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1. Introduction

The prediction by Anderson in 1958 [1], that electronic states can become localized
in a spatial region of a solid, has opened a new field in condensed matter physics,
namely Anderson localization [2, 3]. He was the first to recognize that extended
states, existing in a perfect metal, can become exponentially localized when the
amount of disorder is above a critical value. This implies that states have to
undergo a metal-insulator or Anderson transition under certain conditions.
Let us suppose you have a perfect metal where electrons do not scatter. As a

consequence, conductivity is infinite. However, from experimental experience we
know that the conductivity in metals is finite. The reason is that a real metal
is by no means perfect and electrons scatter at vacancies or impurities. In a
simplified picture charge carriers are considered to perform random walks in the
metal, resulting in diffusion and, thus, to a finite conductivity. What happens
if we increase the number of impurities and thus disorder? Naively, one would
expect that this leads to an increasing diffusion constant and, therefore, increasing
resistivity. But it turned out to be different.
Anderson has shown in his pioneering work that there exists a mobility edge and

electron wave functions become exponentially decaying when reaching a certain
amount of disorder. In this case diffusion is absent and, consequently, charge
carriers are trapped and can not contribute to transport anymore. The metal
gets insulating which is a purely quantum effect (at zero temperature) due to
interference of the wave function.
The next major step towards a better understanding of the disorder driven

metal-insulator transition was made when Abrahams et al. [4] introduced their
scaling theory of localization. They discussed the behavior of the conductance of a
finite system under change of its size L leading to the β-function (d ln g/d lnL) of
the conductance g. The behavior of this function indicates under which conditions
an Anderson transition is expected. It turned out that for spinless and non-
interacting electrons this transition only exists in dimensions d > 2. Meaning that
any amount of disorder in two dimensions must lead to localization even though
the localization length might be larger than the system size.
At this time in the early 1980ies, computers began to play a greater role in

physics and Pichard and Sarma [5] introduced a numerical method for the local-
ization length and also a scaling theory. This transfer matrix approach allows to
calculate the localization length of electron wave functions on finite strips and was
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1. Introduction

originally used in the context of stochastic dynamical systems (cf. e.g. Ref. [6]).
The simplest model for this is the Anderson Hamiltonian which consists of a hop-
ping term and a diagonal term with random on-site energies. MacKinnon and
Kramer introduced a further numerical method using Green functions [7, 8] for
the localization length. They have shown the Anderson transition for a three di-
mensional cubic lattice and have calculated the critical exponent of the localization
length at the metal-insulator transition using finite-size scaling. The question of
whether this transition and thus, the critical exponent is universal (i.e. indepen-
dent of the underlying model) is still debated.

In two dimensions it has been shown, at least for relatively strong disorder, that
a metal-insulator transition does not occur [9, 10]. But it is still unclear whether
states are truly exponentially localized for weak disorder or whether the wave func-
tion decays with a power-law [5, 11, 12]. Questions have been raised whether there
might be a transition from power-law localized states to exponentially localized
states [11, 13, 14]. Currently, this rigorous argument is no longer valid and several
Anderson transitions are known to exist in two dimensions [15]. Probably the best
known example is the quantum Hall transition. The discovery of the quantized
Hall effect by von Klitzing [16, 17] had a huge impact and there has been a great
effort to understand this effect to this day. It is believed that the quantum Hall
transition also belongs to the class of Anderson transitions. Chalker and Cod-
dington came up with a network model describing the transition between plateaux
[18]. Indeed, their model using the transfer matrix approach shows a critical point.
Somewhat later Dirac fermions were proposed as a model for understanding the
quantum Hall effect. Haldane suggested a model for the quantized Hall effect
without magnetic field using a honeycomb lattice [19]. Ludwig et al. gave an
alternative approach to the quantum Hall transition deriving Dirac fermions from
a square lattice with half a magnetic flux quantum per plaquette [20]. The latter
authors observed that the Hall conductivity of a single Dirac fermion acquires a
finite value when its mass is non-zero in the absence of disorder. A further indica-
tion for Dirac fermions was the mapping from the Chalker Coddington model to
a Dirac Hamiltonian [21]. Despite the progress made, it remains unclear if Dirac
fermions or their lattice realizations share the same transition.

