

(22,-,21)ESp—1

where Si_1 := {(22,...,2,) € (ZY*71:0 < |z < --- < |2zx|}. Let us fix (29,...,2,) € S;_1 and
put Ef = (E., x --- X E; )N H;" | for notational ease. Our next aim is to derive an upper bound

11



for 'yr(fc)l(E+) Using (3.13) we can express 'yr(fc)l(E,j) in terms of higher order-covariance measures

~(J

(5.20) )"Yred E+ / /1Eo 1) E+ (w2 —@1,... 2% _xl))'y(k)(d(xlu-~'7$k))

:Z(_l) - > Ni(Ky,. L KR, K,

J=1 KiU-UK;=K
where

J ~(ki)

Ij(Kl,...,Kj) ://1EO($1)1E:(( xk—xl HC d $kzl7”’7$ki,ni))'

Since x1 € Eo and (x9—21,..., Tk —x1) € E,j, it follows that z; € Eq®FE,, C Fi+z;fori=2,...k
and together with (5.20) we arrive at

MENE) < WP|(Bo x (F1 4+ 22) x -+ x (Fy + ).

Obviously, o) ((F 4 zg,) x -+ x (Fy + 2k;)) < EW(Fy + zp,) - - W(Fy + 2;) and using Holder’s
inequality and the stationarity of ¥ ~ P we get that

(5:21) QU((Fy + 21,) % - x (F1 + 21,)) < 29BU(Eo)) < (2MEW(Eq)* )"
Inserting the latter estimate into (2.6) gives

W F|(Eo x (Fy + 22) X -+ X (F1 + 2,)) < k1 2F EW(E,)*.
(k)

(22,0,2)ESk—1 Tred

> |I;(Kq, ..., Kj)| < oo

(22,28 ) ESK_1:| 2k | >2k—1

Thus, each summand of the sum ) (E;) is finite and, consequently, it suffices to

show that

for any decomposition of K = {1,...,k} into 7 € {1,...,k — 1} disjoint non-empty subsets
Ki,...,K; such that N;(Ky,... K)>0.

Let 21 = 0 and m(22, ..., 2) := max{|z;| — |zj—1],4 = 2,...,k} be the largest gap in the sequence
0=|z] <|zo| <--- <zg|. If |2k] > 2k — 1, then the maximal gap m(za,..., 2;) is at least 3. Let
g€ {1,...,k—1} besuch that |z41| — |24| = m(22,...,2), i.e. the largest gap occurs between |z

and |z441|. We start with the case j = 1.

Making use of the formula (3.14) with (3.15) we may express I1(K) as
q—1 k

II(K):Z Z / / / ]-Eo J}l E.+(( 2—]}1,...,.1%—.1‘1))

)p Rd)r p(Rd k—r

~(p) ~(k=r)
< ¢ A1) Ag(A@pits ) ¢ (@)

:Z Z / / [Ef(\lpr,\llB;;a:l,...,xp,xrﬂ,...,xk)
p=0 ’”:q“<Rd>p ()b

~(k—r) —~

_Ef(\IJB ’ B’ 1, - - ,1‘p,1‘r+1,...,1‘k) C (d(xr—l—la"'axk)) C (d(l’l,---,l’p)),

12



where B, = Uj_,,(F1 + 20), By = Uj_y1 (F1 + 20), \TJBP and \AIVIB;“ are copies of Up, and Wp,
respectively, and are assumed to be independent, and

f(‘IIB7\113’;1317"'7xp7x?“+17"'7x]€) = 1E'o le +($2_x17~”7$p_x17
P s E
ip+17 77fq>1 Zq-‘rlv oir>1

X

Ip+1

_xl,...,XZ-q —3317Xiq+1 —T1,...,Xi, — %1, Trt1 —xl,...,xk—xl) < H \IJ(Fl-i-Zg).

