Effect of External Charges on the Quantum
Superconductor-Insulator Transition
in a Josephson-Junction Array.

G. Luciano (*)(**)(%), U. ECKERN(*) and J. G. KISSNER (¥)

(*) Institut fiir Physik, Universitdt Augsburg - D-86135 Augsburg, Germany
(**) Dipartimento di Scienze Fisiche, Universita’ di Napoli and INFM
Mostra d’Oltremare Pad. 19, 1-80125 Napoli, Italy

PACS. 74.50 +r — Proximity effects, weak links, tunneling phenomena, and Josephson effects.
PACS. 74.60Ge - Flux pinning, flux creep, and flux-line lattice dynamies.
PACS. 74.76 —w — Superconducting films.

Abstract. — We study the influence of a uniform background of external charges on the dynamics
of a vortex moving in a quantum (zero temperature) Josephson-junction array, in the limit in
which the capacitance between islands, C}, is much larger than the ground capacitance. For large
Josephson coupling, E;> E¢ = 2 /2C;, we confirm the continuum limit result for the vortex
mass, both in the absence and in the presence of the external charges. Upon decreasing E; /E,
the vortex mass vanishes at a critical value, which can be taken as an indicator of the super-
conductor-insulator phase transition. The phase diagram, as a function of the external charge, is
determined on the basis of a small a (a? = E;/8E;) expansion. We find, in particular, that
external charges significantly stabilise the superconducting phase.

High-quality arrays of Josephson junctions of very small capacitances offer a unique
opportunity to test models of quantum statistical mechanies. It has been found [1-3] that such
an array can undergo a superconductor-insulator transition at low temperature, when the
Coulomb charging energy E becomes comparable with the Josephson coupling energy E;

(a = VE /8E; ~ 1). The transition has been studied numerically and analytically in [4], using
a description in terms of charges and vortices. It can be analysed from the superconducting
side, in particular, by studying the dynamical properties of a single vortex added to the array:
a mass can be attributed to the vortex[5], which vanishes at the transition[4]. In addition,
external charges added to the islands by a gate voltage induce frustration, thereby stabilising
the superconducting phase. This effect was studied in detail for a short-ranged Coulomb
interaction [6, 7].

In this article, we study the zero-temperature phase diagram and the quantum vortex
dynamies in the presence of a uniform static background of offset charges g, in the limit of a
long-ranged Coulomb interaction (which is relevant for some of the experimentally
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fabricated arrays). Our method preserves two essential features of the model: the
discreteness of charge transfer (by Cooper pairs) between islands, and the invariance of the
system, when all external charges are increased by the same multiple of 2¢, leading to the
expected periodicity of all physical quantities.

We consider a square array of Josephson junctions (JJA) which is described by the
Hamiltonian

1 .
= 5(26)32(7’% -q) 65y —q;) — EJ(Z)COS(% —@;). (1)
Y tJ

The index i = (i,, 7,) labels the islands, which are characterised by the phases of the super-
conducting order parameter, {@;}, and their conjugate variables, which are the charges,
{Zent} [n, ¢;]1 = —16 . We also introduced static external charges, {2¢q; }, on each island.
&y ! is the inverse of the capacitance matrix; we take only the ground capacitance, Cy, and the
capac1tance between neighbouring islands, C; (E¢ = ¢%/2C)), into account, and assume below
that C;>>C,.

In the superconducting phase the partition function can be expressed as a collection of vor-
tex-antivortex pairs of vorticity v;, (the vorticity at each space-time point can take the values 0
or =1)[2]. A cumulant expansion yields the partition function in the following form [4]:
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where w, = V8E Ej; i 1s the Josephson-plasma frequency (its inverse is chosen to define the
time spacing, e =w,’; A=1), and Gy = —In|r,—r;| is the logarithmic vortex-vortex
interaction, with r; = a(zx, iy). Here, and in the following, a dot means a discrete,
dimensionless time derivative, and the lattice constant, a, is set equal to one. Furthermore,
we defined the phase configuration around a vortex, @ ; = aretg ((y; — ¥;)/(%; — %)), and the
connected charge-charge correlation function, 2y ., = ((n;; — ¢:) (M — g;)).. Averages (-)
are performed with respect to the charge action