The Dirac equation was introduced by Paul A. M. Dirac uniting the principles
of quantum mechanics and special relativity. His equation, originally formulated
for electrons [22], describes relativistic particles with spin 1/2, thus describing
fermions, and their anti-particles. A major property of Dirac fermions is the linear
dependence of the energy on momentum. This is in direct contrast to particles
described by the Schrödinger equation, which show quadratic dispersion. Four
years before Haldanes paper, Semenoff introduced a two dimensional lattice real-
ization of Dirac fermions on a honeycomb lattice as a single layer of graphite. The
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band structure of graphite and, consequently, the linear momentum dependence
for small energies of a single layer, was already known since 1947 [23], but it was
common belief that such a system could not be stable. Nevertheless, in 2004 the
model of Semenoff became reality when Novoselov and Geim [24] managed to pre-
pare samples made of monocrystalline graphitic films, later called graphene. They
were able to connect leads to a single graphene sheet and showed that graphene
has a minimal conductivity of order ≈ e2/h. Moreover, a new type of quan-
tum Hall effect has been discovered [25], where a half integer plateau exists at
zero carrier density. Both findings are explained by using two dimensional Dirac
fermions. The minimal conductivity can be calculated by means of the Kubo for-
malism [20, 26, 27] or the Landauer approach [28]. The unconventional Hall effect
can be justified by Landau levels [29, 30], which are different as for a usual two
dimensional electron gas.
Further examples where Dirac fermions are present are fullerenes [31, 32] and

topological insulators [33, 34, 35, 36]. Whereas it was interesting to study Dirac
fermions in order to gain wider understanding of the quantum Hall transition in
the past, the driving force today is graphene and topological insulators.
Using a quantum field theoretical approach, it has been shown that Dirac

fermions can undergo a metal-insulator transition [37, 38] and a similar transi-
tion has also been found numerically [39]. This has drawn our attention to lattice
fermions and in particular on the question ”Is there a metal-insulator transition
and, if so, is it universal?”. It is due to this question that we have been encour-
aged to adapt the transfer matrix approach to lattice fermions and to investigate
Anderson localization using finite-size scaling.

Outline of this thesis

In this thesis we study the influence of disorder on Dirac fermions in the continu-
ous case and realized on various lattices, which we refer to as lattice fermions. We
discuss the origin of Dirac fermions in graphene as a prominent example in chap-
ter 2. In chapter 3 the concept of transfer matrices is introduced and applied to
calculations of transmission coefficients for the continuous case in one dimension.
We extend this concept in chapter 4 and implement an algorithm for calculations
of Lyapunov characteristic exponents in one and two spatial dimensions. Before
we turn to numerical calculations, the method of finite-size scaling is introduced
in chapter 5.
In chapter 6 we discretize the Dirac equation, in such manner that we can

avoid the problem of fermion doubling, followed by the construction of a transfer
matrix. The introduced model allows to study the influence of multiple fermions.
Whenever possible, we compare between results of different models or methods.
Moreover, we compare results for a special case with perturbation theory.
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1. Introduction

The remaining chapters are devoted to simulations for two dimensional lattice
fermions, where we consider lattice fermions with random gap in chapter 7 and
perform finite-size scaling analysis. For random scalar potential this is carried out
in chapter 8. In both cases we find an Anderson transition and for random gap our
analysis leads to a phase diagram. Finally, in chapter 9, we treat the random mass
problem using tight-binding models for lattice fermions and show that results can
be compared with certain results from chapter 7. In the last chapter our findings
are summarized and a conclusion is drawn.
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2. Dirac fermions in graphene

Graphene is a single layer of carbon atoms arranged in a honeycomb lattice. Most
of its celebrated properties can be attributed to its lattice structure [24, 25, 29]
leading to a linear momentum dependence of the spectrum for low energies. The
probably most important property is the minimal conductivity, already mentioned
in the introduction. Although the density of states for Dirac fermions in two
dimensions is zero at the neutrality point (E = 0) the conductivity is finite and
of the order of e2/h. Moreover, the spacing of Landau levels for Dirac fermions
is proportional to

√
n, with n being the index of a Landau level, whereas it is

proportional to n for a usual two dimensional electron gas.
In this section we like to give the basis for understanding the latter and to clarify

the origin of Dirac fermions. For this reason, let us start with the tight-binding
description of electrons in graphene.

