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Abstract. We study the following problem: How to verify Brillinger-mixing of stationary point processes

in R
d by imposing conditions on a suitable mixing coefficient? For this, we define an absolute regularity (or

β-mixing) coefficient for point processes and derive an explicit condition in terms of this coefficient which

implies finite total variation of the kth-order reduced factorial cumulant measure of the point process for fixed

k ≥ 2. To prove this, we introduce higher-order covariance measures and use Statulevičius’ representation

formula for mixed cumulants in case of random (counting) measures. To illustrate our results, we consider

some Brillinger-mixing point processes occurring in stochastic geometry.

Keywords: Palm distribution, (reduced) factorial cumulant measure, Brillinger-mixing, higher-order covari-

ance measure, β-mixing coefficient, germ-grain model, dependently thinned point process
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1 INTRODUCTION AND BASIC DEFINITIONS

Point processes (briefly PPs) are adequate models to describe randomly or irregularly scattered

points in some Euclidean space R
d (often d = 1, 2, 3 in applications). Statistics of PPs is mostly

based on a single observation of a point pattern in some large sampling window which is assumed

to expand unboundedly in all directions, see Chapt. 4 in [17]. Provided the underlying PP model

is homogeneous (i.e. stationary) the asymptotic behaviour of parameter estimators and other em-

pirical characteristics can only be determined under ergodicity and (strong) mixing assumptions,

respectively. We encounter a similar situation in statistical physics, where stationary PPs are used

to describe limits of configurations of interacting particles given in a “large (expanding) container”,

see [12, 15].

Throughout, let Ψ :=
∑

i≥1 δXi
∼ P denote a simple stationary PP on R

d with distribution P

defined on the σ-algebra N generated by sets of the form {ψ ∈ N : ψ(B) = n} for any n ∈ N ∪ {0}

and B ∈ Bdb (= bounded sets of the Borel-σ-algebra Bd in R
d), where N denotes the family of locally

finite counting measures ψ on Bd satisfying ψ({x}) ≤ 1 for all x ∈ R
d. In other words, Ψ is a random

counting measure with random atoms {Xi, i ≥ 1} of multiplicity one which nowhere accumulate.

Shortly spoken, Ψ is a random element defined on some probability space [Ω,F ,P] taking values

in [N,N , P ] with P = P ◦ Ψ−1. Stationarity of Ψ ∼ P means that TxΨ :=
∑

i≥1 δXi−x ∼ P
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or, equivalently, that P ({Txψ : ψ ∈ Y }) = P (Y ) for any Y ∈ N and all x ∈ R
d, where Txψ(·) =

ψ((·)+x). For an all-embracing and rigorous introduction to the theory of PPs the reader is referred

to [2]. Further, we define the reduced Palm distribution P !
o

of Ψ ∼ P by

(1.1) P !
o
(Y ) :=

1

λ

∫

N

∫
f(x)1Y (Txψ − δo)ψ(dx)P (dψ) for any Y ∈ N ,

where the intensity λ := EΨ(Eo) is assumed to be positive and finite and f can be any non-negative,

Borel-measurable function satisfying
∫
f(x) dx = 1. Here and below,

∫
stands for integration over

R
d and Eo denotes the half-open unit cube [−1/2, 1/2)d centered at the origin o = (0, . . . , 0). Note

that the left-hand side of (1.1) does not depend on the choice of f due to the stationarity of Ψ ∼ P

and the shift-invariance of the Lebesgue measure νd on R
d.

The stationary Poisson process Ψ ∼ Πλ with intensity λ > 0 is the most important PP model which

is defined by the following two properties:

1. P(Ψ(B) = n) = (n!)−1 (λ νd(B))n exp{−λ νd(B)} for n ∈ N ∪ {0} and B ∈ Bdb and

2. Ψ(B1), . . . ,Ψ(Bk) are mutually independent for any pairwise disjoint B1, . . . , Bk ∈ Bdb , k ≥ 2.

We recall that a stationary Poisson process Ψ ∼ P = Πλ is characterized by the identity P !
o
= P

(Slivnyak’s theorem), see Chapt. 13 in [2].

Next, we define the absolute regularity or β-mixing coefficient β(F1,F2) to measure the dependence

between two sub-σ-algebras F1 and F2 of F by

(1.2) β(F1,F2) :=
1

2
sup

I∑

i=1

J∑

j=1

|P(Ai ∩Bj)−P(Ai)P(Bj) | ,

where the supremum is taken over all pairs of finite partitions {A1, . . . , AI} and {B1, . . . , BJ}

of Ω such that Ai ∈ F1 for each i and Bj ∈ F2 for each j. This measure of dependence has

been introduced by Volkonskii and Rozanov [20] (to prove asymptotic normality of sums of weakly

dependent random variables) and later studied and used by many others, see e.g. [5, 7, 16, 21].

Our first result illustrates that (1.2) is the appropriate mixing coefficient (which is not replaceable

by the α-mixing coefficient, see [1, 16]) to estimate the distance between expectations w.r.t. P !
o

and expectations w.r.t. P . In particular, it yields effective bounds of the total variation distance

between P !
o

and P on the σ-algebra N (G) = N ∩ N(G) with N(G) = {ψ ∈ N : ψ(Gc) = 0} for

sets G ∈ Bd being far away from the origin o. For any B ∈ Bd , put ψB(·) := ψ((·) ∩ B) and

FΨ(B) := {Ψ−1Y : Y ∈ N (B)} denotes the sub-σ-algebra of F generated by the restriction ΨB of

the PP Ψ on B ∈ Bd.

Theorem 1. Assume that the support F of the function f in (1.1) is bounded such that F∩(G⊕F ) =

∅. Then, for any N -measurable function g|N 7→ R
1 and p, q ≥ 1 satisfying p+ q ≤ p q , the bound

∣∣∣
∫

N

g(ψG)
(
P !
o
− P

)
(dψ)

∣∣∣

≤
2

λ

(
E
(∑

i≥1

f(Xi)
)p) 1

p
(
E sup
x∈F

∣∣g((TxΨ)G)
∣∣q
) 1

q (
β(FΨ(F ),FΨ(G ⊕ F ))

)1− 1
p
− 1

q(1.3)
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holds, which remains valid for p = 1 and q = ∞, if g(ψG) is bounded P-a.s. In particular, for any

δ ≥ 0,

(1.4) sup
Y ∈N (G)

|P !
o
(Y )− P (Y ) | ≤

1

λ νd(F )

(
β(FΨ(F ),FΨ(G⊕ F ))

) δ
1+δ

(
E
(
Ψ(F )

)1+δ) 1
1+δ .

2 FACTORIAL MOMENT AND CUMULANT MEASURES AND

Bk-MIXING

Assume that EΨ(Eo)
k < ∞ for some fixed k ∈ N. The kth-order factorial moment measure α(k)

(on [Rdk,Bdk]) of Ψ =
∑

i≥1 δXi
∼ P is defined by

(2.5) α(k)
( k
×
i=1

Bi
)
:= E

∑6=

i1,...,ik≥1

1B1(Xi1) · · · 1Bk
(Xik) =

∫

N

∑ 6=

x1,...,xk∈supp(ψ)

k∏

i=1

1Bi
(xi)P (dψ)

for any B1, . . . , Bk ∈ Bdb , where the sum
∑ 6= runs over all k-tuples of pairwise distinct elements.

According to the general relationship between mixed moments and mixed cumulant, see [11] or [16],

the kth-order factorial cumulant measure is a locally finite, signed measure (on [Rdk,Bdk]) given

by

(2.6) γ(k)
( k
×
i=1

Bi
)
:=

k∑

j=1

(−1)j−1(j − 1)!
∑

K1∪···∪Kj=K

j∏

i=1

α(κi)(Bki,1 × · · · ×Bki,κi ) ,

for any B1, . . . , Bk ∈ Bdb , where the inner sum is taken over all decompositions of K := {1, . . . , k}

into j disjoint non-empty subsets K1, . . . ,Kj and κi := #Ki denotes the number of elements of

Ki := {ki,1, . . . , ki,κi}. Further, note that P = Πλ implies α(k) = λk νdk for k ≥ 1 and vice versa,

and this in turn is equivalent to γ(1) = λ νd and γ(k) = 0 for k ≥ 2.