S, = E 2(”& Q%)\/ﬂ;,m (72;1: Qj)’ (5)

Z, =Trlexp[—8,]], and the matrix # is defined by[4]

4E 0y Gy
My = —V,;0, 0+ ———(20,, =0, v 1e=0r 1 -2)s 6
v W, o 2;rcEJ( : T . ) 6)

where V;; =2nC,6;'; the range of this quantity is 2 =V/C,/C,, provided 1 > 1. For
illustration, we give the Fourier transform of &, (i, 1) — (k, w), in the long-wavelength low-
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frequency limit
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Adding a single vortex with trajectory r(z) and configuration v;, = 8(r; — r(z)) to the array,

one derives an effective vortex action, which allows to identify the vortex mass tensor as
follows:

Mylr(t) —r('), 1 —1']= %}Va O(r(t) — r;) 24, VO, —r(z")) . (8)

Clearly, the charge-charge correlation function determines various aspects of the vortex
dynamics [8,4]; for example, considering a constant and small vortex velocity, the vortex
mass is

2
k
M, =05 2 M0, r)=~;-j%?2(k,w=0). ©

In order to evaluate.2; ., and < n;, > explicitly, we perform a Poisson resummation. The
averages are expressed in terms of discrete auxiliary fields, ¢,, that run over all integers,

¢=0, £1, =2, .... The resulting expressions for <n;, > and .2; ,,- are the following:
(Mie) = qi + 275@; M re{Die)s 10

and
Dijyew = Migie = @0F X M bk Pir)e Ky s (11)
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where the new average () is performed with the action
8, =2x° _E,Qﬁa‘z M he P — 2ﬂi;Qi¢i:- (12)
1,17 T

Clearly, (n;;) = ¢ when the external charge is homogeneous (which we consider from now on).
The advantage of introducing the ¢-fields is that, in the limit A >> 1, they interact through the
short-ranged kernel

-1 1 R v . ot

M e o (=VH)exp[~w,|t-1'|], (18)
where V2 denotes the Laplacian on the lattice. Since 4 5o = k% /8E, it is easily seen that
the first term to the right of eq. (11) gives the classical contribution [5] for the vortex mass,
Mgg = n® [AE. Furthermore, it is apparent that the correlation function % = (¢ ¢ ). I8
exponentially small for a — 0, confirming the classical result for small a, while for a — o, i.e.
in the insulating regime, the ¢-fields can be treated as continuous variables: thus % =
= [47? in this limit, and .2 = 0. In between, at a critical value a ., the model is expected to
have a phase transition of the roughening type (this is clear when we replace the exponential
time dependence in eq. (18) by a é-function[9,10]), such that for small k, %} , - ~ k2 for
a > a,, while %; , - approaches a constant for a < a,, which we denote by &%-2a/7%w,,.
The dimensionless correlation length, &, is expected to diverge at the transition; it also
characterises the stiffening of the the spin-wave spectrum (4], w2 — wi(1 + £%k?), and,
assuming that the charge-charge correlation function is of the form given by the SCHA
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approximation, it determines the vortex mass according to[4]

M, [Mgs = (47E%) ' In(1 + 472&?) . (14)

Thus, M, — Mgg for £—0, and M, — 0 for £— .