2.1. Tight-binding model

The honeycomb lattice is composed of two triangular lattices both tilted by an
angle of π/3 with respect to each other [23, 40]. We refer to lattice points of one
sublattice as type A and B respectively cf. figure 2.1. Each carbon atom of type
A has three neighbors of type B linked with strong σ bonds, which are a result of
sp2 hybridization of the 2s, 2px and 2py orbitals.
The electron in the 2pz orbital, perpendicular to the sheet, forms a weak π bond

by overlap of two half-filled 2pz orbitals. These π electrons can tunnel from site
to site and are well described with a tight-binding Hamiltonian [41, 42, 43]

H = −t
∑

<rA,rB>

c†AcB +H.c. , (2.1)

where t ≈ 2.8eV is the hopping parameter, c†i (ci) is the creation (annihilation)
operator of an electron at site A and B respectively. The summation is taken over
all pairs of nearest neighbors. The lattice can also be viewed as a triangular lattice
composed of two atoms per unit cell with basis vectors

v1 =
a
2
(3,

√
3), v2 =

a
2
(3,−

√
3) , (2.2)

9



2. Dirac fermions in graphene

AB B

B

Figure 2.1.: Honeycomb lattice composed of two sublattices A and B.

where a = 1.42Å denotes the lattice constant. Using a Fourier representation of
the operators

cA =

∫

ΩB

d2k

(2π)2
exp(ik ·A) c̃A , cB =

∫

ΩB

d2k

(2π)2
exp(ik ·B) c̃B , (2.3)

where ΩB is the area of the Brillouin zone and A,B are the coordinates of sites
A,B, the Hamiltonian is given by [40]

H =

∫

ΩB

d2k

(2π)2

(

c̃†A, c̃
†
B

)(
0

∑3
i=1 exp(ai · k)

∑3
i=1 exp(−ai · k) 0

)(
c̃A
c̃B

)

, (2.4)

with nearest neighbor vectors

a1 = a(0,−1), a2 =
a
2
(
√
3, 1), a3 =

a
2
(−

√
3, 1) . (2.5)

Equivalently we can write the Hamiltonian matrix in sublattice representation [19,
26]

H = h1σ1 + h2σ2 , (2.6)

where σi are the Pauli matrices

σ0 =

(
1 0
0 1

)

σ1 =

(
0 1
1 0

)

σ2 =

(
0 −i
i 0

)

σ3 =

(
1 0
0 −1

)

(2.7)
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2.1. Tight-binding model

and

h1 = −t
3∑

i=1

cos(ai · k), h2 = −t
3∑

i=1

sin(ai · k) . (2.8)

This representation is very convenient not only the energy dispersion

E = ±
√

h21 + h22 (2.9)

can easily be obtained, but the Hamiltonian has a Dirac like structure, too. The
naming will be explained below. After some elementary transformations of equa-
tion (2.9) we end up with

E(kx, ky) = ±t

√
√
√
√3 + 2 cos

(√
3 a kx

)

+ 4 cos

(√
3

2
a kx

)

cos

(
3

2
a ky

)

. (2.10)

Let us now take a closer look at the energy dispersion to clarify the origin of the
reference to Dirac. The resulting spectrum is shown as a density plot in figure 2.2
and as a typical band structure plot along the high symmetry axes in figure 2.3.

-2 -1  0  1  2

kx

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

k y

 0

 0.5

 1

 1.5

 2

 2.5

 3

K

K’

Γ

M

Figure 2.2.: Density plot of the bandstructure of graphene, the energy is in units
of t. Brillouin zone and points of high symmetry are marked in red.