By stationarity of Ψ ∼ P , it follows that both α(k) and γ(k) are invariant under diagonal shifts,

i.e.

α(k)
( k
×
i=1

Bi
)
= α(k)

( k
×
i=1

(Bi + x)
)

and γ(k)
( k
×
i=1

Bi
)
= γ(k)

( k
×
i=1

(Bi + x)
)

for any B1, . . . , Bk ∈ Bdb and all x ∈ R
d. This enables us to introduce the (uniquely determined) re-

duced kth-order factorial moment (and cumulant) measure α
(k)
red (and γ

(k)
red) by disintegration w.r.t. νd

giving

α(k)
( k
×
i=1

Bi
)
= λ

∫

B1

α
(k)
red

( k
×
i=2

(Bi − x)
)
dx and γ(k)

( k
×
i=1

Bi
)
= λ

∫

B1

γ
(k)
red

( k
×
i=2

(Bi − x)
)
dx .

By standard measure-theoretic arguments and using the uniqueness of α
(k)
red and γ

(k)
red, it follows from

(2.5) and (1.1) that α
(k)
red coincides with the (k− 1)st-order factorial moment measure w.r.t. P !

o
and

γ
(k)
red can be expressed by γ(k) as follows:

(2.7) γ
(k)
red(B2 × · · · ×Bk) =

1

λ νd(F )

∫

(Rd)k

1F (x)1B2(x2 − x) · · · 1Bk
(xk − x) γ(k)(d(x, x2, . . . , xk))
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for any F ∈ Bdb with νd(F ) > 0 . In view of Jordan’s decomposition theorem, the signed measure

γ
(k)
red (on [Rd(k−1),Bd(k−1)]) can be expressed as the difference of measures γ

(k)+
red (positive part) and

γ
(k)−
red (negative part) and the corresponding total variation measure |γ

(k)
red| is then the sum of its

positive and negative part:

γ
(k)
red = γ

(k)+
red − γ

(k)−
red and |γ

(k)
red| = γ

(k)+
red + γ

(k)−
red .

In view of the corresponding Hahn decomposition, the locally finite measures γ
(k)+
red and γ

(k)−
red are

concentrated on two disjoint Borel sets H+
k−1 and H−

k−1 with H+
k−1 ∪ H

−
k−1 = (Rd)k−1. The total

variation ‖γ
(k)
red‖TV of γ

(k)
red can then be expressed by

‖γ
(k)
red‖TV = |γ

(k)
red|((R

d)k−1) = γ
(k)+
red (H+

k−1) + γ
(k)−
red (H−

k−1) = γ
(k)
red(H

+
k−1)− γ

(k)
red(H

−
k−1) .

Definition. (see e.g. [6, 10]) A simple stationary PP Ψ ∼ P satisfying EΨ(Eo)
k < ∞ for some

integer k ≥ 2 is said to be Bk-mixing if ‖γ
(j)
red‖TV < ∞ for j = 2, . . . , k. The PP Ψ ∼ P is called

Brillinger mixing if it is Bk-mixing for all k ≥ 2.

To formulate our main result we need assumptions on the decay of dependence between the restric-

tions ΨFa and ΨF c
a+r

of the PP Ψ for large r, where Fa := [−a, a]d and F ca := R
d \ [−a, a]d for

a > 0.

Theorem 2. Let Ψ ∼ P be a simple stationary PP on R
d. Assume that there exists a non-increasing

β-mixing rate βΨ|[1/2,∞) 7→ [0, 1] such that

(2.8) β(FΨ(Fa),FΨ(F
c
a+r)) ≤ max

{
1,
a

r

}d−1
βΨ(r) for a, r ≥ 1/2 .

Then Ψ ∼ P is Bk-mixing for some k ≥ 2 if additionally

(2.9) EΨ(Eo)
k+δ <∞ and

∞∫

1

r(k−1)d−1 βΨ(r)
δ/(k+δ) dr <∞ for some δ > 0 .

In the particular cases k = 2 and k = 3 condition (2.8) is only needed for r ≥ a ≥ 1/2 .

Corollary 1. Assume that EΨ(Eo)
k < ∞ for all k ∈ N. Further, let the β-mixing rate in (2.8)

satisfy the bound βΨ(r) ≤ e−g(r) for r ≥ 1/2, where the function g|[1/2,∞) 7→ [0,∞] is non-

decreasing such that g(r)/ log r −→
r→∞

∞. Then Ψ ∼ P is Brillinger-mixing.

3 HIGHER-ORDER COVARIANCE MEASURES AND A

COVARIANCE INEQUALITY

In this section we derive a representation of γ(k) in terms of higher order covariance measures
_
ζ
(j)

.

Such representations of higher-order mixed cumulants Cumn(Yt1 , . . . , Ytn), see e.g. [11], of (discrete-

time) stochastic processes {Yt, t ∈ N} in terms of higher-order covariances
_
E Yt1Yt2 · · ·Ytk have been
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introduced in the early 1960s by V. A. Statulevičius first to prove large deviations relations for sums

of random variables connected in a Markov chain and later for other types of weakly dependent

random sequences, see [16] for a survey of these results. In [3] the equivalence of the original

with the following recursive definition of the kth-order covariance
_
E Y1 Y2 · · ·Yk has been shown:

_
E Y1 := EY1 and

_
E Y1 Y2 · · ·Yk := EY1 Y2 · · ·Yk −

k−1∑

j=1

_
E Y1 Y2 · · · Yj EYj+1 · · · Yk

for k ≥ 2 . By induction on k ∈ N it follows that
_
E Y1 Y2 · · ·Yk =

_
E Yk · · ·Y2 Y1.

In analogy to these higher-order covariances of random variables we introduce the kth-order (fac-

torial) covariance measure
_
ζ
(k)

of Ψ ∼ P by recursion:
_
ζ
(1)

(B1) := α(1)(B1) = EΨ(B1) and

(3.10)
_
ζ
(k)

(B1×· · ·×Bk) := α(k)(B1×· · ·×Bk)−
k−1∑

j=1

_
ζ
(j)

(B1×· · ·×Bj) α
(k−j)(Bj+1×· · ·×Bk)

for any B1, . . . , Bk ∈ Bdb and k ≥ 2 . Note that α(k) as well as the signed measure γ(k) are completely

symmetric in their arguments while this is not true for the signed measure
_
ζ
(k)

, but the relation
_
ζ
(k)

(
k
×
i=1

Bi) =
_
ζ
(k)

(
k
×
i=1

Bk−i+1) holds. It is easily seen that
_
ζ
(1)

= λ νd and
_
ζ
(k)

= 0 for k ≥ 2

yields a further characterization of Ψ ∼ Πλ. The total variation of the signed measures
_
ζ
(k)

in case

of renewal processes on R
1 has been studied in [9]. For such type of one-dimensional stationary

PP we have βΨ(r) −→
r→∞

0 if and only if the distribution of the typical inter-renewal time possesses a

convolution power with an absolutely continuous part, see [13]. Rates of decay of βΨ(r) have been

obtained in [4].