To be precise, we define the connected correlation function, 9%, ,={(Pu @)~
— (@i @0 ), wherej = i + mi + ny, v’ = v + ve(m, n, vareintegers; clearly, this quantity is
independent of (¢, 7)). For finite but small a, 9%, , is computed by a small a expansion, in the
same spirit as the low-temperature expansion[11]. Then, only a few sites are «excited», that
is we can compute the average by including only those configurations that have a small
number of excitations. For example, %y, is given by the following expression

(s = exp[ — 7% /4a]):
.o =2 cos (2q) s* + 8 cos (4wg)s® + [ 8 — 12 cos (47g) +

+ 36 cos (61g) + 8 cos (8xg)] st + O(s®) + 25 EOT:' + O(s* ~ 14y | (15)
Ve

where T, = (VU] — 1)cos (47q) + (s ~4#/*®l*I} — 1) and e =2.71.... The terms with
integer exponents of g are related to the excitations in the space directions, whereas those
with non-integer exponents originate from excitations in the time direction. The latter do not
play a significant role in the calculation of the correlation length, and we neglect them in the
following. Furthermore, %, , is strongly peaked at m = n = v = 0, and falls off rapidly by
increasing the space or time distance, at least for not too large an external charge, i.e. we may
restrict ourselves to a few terms (Fy, 0, Fi0,0. Fi1,0, F20,0) When calculating the
correlation length, &% = (a2 /2a)m§v Hn. - Explicitly, we obtain

2
§ = ";E"{z cos (27q) 8* + 16 cos (479)s® +
a

+ [ —20 cos (47q) + 108 cos (6rq) + 32 cos(8mg)]s* + ...}. (16)
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Fig. 1. Fig. 2.

Fig. 1. - Squared correlation length vs. a in the absence of external charges, based on eq. (16) (curve a))
and for the three Padé approximations of this expression, P}(s), P{(s), and P}(s) (curves b) - d),

respectively).
Fig. 2. - Squared correlation length vs. a, on the basis of P} (s), for different values of the external

charge. From a) to f), ¢ increases from 0.00 to 0.05 in steps of 0.01.
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Fig. 3. Fig. 4.
Fig. 3. - Phase diagram as a function of 1/« and g¢. I: superconducting phase, II: insulating phase. The
range of a-values where our approach is less reliable is shown as a dashed line.

Fig. 4. - Vortex mass (normalised to Mgg) vs. a, as calculated from eq. (14), for the same g-values as in
fig. 2.

This result is of limited usefulness (see fig. 1, curve a)); however, a Padé approximation
immediately leads to the desired divergence at a critical value of a and, fortunately, the
behaviour is qualitatively similar for the different Padé approximations, P?(s), P$(s), and
Pi(s) (fig. 1). In the following, we work with P{ (s). The critical value is close to 1.2 for ¢ = 0,
and moves quickly to higher a with increasing ¢ (fig. 2). From these results, it is straight-
forward to determine the phase diagram and the vortex mass. The results are shown in fig. 3
and 4, respectively.

In summary, we studied the zero-temperature phase diagram and the quantum dynamics
of a vortex in a Josephson-junction array with a uniform static background of offset charges g,
in the limit of a long-ranged Coulomb interaction, by an analytical method similar to a low-
temperature expansion. We have confirmed that the vortex mass tends to Mzg, independent
of g, in the limit of a dominant Josephson coupling energy (a — 0), unlike other approaches
which predict an unphysical, lower value in the classical limit{4]. Furthermore, the phase
boundary for ¢ = 0 is found to be at a.= 1. 2, unlike earlier studies which gave = 1. 05
(SCHA approximation), = 0. 79 (duality arguments), = 0. 46 (Monte Carlo results)[4], and
== (). 5 (variational approach [3]). In view of the differences in the methods which were used,
we are at present not able to resolve these discrepancies (though it must be noted that the
last values are closest to the one found experimentally; see, e.g.,[12] for a—theoretical and
experimental—review). For a finite offset charge, we find the disordered (insulating) region
to be strongly suppressed, in particular more strongly than for a short-ranged Coulomb
interaction. However, some indications of this tendency are already apparent in studies on
small systems[4]. From the form of the phase diagram, see fig. 3, we speculate that the
transition disappears when the magnitude of the offset charge is strong enough.

The question of the effect of random offset charges, presumably most important for
experiments on Josephson-junction arrays, remains an open problem.
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