{=p+1

The latter inequality holds P-a.s. if F is replaced by Fi{" = (—1,1)?. Thus, we can apply Lemma
1 for By = By C Fj;,|41 and By = B] C F‘i ,|-1» and together with the assumption (2.8) and
Lemma 2 (with obvious modifications for p > 1) we obtain the inequality

|Ef(\IJBp7 \IJB;;*/ED cee 7xp7x?“+17 cee ,.’Ek) - Ef(EIBpu EIB,/J Lly.-- 7$p7$1“+17 .. 7$k)|
1 1 d—1 e
< 9(r=p)d+1 (E\I/(Eo)(”_p)(H”)) T+n max{l, |Zq_|+ - 2} Bu(|2g41| — |2] — 2) T
|2g+1] — 4]

p
x 1, (1) [[ 1m., (25 - H 1g. (zj —21)

j=2 j=r+1

for any n > 0, where the right-hand side (with 0 < p < r < k) is finite for n = §/k. From (3.12)

/-\(p /\ k} T
and (5.21) we get that the total variation measures | ¢ |(-) and | ¢ |()for0<p<r<k
satisfy the estimates
@) d+1)p—1 )k A1) (k—r)—1 k-
¢ 10x (Fitz)) < 2 PTIEW(E,)P and | ¢ (< (Fit+z)) < 2B (B, )
j=1 j=r+

Combining the previous estimates with n = d/k and applying again Holder’s inequality we find
that

L
+o

|zq] +1

|Zq+1‘ - |Zq‘ -2

d—1 5
\Il(K)|§2(k+1)d<E\IJ(E )’f“) max{l, } Bu|zgr1] — |zg] — 2)75

for any (z9,...,2;) € Sk—1 satisfying |zx| > 2k — 1 and m(2a,...,2;) = |2g4+1| — |24] (> 3). The
number of such (k — 1)-tuples (z2,...,2;) is at most

k—
(2leql + 11 ((2]z] + 17— @z ~ D) < 22z + 1D
for 2 < ¢ < k — 1, where the latter bound is justified by |z,| < |2¢41| < |2x] and (4.16).

Therefore, first fixing the largest gap m(za,...,2r) = m and having in mind that |z| < (£ —1)m
for £ =2,...,k, and then summing up over all m > 3 yields that

> ()] < 24 (B, ) Z 20 (200 — 1) + 1)+
(22,-,2k) €Sk —1:| 25| >2k—1
d—1 ~
xmax{l,%} By (m —2)%3 (k,d, o) ka 1)d— L3 ( )%’
m p—
m=1
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where, by (2.9), the series in the last line converges and the constant Cs(k,d,d) depends only on
d>1,k>2and EV(E,)F < 0.

Next we regard the terms I;(Ky,...,Kj) for j > 2 with decompositions Ki,...,K; of K =
{1,...,k} satisfying N;(Ki,...,K;) > 0. These terms are multiple integrals over some subset
of Eg x (E,, ® Eo) X -+ x (E,, & Eq,) w.r.t. products of higher-order covariance measures (3.12).
Let ¢ € {1,...,k — 1} be the (largest) index such that |z441| — |24] = m is the maximal gap in the
sequence 0 = |z1| < |zg| < -+ <|2g|. Then there exists an (ordered) index set Ky = {kp1,... ke, }
such that |zg, | —|zk,,.| > m for at least one r € {1,...,x¢ — 1}. This is obvious if ¢ and ¢ + 1
belong to the same index set. Otherwise, we distinguish two cases. First, ¢ + 1 € Ky with xp > 2
and kg1 < g+ 1 so that [2441| — |2x,,| > m, where kg ; is the largest index in K less than ¢ + 1.
Second, ¢ + 1 coincides with the smallest index k,; in K, for some p € {2,...,j}. Due to the
positivity of Nj(K1,...,Kj), see p. 80 in [16], there exists an index set K, with s, > 2 such that
kep < q+1 < kg, implying that |2g, , | — |zk,,| > m, where kg; (kgi11) is the largest (smallest)
index in Ky less (greater) than g + 1.