For any stationary PP Ψ ∼ P the first-order measures α(1), γ(1) and
_
ζ
(1)

coincide with λ νd, and we

have γ(2) =
_
ζ
(2)

. For k = 3 and any B1, B2, B3 ∈ Bdb , the above definitions (2.6) and (3.10) give

γ(3)(B1 ×B2 ×B3) = α(3)(B1 ×B2 ×B3)− α(1)(B1)α
(2)(B2 ×B3)− α(1)(B2)α

(2)(B1 ×B3)

− α(1)(B3)α
(2)(B1 ×B2) + 2α(1)(B1)α

(1)(B2)α
(1)(B3) ,

_
ζ
(3)

(B1 ×B2 ×B3) = α(3)(B1 ×B2 ×B3)− α(1)(B1)α
(2)(B2 ×B3)

− α(2)(B1 ×B2)α
(1)(B3) + α(1)(B1)α

(1)(B2)α
(1)(B3) ,

γ(3)(B1 ×B2 ×B3) =
_
ζ
(3)

(B1 ×B2 ×B3)−
_
ζ
(1)

(B2)
_
ζ
(2)

(B1 ×B3) .

(3.11)

For general k ≥ 2, there are the following representations of
_
ζ
(k)

and γ(k), see [16], p. 13, for the

case of random processes,

(3.12)
_
ζ
(k)

(B1 × · · · ×Bk) =

k∑

j=1

(−1)j−1
∑

0=k0<k1<···<kj=k

j∏

i=1

α(ki−ki−1)(Bki−1+1 × · · · ×Bki)
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and

(3.13) γ(k)(B1 × · · · ×Bk) =
k∑

j=1

(−1)j−1
∑

K1∪···∪Kj=K

Nj(K1, . . . ,Kj)

j∏

i=1

_
ζ
(κi)

(Bki,1 × · · · ×Bki,κi )

for any B1, . . . , Bk ∈ Bd, where the inner sum is taken over all decompositions of K = {1, . . . , k}

into j disjoint non-empty subsets K1, . . . ,Kj and Ki = {ki,1, . . . , ki,κi} with ki,1 < · · · < ki,κi . We

always assume that k1,1 = 1. The non-negative integers Nj(K1, . . . ,Kj) depend on all the sets

K1, . . . ,Kj and are positive if and only if either j = 1 (since N1(K) = 1) or for any i = 2, . . . , j

there exists an ` ∈ {1, . . . , j} such that k`,1 < ki,1 < k`,κ` , see p. 80 in [16], for a detailed description

and calculation of these numbers.

After some rearrangement on the right-hand side of (3.12) we are led to the following representation

of the signed measure
_
ζ
(k)

:

(3.14)

_
ζ
(k)

(B1×· · ·×Bk) =

q−1∑

p=0

k∑

r=q+1

_
ζ
(p)

(B1×· · ·×Bp) ∆q(Bp+1×· · ·×Br)
_
ζ
(k−r)

(Br+1×· · ·×Bk)

with the convention that
_
ζ
(0)

(Bk+1 ×Bk) = −1 for k = 0, 1, . . . and

(3.15) ∆q(Bp+1×· · ·×Br) := α(r−p)(Bp+1×· · ·×Br)−α
(q−p)(Bp+1×· · ·×Bq) α

(r−q)(Bq+1×· · ·×Br)

for 0 ≤ p < q < r ≤ k . Formula (3.14) can be proved by induction on k ≥ 2 and 1 ≤ q ≤ k − 1

using the above recursive definition of
_
ζ
(k)

. The details are left to the reader.

In order to obtain bounds of
_
ζ
(k)

we need estimates of the covariances (3.15). We may rewrite

verbatim the proof of Lemma 1 in [21] to our point process setting leading to the subsequent bound

of a general covariance-type expression in terms of the β-mixing coefficient (1.2), see also [7].

Lemma 1. Let ΨB ,ΨB′ be the restrictions of a simple stationary PP Ψ ∼ P to Borel subsets

B,B′ ⊂ R
d. Furthermore, let Ψ̃B and Ψ̃B′ be independent copies of ΨB and ΨB′ , respectively.

Then for any N ⊗N -measurable function f |N ×N 7→ R
1 and for any η ≥ 0,

∣∣Ef(ΨB,ΨB′)−Ef(Ψ̃B, Ψ̃B′)
∣∣ ≤ 2

(
β(FΨ(B),FΨ(B

′)
) η

1+η

×max
{(

E|f(ΨB,ΨB′)|1+η
) 1

1+η ,
(
E|f(Ψ̃B, Ψ̃B′)|1+η

) 1
1+η

}
.

In combination with Lemma 1 we will use several times the following result.

Lemma 2. Under the assumptions of Lemma 1 put B = F1/2∪
⋃q
j=2(F1+zj) and B′ =

⋃k
j=q+1(F1+

zj) for some q = 1, . . . , k−1 and z2, . . . , zk ∈ Z
d. If the function f |N×N 7→ R

1 admits the estimate

| f(ΨB,ΨB′) | ≤ Ψ(F1/2)Ψ(F1 + z2) · · ·Ψ(F1 + zk) , then

max
{(

E| f(ΨB,ΨB′) |1+η
) 1

1+η ,
(
E| f(Ψ̃B , Ψ̃B′) |1+η

) 1
1+η

}
≤ 2(k−1)d

(
EΨ(Eo)

k(1+η)
) 1

1+η
for any η ≥ 0.
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Proof of Lemma 2. By Hölder’s inequality and the fact that Ψ(F1/2 \ Eo) = 0 P-a.s., we obtain

E| f(ΨB,ΨB′) |1+η ≤
(
EΨ(Eo)

k(1+η)
)1/k

k∏

j=2

(
EΨ(F1 + zj)

k(1+η)
)1/k

.

Together with EΨ(F1 + zj)
k(1+η) = EΨ(F1)

k(1+η) ≤ 2d k(1+η) EΨ(Eo)
k(1+η) for j = 2, . . . , k it is

easily seen that

E| f(ΨB,ΨB′) |1+η ≤ 2(k−1)d(1+η)
EΨ(Eo)

k(1+η).

The same upper bound can be shown for E| f(Ψ̃B, Ψ̃B′) |1+η which completes the proof of Lemma

2. �

4 THE SPECIAL CASES B2- AND B3-MIXING

For any z = (z1, . . . , zd) ∈ Z
d putEz := Eo+z =

d
×
i=1

[−1/2+zi, 1/2+zi) and |z| := max{|z1|, . . . , |zd|}.

For k ∈ {2, 3}, Condition (2.8) is only needed for r ≥ a ≥ 1/2, which means that β(F(Fa),F(F ca+r)) ≤

βΨ(r) for r ≥ a ≥ 1/2. Since γ
(2)
red = α

(2)
red − λ νd with α

(2)
red(B) =

∫
N ψ(B)P !

o
(dψ) and λ νd(B) =

α(1)(B) =
∫
N ψ(B)P (dψ) for B ∈ Bdb , we may apply (1.3) with F = Eo, G = Ez for |z| ≥ 2,

f(x) = 1Eo
(x), g(ψG) = ψ(Ez ∩H

+
2 )− ψ(Ez ∩H

−
2 ) and p = q = 2 + δ and get the estimates

|γ
(2)
red|(Ez) = γ

(2)
red(Ez ∩H

+
1 )− γ

(2)
red(Ez ∩H

−
1 )

≤
2

λ

(
EΨ(Eo)

2+δ
EΨ(Ez ⊕ Eo)

2+δ
) 1

2+δ
(
β(FΨ(Eo),FΨ(Ez ⊕ Eo))

) δ
2+δ

≤
2d+1

λ

(
EΨ(Eo)

2+δ
) 2

2+δ
(
βΨ(|z| − 3/2)

) δ
2+δ for |z| ≥ 2 .

The last line is a consequence of (2.8) and Ez ⊕Eo ⊂ F c|z|−1 ∪ ∂F|z|−1, where Ψ(∂F|z|−1) = 0 P-a.s.

due to the stationarity of Ψ. From

(4.16) #{z ∈ Z
d : |z| = m} = (2m+ 1)d − (2m− 1)d ≤ 2 d (2m + 1)d−1 for m ∈ N

and (2.9) for k = 2 we obtain immediately that |γ
(2)
red|(R

d) <∞. This result has already been proved

by slightly different arguments in [7].