As a direct consequence of the sublattice structure the spectrum has two bands,
the valence and the conduction band. Both bands touch each other at two distinct
points K and K ′, the so-called Dirac points, and in the vicinity of these points the
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2. Dirac fermions in graphene

-8

-6

-4

-2

 0

 2

 4

 6

 8

K Γ M K’

E
[e

v]

m=0eV m=1.4eV

Figure 2.3.: Band structure of graphene along the high symmetry axes for the
ungapped (red line) and the gapped case (blue line).

energy spectrum is linear in momentum. In undoped graphene the valence band is
fully occupied and the conduction band is empty. If we look at figure 2.2, it seems
that there are six Dirac points with coordinates

b±
1 = 4π

3
√
3a
(±1, 0) b±

2 = 2π
3
√
3a
(−1,±

√
3) b±

3 = 2π
3
√
3a
(1,±

√
3) (2.11)

but each cone only contributes with one third, since they all lie at the border
of the Brillouin zone. The total band width in graphene is ∆E = 6t ≈ 16.8eV .
Furthermore, the influence of thermal fluctuations, even at room temperatures, is
small. The reason is that the hopping rate is large, compared to the energy scale
of typical fluctuations. Accordingly, temperature effects can be mostly neglected,
this makes it for example possible to observe the quantum Hall effect at room
temperatures [44].
The next property we like to draw attention on, is, that in vicinity of each Dirac

point the dispersion is linear in momentum, exhibiting a cone like structure. A
Taylor expansion around each Dirac cone indeed gives the linear behavior

E = ±~vF |k+ b±
i | . (2.12)

This is equivalent to the dispersion of the Dirac equation in two dimensions, where
vF = 3ta/2 is the corresponding ”speed of light”, which is actually 300 times slower
in graphene. After shifting k → k− b±

i , we can describe the low-energy behavior
of quasi particles in graphene with the Dirac Hamiltonian

H = −~vF (kxσ1 + kyσ2) . (2.13)
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2.1. Tight-binding model

This approximation is reasonable if scattering between two Dirac cones can be
ruled out and if energies are smaller then E ≈ 0.2eV . The latter corresponds to
infrared light of wavelength ≈ 6µm. Note, that by replacing ki → hi we recover
the original Hamiltonian (2.6) for the honeycomb lattice (neglecting prefactors).
In real space the effective low-energy Hamiltonian reads

H = −i~vF (σ1∂x + σ2∂y) . (2.14)

All this is in contrast to usual semiconductor physics, where the energy disper-
sion has parabolic shape, and thus, can be described by the Schrödinger equation
with an effective mass [45, 46]. In graphene low-energy transport properties can be
described using the Dirac equation and for several properties, like the conductivity,
there are analytical solutions [27, 28].
We have seen that a tight-binding description of electrons, moving on a honey-

comb lattice, results directly in two bands. Both bands touch each other at two
distinct points and exhibit a linear dispersion for small energies, wich can be de-
scribed by the Dirac equation. This made graphene very popular because people
got enthusiastic about the new material with relativistic massless particles.

2.1.1. Breaking the sublattice symmetry and generating mass

As graphene might be a candidate for future transistors [47], it is of great interest to
understand the mechanism which creates a gap. Since the origin of the sublattice
symmetry are the two identical carbon atoms at sites A and B, this symmetry can
be broken by replacing one atom. In experiments this can be done by adsorption
of atoms on the graphene sheet, for example hydrogen [48]. The energy difference
of electrons located on site A and B, parametrized as m, results in a gap between
valence and conduction band [40]. The Hamiltonian for this case in k-space reads

H =

∫

ΩB

d2k

(2π)2

(

c̃†A, c̃
†
B

)( m
∑3

i=1 exp(ai · k)
∑3

i=1 exp(−ai · k) −m

)(
c̃A
c̃B

)

. (2.15)

In sublattice representation the Hamiltonian matrix gets

H = h1σ1 + h2σ2 +mσ3 , (2.16)

with the energy dispersion

E = ±
√

h21 + h22 +m2 . (2.17)