~(ke)
In this way we have found a covariance measure ( occurring in I;(Ky,..., K;) to which the
~(k)
same arguments as to ¢ in I;(K) can be applied. Hence, taking into account that

~(5) ) ) .
| ¢ (B + 2ky) X - X (FL+ 23,)) < 207 1209BW (B, ),

for any {ki,...,k;} C{2,...,q}, we obtain the estimate

|-
>l

I;(Ky,. .., K;)| < Co(k,d) (E\P(Eo)k+5> B By (m — 2)75 .

Finally, repeating the above counting procedure and using (2.9) lead to
ad )
> (K1, K| < Cr(k,dy6) Y mED41 8y (m) 755 < o0,
(ZQ,...,Zk)ESkfl:‘ZHszfl m=1

where the constant Cy7(k,d,§) depends only on d > 1, k > 2 and E¥(E,)*+0 < co.

In the same way we can show that —Vr(fc)l(H x_1) < 0o which terminates the proof. O

6 SOME EXAMPLES FROM STOCHASTIC GEOMETRY

Example 1. m-dependent stationary PPV ~ P, ie. Fy(F,) and Fy(F;,,,) are independent for
some fixed m > 0 and any a > 0, is Bj-mixing if E¥(E,)* < oco. Special cases of m-dependent
PPs are Poisson cluster processes and dependently thinned Poisson processes with bounded cluster
diameter and thinning procedures of bounded reach, respectively, see Example 4 below. Note that
in Theorem 2 we can take By (m) =0 and § = 0.

Example 2. Voronoi-tessellation V (V) = {J;5, 0C;(¥) generated by a simple stationary PP ¥ =
>i>10x; in R where C;(¥) denotes the boundary of the cell C;(¥) formed by all points in R?
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which are closest to the atom X, i.e. C;(¥) = {z € R?: ||z — X;|| < ||z — X;||,j # i}, see [18]. Let
Fv(w)(F') denote the o-algebra generated by the random closed set V(W) N F', see [5] for details. In
case the X;’s are atoms of a Poisson process ¥ ~ II the following bound could be shown in [5]:

r\d—1 d—1 ;
cs ()" exp{-Acra® 1} ifr>cpa,
B(F Fo), F Fi,)) < e for a,r >1/2,
( V(\P)( ) V(\P)( ot )) c3 (%)d ! exp{—Acy T‘d} ifr<cya, /
giving By(r) = c5 %1 exp{—Acyr} according to (2.8) with constants cg,cy,...,c5 > 0 depending

only on the dimension d > 1. Hence, the stationary PP of the cell vertices and other PPs associated
with the cells C;(V) (e.g. circumcentres of the (d — 1)-facets or Cox processes supported by V(¥))
are Brillinger-mixing. Furthermore, the exponential decay of B¢ (r) holds also for Poisson cluster
processes with typical cluster diameter Dy satisfying E exp{h Dy} < oo for some h > 0, see [5].

Example 3. Germ-grain models = = |J,;~,(X; + Z;) defined by a stationary PP ¥ = %", 0, in
R? with intensity A > 0 and a sequence {732-,2' > 1} (independent of ¥) of independent copies of a
compact set =g C RY, called typical grain. In [8] the subsequent bound of the S-mixing coefficient
between two o-algebras generated by the random closed set Z on F, and R?\ F,,, respectively,
could be derived:

(6.22)
B(Fe(Fa), F=(Fiy,)) < B(Fu(Fagr/a), Fu(Fyig,4))
4gnd—1 4 gy d—1
+aa2 (140 + (3+=2)" | BlISoll 1015 = /4)

for a,r > 1/2, where ||Z¢|| := sup{||z —y|| : =,y € Zo} denotes the diameter of the typical grain =j.
Taking into account condition (2.8) with S-mixing rate By (r), it is easily seen from (6.22) that

628 BF=(F), Fe(Fey,) < (max {1, 2) " (Bu(r/2) + A a8 BIZo|1(|Z0 | > r/4) )

for a,r > 1/2.