Next we derive a bound of |γ
(3)
red|(R

d × R
d) = γ

(3)
red(H

+
2 ) − γ

(3)
red(H

−
2 ). Using (2.7) for k = 3 and

F = Eo, and (3.11) we find for any y, z ∈ Z
d,

λ γ
(3)
red((Ey × Ez) ∩H

+
2 ) =

∫ ∫ ∫
1Eo

(x)1(Ey×Ez)∩H
+
2
(x2 − x, x3 − x) γ(3)(d(x, x2, x3))

=

∫ ∫ ∫
1Eo

(x)1(Ey×Ez)∩H
+
2
(x2 − x, x3 − x)

_
ζ
(3)

(d(x, x2, x3))(4.17)

− λ

∫ ∫ ∫
1Eo

(x)1(Ey×Ez)∩H
+
2
(x2 − x, x3 − x) dx2

_
ζ
(2)

(d(x, x3))

=: I1 − I2 .
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The first term I1 can be rewritten as

I1 =

∫ ∫ ∫
1Eo

(x)1(Ey×Ez)∩H+(x2 − x, x3 − x)α(3)(d(x, x2, x3))− λα(2)((Ey × Ez) ∩H
+
2 )

− λ

∫ ∫ ∫
1Eo

(x)1(Ey×Ez)∩H
+
2
(x2 − x, x3 − x)α(2)(d(x, x2)) dx3

+ λ (α(1) × α(1))((Ey × Ez) ∩H
+
2 )

= E

∑6=

i,j,k≥1

1Eo
(Xi)1(Ey×Ez)∩H

+
2
(Xj −Xi,Xk −Xi)− λα(2)((Ey × Ez) ∩H

+
2 )

(4.18)

− λ

∫
E

∑6=

i,j≥1

1Eo
(Xi)1(Ey×Ez)∩H

+
2
(Xj −Xi, x3 −Xi) dx3 + λ (α(1) × α(1))((Ey × Ez) ∩H

+
2 ) ,

and the second term I2 becomes

I2 = λ

∫ ∫
1Eo

(x)1(Ey×Ez)∩H
+
2
(x2 − x, x3 − x) dx2 α

(2)(d(x, x3))− λ (α(1) × α(1))((Ey × Ez) ∩H
+
2 )

= λ

∫
E

∑6=

i,k≥1

1Eo
(Xi)1(Ey×Ez)∩H

+
2
(x2 −Xi,Xk −Xi) dx2 − λ (α(1) × α(1))((Ey × Ez) ∩H

+
2 ) .

We have now to distinguish different cases according to the norms of y and z. The set S2 := {(y, z) ∈

Z
d×Z

d : |y| ≤ |z|} decomposes into three disjoint sets S
(1)
2 := {(y, z) ∈ S2 : |y| ≤ 1, |z| ≤ |y|+2},

S
(2)
2 := {(y, z) ∈ S2 : |y| ≥ 2, |z| ≤ 2 |y|} , and S

(3)
2 := {(y, z) ∈ S2 : |z| ≥ max{2 |y|+1, |y|+3}} .

Since S
(1)
2 is finite with cardinality #S

(1)
2 = 5d + (3d − 1)(7d − 1), we need only a uniform bound

of (4.17). Replacing γ(3) in (4.17) by α(3) + 2α(1) × α(1) × α(1) and the fact that Xi ∈ Eo and

(Xj −Xi,Xk −Xi) ∈ (Ey × Ez) ∩H
+
2 imply Xj ∈ Eo ⊕ Ey ⊂ F1 + y and Xk ∈ Eo ⊕ Ez ⊂ F1 + z

yield the estimate

I1 − I2 ≤ α(3)(Eo × (F1 + y)× (F1 + z)) + 2λ3
∫ ∫ ∫

1Eo
(x)1Ey (x2 − x)1Ez(x3 − x) dx3 dx2 dx.

By applying Hölder’s inequality and the stationarity of Ψ (like in the proof of Lemma 2) we obtain

that

I1 − I2 ≤ 22dEΨ(Eo)
3 + 2λ3 =: C1 <∞ .

For any pair (y, z) ∈ S
(2)
2 we get the relations

I1 = Ef(ΨEo
,Ψ(F1+y)∪(F1+z))−Ef(Ψ̃Eo

, Ψ̃(F1+y)∪(F1+z))

− λ

∫

F1+z

[
Egx3(ΨEo

,ΨF1+y)−Egx3(Ψ̃Eo
, Ψ̃F1+y)

]
dx3

and

I2 = λ

∫

F1+y

[
Ehx2(ΨEo

,ΨF1+z)−Ehx2(Ψ̃Eo
, Ψ̃F1+z)

]
dx2 ,

8



where Ψ̃B and Ψ̃B′ are defined as in Lemma 1 with B = Eo and B′ ∈ {F1 + y, F1 + z, (F1 + y) ∪

(F1 + z)}, respectively, and

f(ΨEo
,Ψ(F1+y)∪(F1+z)) :=

∑

i≥1

∑6=

j,k≥1

1Eo
(Xi)1(Ey×Ez)∩H

+
2
(Xj −Xi,Xk −Xi)

≤ Ψ(Eo)Ψ(F1 + y)Ψ(F1 + z) ,

gx3(ΨEo
,ΨF1+y) :=

∑ 6=

i,j≥1

1Eo
(Xi)1(Ey×Ez)∩H

+
2
(Xj −Xi, x3 −Xi) ≤ Ψ(Eo)Ψ(F1 + y) ,

and

hx2(ΨEo
,ΨF1+z) :=

∑ 6=

i,k≥1

1Eo
(Xi)1(Ey×Ez)∩H

+
2
(x2 −Xi,Xk −Xi) ≤ Ψ(Eo)Ψ(F1 + z) .

Since Ψ(∂F1) = 0 P-a.s., the foregoing formulas with f , gx3 and hx2 remain unchanged when F1 is

replaced by the open square F int1 = (−1, 1)d. In view of Eo ⊂ F1/2 and (F int1 +y)∪(F int1 +z) ⊂ F c|y|−1,

we may apply Lemma 1 and obtain together with Lemma 2 and (2.8) the following estimates:

|I1| ≤ 22d+1 βΨ(|y| − 3/2)
η

1+η
(
EΨ(Eo)

3+3η
) 1

1+η + λ νd(F1) 2
d+1 βΨ(|y| − 3/2)

η
1+η

(
EΨ(Eo)

2+2η
) 1

1+η

and

|I2| ≤ λ νd(F1) 2
d+1 βΨ(|z| − 3/2)

η
1+η

(
EΨ(Eo)

2+2η
) 1

1+η .

(4.19)

For η = δ/3 the expressions on the right-hand sides are finite so that

λ γ
(3)+
red (Ey × Ez) ≤ |I1|+ |I2| ≤ C2 βΨ(|y| − 3/2)

δ
3+δ for some constant C2 > 0 .

In case of (y, z) ∈ S
(3)
2 we swap the second and third term in (4.18), and may rewrite I1 as follows:

I1 = Ef(ΨEo∪(F1+y),ΨF1+z)−Ef(Ψ̃Eo∪(F1+y), Ψ̃F1+z)− λ
[
Eg(ΨF1+y,ΨF1+z)−Eg(Ψ̃F1+y, Ψ̃F1+z)

]
,

where

f(ΨEo∪(F1+y),ΨF1+z) =
∑ 6=

i,j≥1

∑

k≥1

1Eo
(Xi)1(Ey×Ez)∩H

+
2
(Xj −Xi,Xk −Xi)

and

g(ΨF1+y,ΨF1+z) =
∑

j,k≥1

1(Ey×Ez)∩H
+
2
(Xj ,Xk) .

In the same manner as above, the Lemmas 1 and 2 combined with (2.8) yield the estimate

|I1| ≤ 22d+1 βΨ(|z| − |y| − 2)
η

1+η
(
EΨ(Eo)

3+3η
) 1

1+η + λ 2d+1 βΨ(|z| − |y| − 2)
η

1+η
(
EΨ(Eo)

2+2η
) 1

1+η .

The bound of I2 is the same as in (4.19) and therefore, by setting η = δ/3, we arrive at

λ γ
(3)+
red (Ey × Ez) ≤ |I1|+ |I2| ≤ C3 βΨ(|z| − |y| − 2)

δ
3+δ for some constant C3 > 0 .
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Using the symmetry of the signed measure γ
(3)
red we can summarize three cases for the position of

(y, z) ∈ S2 and obtain that

λ γ
(3)+
red (H+

2 ) =
∑

y,z∈Zd

λ γ
(3)+
red ((Ey × Ez) ∩H

+
2 ) ≤ 2

∑

(y,z)∈S2

λ γ
(3)+
red ((Ey × Ez) ∩H

+
2 )

≤ 2
[
C1 #S

(1)
2 + C2

∑

(y,z)∈S
(2)
2

βΨ(|y| − 3/2)
δ

3+δ + C3

∑

(y,z)∈S
(3)
2

βΨ(|z| − |y| − 2)
δ

3+δ

]
.

By means of (4.16) some simple rearrangements show that

∑

(y,z)∈S
(2)
2

βΨ(|y| − 3/2)
δ

3+δ ≤
∞∑

m=2

2d(2m+ 1)d−1(2m+ 2)d(4m + 1)d−1βΨ(m− 3/2)
δ

3+δ

and
∑

(y,z)∈S
(3)
2

βΨ(|y| − 3/2)
δ

3+δ ≤
∞∑

n=3

βΨ(n− 2)
δ

3+δ + (3d − 1)

∞∑

n=4

βΨ(n− 3)
δ

3+δ

+

∞∑

m=2

2d(2m+ 1)d−1
∞∑

n=2m+1

2d(2n + 1)d−1βΨ(n−m− 2)
δ

3+δ .

By condition (2.9) for k = 3 it is not difficult to see that γ
(3)+
red (H+

2 ) ≤ C4
∑

n≥1 n
2d−1βΨ(n)

δ
3+δ <∞

for some constant C4 > 0 depending on d, λ, δ and EΨ(Eo)
3+δ . In the same way we can prove that

γ
(3)−
red (H−

2 ) <∞ and thus |γ
(3)
red|(R

d×R
d) <∞ completing the proof of Theorem 2 for k = 2, 3. �

5 PROOFS OF THEOREMS 1 AND 2

Proof of Theorem 1.

Let f |Rd 7→ [0,∞] be Borel-measurable with bounded support F and
∫
f(x) dx = 1. Since F ∩

(G ⊕ F ) = ∅, we have o /∈ G implying (Txψ − δo)G = (Txψ)G for all ψ ∈ N . By applying the

Campbell-Mecke formula, see Chapt. 13 in [2], to the stationary PP Ψ ∼ P we get the equality
∫

N

∫

F

f(x) g((Txψ − δo)G)ψ(dx)P (dψ) = λ

∫

F

f(x) dx

∫

N

g(ψG)P
!
o
(dψ) ,

which combined with the simple Campbell formula

E

∑

i≥1

f(Xi) =

∫

N

∫

F

f(x)ψ(dx)P (dψ) = λ

∫

F

f(x) dx = λ

yields the relation

λ

∫

N

g(ψG)
(
P !
o
− P

)
(dψ) =

∫

N

∫

F

f(x)g((Txψ − δo)G)ψ(dx)P (dψ) − λ

∫

N

∫

F

f(x) g((Txψ)G) dxP (dψ)

= Eh(ΨF ,ΨG⊕F )−Eh(Ψ̃F , Ψ̃G⊕F ) ,
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where the N ⊗N -measurable function h|N(F )×N(G⊕ F ) 7→ R
1 is defined by

h(ΨF ,ΨG⊕F ) :=
∑

i≥1

f(Xi)1F (Xi) g((TXi
Ψ)G) .

The independence of the restricted PPs Ψ̃F and Ψ̃G⊕F , Fubini’s theorem, and the stationarity of

Ψ ∼ P allow to write

Eh(Ψ̃F , Ψ̃G⊕F ) =

∫

N(F )

∫

N(G⊕F )

∫

F

f(x) g((Txψ)G)ϕ(dx)P (dψ)P (dϕ)

=

∫

N

∫

F

f(x)ϕ(dx)P (dϕ)

∫

N

g(ψG)P (dψ) = λ

∫

N

g(ψG)P (dψ).

A straightforward application of Lemma 1 yields the estimate

λ
∣∣∣
∫

N

g(ψG)
(
P !
o
− P

)
(dψ)

∣∣∣ ≤ 2 max
{(

E|h(ΨF ,ΨG⊕F )|
1+η

) 1
1+η ,

(
E|h(Ψ̃F , Ψ̃G⊕F )|

1+η
) 1

1+η

}

×
(
β(FΨ(F ),FΨ(G⊕ F ))

)1− 1
1+η for any η ≥ 0 .

Further, for any p, q ∈ [1,∞] satisfying 1
p +

1
q = 1

1+η , we employ Hölder’s inequality to show that

(
E
∣∣h(ΨF ,ΨG⊕F )

∣∣1+η
) 1

1+η
≤

(
E

[(∑

i≥1

f(Xi)
)1+η

sup
x∈F

∣∣g((TxΨ)G)
∣∣1+η

]) 1
1+η

≤
(
E
(∑

i≥1

f(Xi)
)p) 1

p
(
E sup
x∈F

∣∣g((TxΨ)G)
∣∣q
) 1

q
.

Likewise, we get the same upper bound for
(
E|h(Ψ̃F , Ψ̃G⊕F )|

1+η
) 1

1+η . This provides immediately

the desired estimate (1.3). To prove (1.4) we consider the Hahn decomposition N+(G) ∪N−(G) =

N(G) of the signed measure P !
o
((·)∩N(G))−P ((·)∩N(G)). Inserting g(ψ) = 1N+(G)(ψ)−1N−(G)(ψ)

on both sides of the inequality (1.3) we can take p = 1 + δ and q = ∞ (since |g((Txψ)G)| ≤ 1

for x ∈ F ) and f(x) = 1F (x)/νd(F ) on the right-hand side, whereas the left-hand side equals

2 supY ∈N (G) |P
!
o
(Y )− P (Y ) |. Hence, (1.4) is shown and the proof of Theorem 1 is finished. �

Proof of Theorem 2.

We have to show that |γ
(k)
red|(R

d)k−1 = γ
(k)
red(H

+
k−1) − γ

(k)
red(H

−
k−1) < ∞ for some fixed k ≥ 4, where

H+
k−1, H

−
k−1 denotes the Hahn decomposition of the signed measure γ

(k)
red. Due to the complete

symmetry of γ
(k)
red we have

γ
(k)
red(H

+
k−1) =

∑

z2,...,zk∈Zd

γ
(k)
red((Ez2 × · · · × Ezk) ∩H

+
k−1)

≤ (k − 1)!
∑

(z2,...,zk)∈Sk−1

γ
(k)+
red ((Ez2 × · · · × Ezk) ∩H

+
k−1),

where Sk−1 := {(z2, . . . , zk) ∈ (Zd)k−1 : 0 ≤ |z2| ≤ · · · ≤ |zk|}. Let us fix (z2, . . . , zk) ∈ Sk−1 and

put E+
k := (Ez2 × · · · ×Ezk)∩H

+
k−1 for notational ease. Our next aim is to derive an upper bound
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for γ
(k)
red(E

+
k ). Using (3.13) we can express γ

(k)
red(E

+
k ) in terms of higher order-covariance measures

_
ζ
(j)

:

λγ
(k)
red(E

+
k ) =

∫
· · ·

∫
1Eo

(x1)1E+
k
((x2 − x1, . . . , xk − x1)) γ

(k)(d(x1, . . . , xk))(5.20)

=

k∑

j=1

(−1)j−1
∑

K1∪···∪Kj=K

Nj(K1, . . . ,Kj)Ij(K1, . . . ,Kj),

where

Ij(K1, . . . ,Kj) :=

∫
· · ·

∫
1Eo

(x1)1E+
k
((x2 − x1, . . . , xk − x1))

j∏

i=1

_
ζ
(κi)

(d(xki,1 , . . . , xki,κi )).