Note that (6.23) provides the S-mixing rate of a cluster PP Wep := 3 o, Z;V:zl 5Xi+§/j(i) if 59 =
{Y1,...,Yn} consists of (P-a.s.) finitely many random points with typical cluster diameter Dy =
|IZ0||. Further, Cox processes ¥, are frequently used PP models, see e.g. [2] for a general definition,
in particular so-called interrupted Poisson processes supported by a random set = or its boundary
0E, see |7, 18]. For example, the atoms of a Poisson process ® = Zizl 0p, ~ II,, being independent
of the germ-grain model = are only counted when they lie in =, i.e. ¥, =) .o, 1=(F;) dp,. Due to
(6.23) and the properties of ®, it is clear that the 8-mixing rate By, (r) satisfies (2.9) if By (r) does
and

4(k=1)d

o
(6.24) / P (B0l (10l 2 7/4)) " dr < e BRI < o
1

for some § > 0. Hence, since E¥,,(E,)*+ < 0o obviously holds, both assumptions (2.9) and (6.24)
imply that the stationary Cox PP V., turns out Bp-mixing.

From the view point of statistics of germ-grain models, see [14], the family of PPs ¥, of exposed
tangent points associated with the germ-grain model E in direction (of a unit vector) u contain a
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lot of information on Zy and ¥. Assuming additionally that =g is convex and o € Zy the PP ¥, is
defined by

u:—z(;/(uul)—s—X H 1_1“ X E( 7~2)+X))

i>1 JiyFi

where /(u, Z;) denotes the lexicographically smallest tangent point of the convex grain Z; in direction
u. This means that the atoms of ¥, are those tangent points of the shifted grains =; + X; being
not covered by any other shifted grain =; + X, j # 4, see Figure 1. Note that the PP ¥, turns
out to be stationary (but not isotropic even if ¥ and =y do so).

Figure 1: Exposed tangents points in a

Boolean model with discs

The very definition of ¥, reveals that the S-mixing coefficient on the 1.h.s. of (6.23) can be replaced
by B(Fu,(Fa), Fu,(FS.,)). Together with the obvious fact that the moments of W, (E,) do not
exceed the moments of W(FE,) we arrive at the conclusion that ¥, is Bi-mixing for any v if ¥ fulfills
(2.9) and E||Zo/k4(1+9)/% exists for some § > 0.

The best studied and most frequently used germ-grain model is the so-called Boolean model =,
where the germs form a Poisson process ¥ ~ II,. The random union set = is P-a.s. closed if
E|Z0|¢ < oo, see e.g. [14, 18] for more on this basic model of stochastic geometry. Since in this
special case By (r) = 0 for » > 0 and all moments of WU(E,) exist, the number § > 0 in (2.9) can
be taken arbitrarily large which relaxes the moment assumption on [|Zg|| to E||Zo[/*9t¢ < oo for
an arbitrarily small € > 0 in order to insure Bj-mixing of V., and W¥,. It is noteworthy that for
Boolean models the intensity A, of ¥, ~ P, can be simply expressed by A, = X exp{—AEvy(Z¢)}
and the Lebesgue density Qq(tk) of the kth-order factorial moment measure (2.5) (with P, instead of
P) exists for any k& > 2 and takes the form

o® (2, .. a)
k k k
=\ EE(H (1 — 1z ) (zq J:p))) exp{/\/ [El;[l (1-1g o(w) (T — Tr)) — 1} da:}
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where ZEg(u) 1= —Zg + £(u,Zp). This formula allows to check the Bj-mixing property in a direct
way showing that indeed E||Zo[|*?¢ < oo is sufficient. Furthermore, g&k)(-) is uniformly bounded by
¥ for k > 2, which is significant for so-called sub-Poisson processes.