Since x1 ∈ Eo and (x2−x1, . . . , xk−x1) ∈ E+
k , it follows that xi ∈ Eo⊕Ezi ⊂ F1+zi for i = 2, . . . , k

and together with (5.20) we arrive at

λ γ
(k)
red(E

+
k ) ≤ |γ(k)|(Eo × (F1 + z2)× · · · × (F1 + zk)).

Obviously, α(j)((F1 + zk1) × · · · × (F1 + zkj )) ≤ EΨ(F1 + zk1) · · ·Ψ(F1 + zkj ) and using Hölder’s

inequality and the stationarity of Ψ ∼ P we get that

(5.21) α(j)((F1 + zk1)× · · · × (F1 + zkj )) ≤ 2jdEΨ(Eo)
j ≤

(
2kdEΨ(Eo)

k
)j/k

.

Inserting the latter estimate into (2.6) gives

|γ(k)|(Eo × (F1 + z2)× · · · × (F1 + zk)) ≤ k! 2kdEΨ(Eo)
k.

Thus, each summand of the sum
∑

(z2,...,zk)∈Sk−1
γ
(k)
red(E

+
k ) is finite and, consequently, it suffices to

show that ∑

(z2,...,zk)∈Sk−1:|zk|≥2k−1

|Ij(K1, . . . ,Kj)| <∞

for any decomposition of K = {1, . . . , k} into j ∈ {1, . . . , k − 1} disjoint non-empty subsets

K1, . . . ,Kj such that Nj(K1, . . . ,Kj) > 0.

Let z1 = o and m(z2, . . . , zk) := max{|zj | − |zj−1|, j = 2, . . . , k} be the largest gap in the sequence

0 = |z1| ≤ |z2| ≤ · · · ≤ |zk|. If |zk| ≥ 2k − 1, then the maximal gap m(z2, . . . , zk) is at least 3. Let

q ∈ {1, . . . , k− 1} be such that |zq+1| − |zq| = m(z2, . . . , zk), i.e. the largest gap occurs between |zq|

and |zq+1|. We start with the case j = 1.

Making use of the formula (3.14) with (3.15) we may express I1(K) as

I1(K) =

q−1∑

p=0

k∑

r=q+1

∫

(Rd)p

∫

(Rd)r−p

∫

(Rd)k−r

1Eo
(x1)1E+

k
((x2 − x1, . . . , xk − x1))

×
_
ζ
(p)

(d(x1, . . . , xp))∆q(d(xp+1, . . . , xr))
_
ζ
(k−r)

(d(xr+1, . . . , xk))

=

q−1∑

p=0

k∑

r=q+1

∫

(Rd)p

∫

(Rd)k−r

[
Ef(ΨBp ,ΨB′

r
;x1, . . . , xp, xr+1, . . . , xk)

−Ef(Ψ̃Bp , Ψ̃B′

r
;x1, . . . , xp, xr+1, . . . , xk)

] _
ζ
(k−r)

(d(xr+1, . . . , xk))
_
ζ
(p)

(d(x1, . . . , xp)) ,
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where Bp =
⋃q
`=p+1(F1 + z`), B

′
r =

⋃r
`=q+1(F1 + z`), Ψ̃Bp and Ψ̃B′

r
are copies of ΨBp and ΨB′

r
,

respectively, and are assumed to be independent, and

f(ΨBp,ΨB′

r
;x1, . . . , xp, xr+1, . . . , xk) :=

∑6=

ip+1,...,iq≥1

∑6=

iq+1,...,ir≥1

1Eo
(x1)1E+

k
(x2 − x1, . . . , xp − x1,

Xip+1 − x1, . . . ,Xiq − x1,Xiq+1 − x1, . . . ,Xir − x1, xr+1 − x1, . . . , xk − x1) ≤
r∏

`=p+1

Ψ(F1 + z`).

The latter inequality holds P-a.s. if F1 is replaced by F int1 = (−1, 1)d. Thus, we can apply Lemma

1 for B1 = Bp ⊂ F|zq |+1 and B2 = B′
r ⊂ F c|zq+1|−1, and together with the assumption (2.8) and

Lemma 2 (with obvious modifications for p ≥ 1), we obtain the inequality

|Ef(ΨBp ,ΨB′

r
;x1, . . . , xp, xr+1, . . . , xk)−Ef(Ψ̃Bp , Ψ̃B′

r
;x1, . . . , xp, xr+1, . . . , xk)|

≤ 2(r−p)d+1
(
EΨ(Eo)

(r−p)(1+η)
) 1

1+η
max

{
1,

|zq|+ 1

|zq+1| − |zq| − 2

}d−1
βψ(|zq+1| − |zq| − 2)

η
1+η

× 1Eo
(x1)

p∏

j=2

1Ezj
(xj − x1)

k∏

j=r+1

1Ezj
(xj − x1)

for any η ≥ 0, where the right-hand side (with 0 ≤ p < r ≤ k) is finite for η = δ/k. From (3.12)

and (5.21) we get that the total variation measures |
_
ζ
(p)

|(·) and |
_
ζ
(k−r)

|(·) for 0 < p < r < k

satisfy the estimates

|
_
ζ
(p)

|(
p
×
j=1

(F1+zj)) ≤ 2(d+1)p−1
EΨ(Eo)

p and |
_
ζ
(k−r)

|(
k
×

j=r+1
(F1+zj)) ≤ 2(d+1)(k−r)−1

EΨ(Eo)
k−r .

Combining the previous estimates with η = δ/k and applying again Hölder’s inequality we find

that

|I1(K)| ≤ 2(k+1)d
(
EΨ(Eo)

k+δ
) k

k+δ
max

{
1,

|zq|+ 1

|zq+1| − |zq| − 2

}d−1
βΨ(|zq+1| − |zq| − 2)

δ
k+δ

for any (z2, . . . , zk) ∈ Sk−1 satisfying |zk| ≥ 2k − 1 and m(z2, . . . , zk) = |zq+1| − |zq| (≥ 3). The

number of such (k − 1)-tuples (z2, . . . , zk) is at most

(2 |zq |+ 1)d(q−1)
(
(2 |zk|+ 1)d − (2 |zk| − 1)d

)k−q
≤ 2 d (2 |zk |+ 1)d(k−2)+d−1

for 2 ≤ q ≤ k − 1, where the latter bound is justified by |zq| < |zq+1| ≤ |zk| and (4.16).

Therefore, first fixing the largest gap m(z2, . . . , zk) = m and having in mind that |z`| ≤ (` − 1)m

for ` = 2, . . . , k, and then summing up over all m ≥ 3 yields that

∑

(z2,...,zk)∈Sk−1:|zk|≥2k−1

|I1(K)| ≤ 2(k+1)d
(
EΨ(Eo)

k+δ
) k

k+δ

∞∑

m=3

2d
(
2(k − 1)m+ 1

)(k−1)d−1

×max

{
1,

(k − 2)m+ 1

m− 2

}d−1

βΨ(m− 2)
δ

k+δ ≤ C5(k, d, δ)
∞∑

m=1

m(k−1)d−1βΨ(m)
δ

k+δ ,
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where, by (2.9), the series in the last line converges and the constant C5(k, d, δ) depends only on

d ≥ 1, k ≥ 2 and EΨ(Eo)
k+δ <∞.

Next we regard the terms Ij(K1, . . . ,Kj) for j ≥ 2 with decompositions K1, . . . ,Kj of K =

{1, . . . , k} satisfying Nj(K1, . . . ,Kj) > 0. These terms are multiple integrals over some subset

of Eo × (Ez2 ⊕ Eo) × · · · × (Ezk ⊕ Eo) w.r.t. products of higher-order covariance measures (3.12).

Let q ∈ {1, . . . , k − 1} be the (largest) index such that |zq+1| − |zq| = m is the maximal gap in the

sequence 0 = |z1| ≤ |z2| ≤ · · · ≤ |zk|. Then there exists an (ordered) index set K` = {k`,1, . . . , k`,κ`}

such that |zk`,r+1
| − |zk`,r | ≥ m for at least one r ∈ {1, . . . , κ` − 1}. This is obvious if q and q + 1

belong to the same index set. Otherwise, we distinguish two cases. First, q + 1 ∈ K` with κ` ≥ 2

and k`,1 < q + 1 so that |zq+1| − |zk`,i | ≥ m, where k`,i is the largest index in K` less than q + 1.

Second, q + 1 coincides with the smallest index kp,1 in Kp for some p ∈ {2, . . . , j}. Due to the

positivity of Nj(K1, . . . ,Kj), see p. 80 in [16], there exists an index set K` with κ` ≥ 2 such that

k`,1 < q + 1 < k`,κ` implying that |zk`,i+1
| − |zk`,i | ≥ m, where k`,i (k`,i+1) is the largest (smallest)

index in K` less (greater) than q + 1.

In this way we have found a covariance measure
_
ζ
(κ`)

occurring in Ij(K1, . . . ,Kj) to which the

same arguments as to
_
ζ
(k)

in I1(K) can be applied. Hence, taking into account that

|
_
ζ
(j)

|((F1 + zk1)× · · · × (F1 + zkj )) ≤ 2j−12jdEΨ(Eo)
j ,

for any {k1, . . . , kj} ⊂ {2, . . . , q}, we obtain the estimate

|Ij(K1, . . . ,Kj)| ≤ C6(k, d)
(
EΨ(Eo)

k+δ
) k

k+δ
βΨ(m− 2)

δ
k+δ .

Finally, repeating the above counting procedure and using (2.9) lead to

∑

(z2,...,zk)∈Sk−1:|zk|≥2k−1

|Ij(K1, . . . ,Kj)| ≤ C7(k, d, δ)

∞∑

m=1

m(k−1)d−1βΨ(m)
δ

k+δ <∞ ,

where the constant C7(k, d, δ) depends only on d ≥ 1, k ≥ 2 and EΨ(Eo)
k+δ <∞.

In the same way we can show that −γ
(k)
red(H

−
k−1) <∞ which terminates the proof. �

6 SOME EXAMPLES FROM STOCHASTIC GEOMETRY

Example 1. m-dependent stationary PP Ψ ∼ P , i.e. FΨ(Fa) and FΨ(F
c
a+m) are independent for

some fixed m > 0 and any a > 0, is Bk-mixing if EΨ(Eo)
k < ∞. Special cases of m-dependent

PPs are Poisson cluster processes and dependently thinned Poisson processes with bounded cluster

diameter and thinning procedures of bounded reach, respectively, see Example 4 below. Note that

in Theorem 2 we can take βΨ(m) = 0 and δ = 0.

Example 2. Voronoi-tessellation V (Ψ) =
⋃
i≥1 ∂Ci(Ψ) generated by a simple stationary PP Ψ =∑

i≥1 δXi
in R

d , where ∂Ci(Ψ) denotes the boundary of the cell Ci(Ψ) formed by all points in R
d

14



which are closest to the atom Xi, i.e. Ci(Ψ) = {x ∈ R
d : ‖x−Xi‖ < ‖x−Xj‖, j 6= i}, see [18]. Let

FV (Ψ)(F ) denote the σ-algebra generated by the random closed set V (Ψ)∩F , see [5] for details. In

case the Xi’s are atoms of a Poisson process Ψ ∼ Πλ the following bound could be shown in [5]:

β
(
FV (Ψ)(Fa),FV (Ψ)(F

c
a+r)

)
≤

{
c3

(
r
a

)d−1
exp{−λ c1 a

d−1 r} if r ≥ c0 a ,

c3
(
a
r

)d−1
exp{−λ c2 r

d} if r ≤ c0 a ,
for a, r ≥ 1/2,

giving βΨ(r) = c5 r
d−1 exp{−λ c4 r} according to (2.8) with constants c0, c1, . . . , c5 > 0 depending

only on the dimension d ≥ 1. Hence, the stationary PP of the cell vertices and other PPs associated

with the cells Ci(Ψ) (e.g. circumcentres of the (d− 1)-facets or Cox processes supported by V (Ψ))

are Brillinger-mixing. Furthermore, the exponential decay of βΨ(r) holds also for Poisson cluster

processes with typical cluster diameter D0 satisfying E exp{hD0} <∞ for some h > 0, see [5].

Example 3. Germ-grain models Ξ =
⋃
i≥1(Xi + Ξi) defined by a stationary PP Ψ =

∑
i≥1 δXi

in

R
d with intensity λ > 0 and a sequence {Ξi, i ≥ 1} (independent of Ψ) of independent copies of a

compact set Ξ0 ⊂ R
d, called typical grain. In [8] the subsequent bound of the β-mixing coefficient

between two σ-algebras generated by the random closed set Ξ on Fa and R
d \ Fa+r, respectively,

could be derived:

β
(
FΞ(Fa),FΞ(F

c
a+r)

)
≤ β

(
FΨ(Fa+r/4),FΨ(F

c
a+3 r/4)

)
(6.22)

+ λd 2d+1
[(

1 +
4 a

r

)d−1
+

(
3 +

4 a

r

)d−1]
E‖Ξ0‖

d
1(‖Ξ0‖ ≥ r/4)

for a, r ≥ 1/2, where ‖Ξ0‖ := sup{‖x− y‖ : x, y ∈ Ξ0} denotes the diameter of the typical grain Ξ0.

Taking into account condition (2.8) with β-mixing rate βΨ(r), it is easily seen from (6.22) that

β
(
FΞ(Fa),FΞ(F

c
a+r)

)
≤

(
max

{
1,

4 a

r

})d−1 (
βΨ(r/2) + λd 8dE‖Ξ0‖

d
1(‖Ξ0‖ ≥ r/4)

)
(6.23)

for a, r ≥ 1/2.

Note that (6.23) provides the β-mixing rate of a cluster PP Ψc` :=
∑

i≥1

∑Ni

j=1 δXi+Y
(i)
j

if Ξ0 =

{Y1, . . . , YN} consists of (P-a.s.) finitely many random points with typical cluster diameter D0 =

‖Ξ0‖. Further, Cox processes Ψco are frequently used PP models, see e.g. [2] for a general definition,

in particular so-called interrupted Poisson processes supported by a random set Ξ or its boundary

∂Ξ, see [7, 18]. For example, the atoms of a Poisson process Φ =
∑

i≥1 δPi
∼ Πµ being independent

of the germ-grain model Ξ are only counted when they lie in Ξ, i.e. Ψco =
∑

i≥1 1Ξ(Pi) δPi
. Due to

(6.23) and the properties of Φ, it is clear that the β-mixing rate βΨco(r) satisfies (2.9) if βΨ(r) does

and
∞∫

1

r(k−1)d−1
(
E‖Ξ0‖

d
1(‖Ξ0‖ ≥ r/4)

)δ/(k+δ)
dr ≤

4(k−1)d

(k − 1)d
E‖Ξ0‖

k d (1+δ)/δ <∞(6.24)

for some δ > 0 . Hence, since EΨco(Eo)
k+δ <∞ obviously holds, both assumptions (2.9) and (6.24)

imply that the stationary Cox PP Ψco turns out Bk-mixing.