Example 4. 7(x)-thinning of point processes: Let {m(z),z € R%} be a stationary random field
on [, F,P] taking values in [0, 1] and being independent of the stationary PP ¥ = 3"._, dx, in
R?, see [18]. Define the 0-1-valued random mark field {M(z),z € RY} with finite-dimensional
distributions P(M(x1) = 1,...,M(x) = 1) = E[x(xy)---7(xy)] for any x1,...,7; € R? and
k € N. In this way we obtain a so-called m(x)-thinned stationary PP W, = >"._, dx, M(X;). This
thinning procedure means that, for a given realization of the probabilities 7(x) = p(z), z € R? the
atom X; survives with probability p(X;) independently of the survival of the other atoms X}, j # 1.
As special cases we mention w(z) = 1(§ € B) or w(x) = (£(z) —a)l(a < &(x) < b)/(b— a) for some
stationary random field {£(z), 2 € R?} and certain fixed B € B' and a,b € R!. As particular case
of geostatistical marking of PPs we deduce from Lemma 5.1 in [7] (with o-algebra F (F') generated
by {m(x),x € F}) that

/B(f\PW(Fa)’f\I,W(F;+T)) < /B(I‘P(Fa)>f‘1’(F;+r)) +5(~F7T(Fa)>f7r(F;+r))

for a,r > 1/2, which gives By, (1) < By (r)+5:(r) for the corresponding S-mixing rates. This enables
us to check Bg-mixing of ¥,;. On the other hand, this property of ¥, holds for any Bj-mixing PP
U if additionally f(Rd)d | Cumj(7(0), w(x2),. .., m(z;))|d(z2,...,2j) < oo for j=2,...,k.

Example 5. Generalized Stoyan soft-core process I and II: As in Example 3 let W =5 "._, dx, be a
simple stationary PP in R? independently marked by a sequence of random vectors {(Ei,?fi),i >1}
with independent components, where the first ones are independent copies of a compact set Zg C R?
containing o and the second ones are independently uniformly distributed in (0,1). Then we are
in a position to define two types of dependently thinned PP generalizing two thinning procedures
suggested in [19]:

g =Y 0x, [J(1 - 1z4x,(X;)) and Typ:=> 6y, 11 1y, 1)(U;)

i>1 G i>1 J# X, €2+ X;

To be precise, in the first model an atom X; of ¥ survives if and only if no other atom X (of ¥) lies
in Z; + X;, whereas in the second model X; will survive iff either no other atom Xj lies in Z; + X;
or all atoms X; € Z;+ X, j # 4, have marks U; greater than or equal to U;. In [19], Wy, 1 and Wy o
were introduced and studied in the special case of a random ball Zy = b(0, Ry) centred at the origin
with the aim to generalize Matérn’s hard-core process I and II for which P(Ry = const > 0) = 1, see
e.g. [18]. Note that both of Stoyan’s soft-core PPs inherit the isotropy of ¥, whereas a non-circular
set Z¢ can generate a high degree of anisotropy in Wy, ;, i = 1,2, even if U ~ II,.

Finally, it is easily checked that the [B-mixing coefficients ﬁ(}—‘lfth,i(Fa)vf‘Pth,i(F;+r)) = 1,2,
have the same bound as 3(Fz(F,), F=(Fg,,)) in (6.23) with all consequences mentioned above.
In case of ¥ ~ II, this implies that each of the soft-core Poisson processes Wy, 1 and Wy, o (with
intensities \; = A exp{—AEv4(Z0)} and Ao = E[(1 — exp{—Ava(Z0)})/va(ZE0)], respectively) turns
out Brillinger-mixing whenever E||Z||" < oo for any n € N, and they prove to be m-dependent (as
defined in Example 1) if P(||Z¢|| < const) = 1.
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