From the view point of statistics of germ-grain models, see [14], the family of PPs Ψu of exposed

tangent points associated with the germ-grain model Ξ in direction (of a unit vector) u contain a
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lot of information on Ξ0 and Ψ. Assuming additionally that Ξ0 is convex and o ∈ Ξ0 the PP Ψu is

defined by

Ψu :=
∑

i≥1

δ`(u,Ξi)+Xi

∏

j:j 6=i

(
1− 1Ξj+Xj

(`(u,Ξi) +Xi)
)
,

where `(u,Ξi) denotes the lexicographically smallest tangent point of the convex grain Ξi in direction

u. This means that the atoms of Ψu are those tangent points of the shifted grains Ξi + Xi being

not covered by any other shifted grain Ξj + Xj , j 6= i, see Figure 1. Note that the PP Ψu turns

out to be stationary (but not isotropic even if Ψ and Ξ0 do so).

Figure 1: Exposed tangents points in a

Boolean model with discs

The very definition of Ψu reveals that the β-mixing coefficient on the l.h.s. of (6.23) can be replaced

by β
(
FΨu(Fa),FΨu(F

c
a+r)

)
. Together with the obvious fact that the moments of Ψu(Eo) do not

exceed the moments of Ψ(Eo) we arrive at the conclusion that Ψu is Bk-mixing for any u if Ψ fulfills

(2.9) and E‖Ξ0‖
k d (1+δ)/δ exists for some δ > 0 .

The best studied and most frequently used germ-grain model is the so-called Boolean model Ξ,

where the germs form a Poisson process Ψ ∼ Πλ. The random union set Ξ is P-a.s. closed if

E‖Ξ0‖
d < ∞, see e.g. [14, 18] for more on this basic model of stochastic geometry. Since in this

special case βΨ(r) = 0 for r > 0 and all moments of Ψ(Eo) exist, the number δ > 0 in (2.9) can

be taken arbitrarily large which relaxes the moment assumption on ‖Ξ0‖ to E‖Ξ0‖
k d+ε < ∞ for

an arbitrarily small ε > 0 in order to insure Bk-mixing of Ψco and Ψu. It is noteworthy that for

Boolean models the intensity λu of Ψu ∼ Pu can be simply expressed by λu = λ exp{−λEνd(Ξ0)}

and the Lebesgue density %
(k)
u of the kth-order factorial moment measure (2.5) (with Pu instead of

P ) exists for any k ≥ 2 and takes the form

%(k)u (x1, . . . , xk)

= λk
k∏

p=1

E

( k∏

q=1
q 6=p

(
1− 1Ξ0(u)(xq − xp)

))
exp

{
λ

∫ [
E

k∏

r=1

(
1− 1Ξ0(u)(x− xr)

)
− 1

]
dx

}
,
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where Ξ0(u) := −Ξ0 + `(u,Ξ0). This formula allows to check the Bk-mixing property in a direct

way showing that indeed E‖Ξ0‖
k d < ∞ is sufficient. Furthermore, %

(k)
u (·) is uniformly bounded by

λk for k ≥ 2, which is significant for so-called sub-Poisson processes.

Example 4. π(x)-thinning of point processes: Let {π(x), x ∈ R
d} be a stationary random field

on [Ω,F ,P] taking values in [0, 1] and being independent of the stationary PP Ψ =
∑

i≥1 δXi
in

R
d, see [18]. Define the 0–1-valued random mark field {M(x), x ∈ R

d} with finite-dimensional

distributions P(M(x1) = 1, . . . ,M(xk) = 1) = E[π(x1) · · · π(xk)] for any x1, . . . , xk ∈ R
d and

k ∈ N. In this way we obtain a so-called π(x)-thinned stationary PP Ψπ =
∑

i≥1 δXi
M(Xi). This

thinning procedure means that, for a given realization of the probabilities π(x) = p(x) , x ∈ R
d, the

atom Xi survives with probability p(Xi) independently of the survival of the other atoms Xj , j 6= i.

As special cases we mention π(x) = 1(ξ ∈ B) or π(x) = (ξ(x)− a)1(a ≤ ξ(x) ≤ b)/(b− a) for some

stationary random field {ξ(x), x ∈ R
d} and certain fixed B ∈ B1 and a, b ∈ R

1. As particular case

of geostatistical marking of PPs we deduce from Lemma 5.1 in [7] (with σ-algebra Fπ(F ) generated

by {π(x), x ∈ F}) that

β
(
FΨπ(Fa),FΨπ (F

c
a+r)

)
≤ β

(
FΨ(Fa),FΨ(F

c
a+r)

)
+ β

(
Fπ(Fa),Fπ(F

c
a+r)

)

for a, r ≥ 1/2, which gives βΨπ (r) ≤ βΨ(r)+βπ(r) for the corresponding β-mixing rates. This enables

us to check Bk-mixing of Ψπ. On the other hand, this property of Ψπ holds for any Bk-mixing PP

Ψ if additionally
∫
(Rd)j |Cumj(π(o), π(x2), . . . , π(xj)) |d(x2, . . . , xj) <∞ for j = 2, . . . , k.

Example 5. Generalized Stoyan soft-core process I and II: As in Example 3 let Ψ =
∑

i≥1 δXi
be a

simple stationary PP in R
d independently marked by a sequence of random vectors {(Ξi, Ui), i ≥ 1}

with independent components, where the first ones are independent copies of a compact set Ξ0 ⊂ R
d

containing o and the second ones are independently uniformly distributed in (0, 1). Then we are

in a position to define two types of dependently thinned PP generalizing two thinning procedures

suggested in [19]:

Ψth,1 :=
∑

i≥1

δXi

∏

j 6=i

(
1− 1Ξi+Xi

(Xj)
)

and Ψth,2 :=
∑

i≥1

δXi

∏

j 6=i:Xj∈Ξi+Xi

1[Ui,1)(Uj)

To be precise, in the first model an atom Xi of Ψ survives if and only if no other atom Xj (of Ψ) lies

in Ξi +Xi, whereas in the second model Xi will survive iff either no other atom Xj lies in Ξi +Xi

or all atoms Xj ∈ Ξi+Xi, j 6= i, have marks Uj greater than or equal to Ui. In [19], Ψth,1 and Ψth,2

were introduced and studied in the special case of a random ball Ξ0 = b(o, R0) centred at the origin

with the aim to generalize Matérn’s hard-core process I and II for which P(R0 = const > 0) = 1, see

e.g. [18]. Note that both of Stoyan’s soft-core PPs inherit the isotropy of Ψ, whereas a non-circular

set Ξ0 can generate a high degree of anisotropy in Ψth,i, i = 1, 2, even if Ψ ∼ Πλ.

Finally, it is easily checked that the β-mixing coefficients β
(
FΨth,i

(Fa),FΨth,i
(F ca+r)

)
, i = 1, 2 ,

have the same bound as β
(
FΞ(Fa),FΞ(F

c
a+r)

)
in (6.23) with all consequences mentioned above.

In case of Ψ ∼ Πλ this implies that each of the soft-core Poisson processes Ψth,1 and Ψth,2 (with

intensities λ1 = λ exp{−λEνd(Ξ0)} and λ2 = E
[
(1− exp{−λ νd(Ξ0)})/νd(Ξ0)

]
, respectively) turns

out Brillinger-mixing whenever E‖Ξ0‖
n <∞ for any n ∈ N, and they prove to be m-dependent (as

defined in Example 1) if P(‖Ξ0‖ ≤ const) = 1.
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