For the effective low-energy Hamiltonian it follows

H = −~vF (kxσ1 + kyσ2) + ~v2F mσ3, E = ±~vF

√

k2x + k2y +m2 , (2.18)
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2. Dirac fermions in graphene

where m is the mass of the relativistic particle.
In summary this means that by breaking the sublattice symmetry we open

a uniform gap at each Dirac cone cf. figure 2.3, which leads to massive Dirac
fermions in the low-energy approximation. In this thesis the brickwork lattice and
the low-energy approximation serves as a basis for later models for calculations of
the localization length using a transfer matrix approach to study scaling behavior
and the influence of disorder.
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3. Transfer matrix approach

In this chapter we like to present the concept of transfer matrices as a introduc-
tion. A more detailed discussion can be found, for example, in textbook [49].
Suppose the following setup shown in figure 3.1. Waves are sent into a sample
and due to scattering processes parts are reflected and transmitted. The probably
easiest example, where this can be studied, is scattering at a potential barrier in
one dimensional quantum mechanics. The wave functions are described by the
Schrödinger equation, and from the continuation conditions, reflection and trans-
mission amplitudes can be calculated.
A different approach to describe the same situation is to introduce a so called

transfer matrix. This matrix relates wave functions from one side of a sample to

Sample

al

bl

ar

br

Figure 3.1.: Setup for a typical scattering experiment, the arrows represent in-
and outgoing waves.

the other
ψright = T ψleft (3.1)

and wave functions ψleft/right = (al/r bl/r)
T are superpositions of in- and outgoing

waves. Whereas the scattering matrix defined through
(
bl
ar

)

=

(
r t′

t r′

)(
al
br

)

= S

(
al
br

)

, (3.2)

relates in- and outgoing waves, with transmission (t, t′) and reflection amplitudes
(r, r′). Transmission from left to right is described by t and reflection on the left

15



3. Transfer matrix approach

by r. One major difference between both approaches is that the transfer matrix is
multiplicative

ψ3 = T2T1 ψ1 ⇒ ψL =
L∏

n=1

Tn ψ1 (3.3)

and an arbitrary number of samples can be connected by multiplication of the
corresponding transfer matrices

(
ar
br

)

= M
(
al
bl

)

M =
L∏

n=1

Tn . (3.4)

Using elementary transformations we can express M with elements of S [50, 51]

M =

(
t′ − rt−1r′ rt−1

t−1r′ t−1

)

. (3.5)

3.1. Application to Dirac fermions in one dimension

Since the solution of scattering at a potential barrier for a one dimensional Schrödinger
particle can be found in any textbook on introductory quantum mechanics (e.g.
Ref. [52]), we like to illustrate the concept of transfer matrices considering Dirac
fermions in one dimension.

3.1.1. Transmission through a massive barrier

A massive fermion is described by the time independent Dirac equation

(
−i~vF σ1 ∂x + v2F mσ3 − Eσ0

)
ψ(x) = 0 , (3.6)

where vF is a velocity, m the fermion mass and σi are the usual Pauli matrices,
given by equation (2.7), with energy dispersion

E = ±
√
k2 +m2.

For simplicity we have also set ~ and vF to unity. Let now the mass be a function
of space where the incident wave is scattered

m(x) =







0 for x < a region I
m a < x < b region II
0 x > b region III .
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3.1. Application to Dirac fermions in one dimension

Then, a general solution of equation (3.6) in the three regions is given by

ψ(x) =







A

(
1
1

)

exp(ikx) +B

(
−1
1

)

exp(−ikx) for x < a

C

(
ξ
1

)

exp(iqx) +D

(
−ξ
1

)

exp(−iqx) a < x < b

E

(
1
1

)

exp(ikx) + F

(
−1
1

)

exp(−ikx) x > b

with ξ =
√

(E +m)/(E −m) and q =
√
E2 −m2 in the region with finite mass.

In order to find the matrix which fulfills the following relation

ψ(b) = Mψ(a)






E exp(ikb)
E exp(ikb)

−F exp(−ikb)
F exp(−ikb)







= M







A exp(ika)
A exp(ika)

−B exp(−ika)
B exp(−ika)






, (3.7)

we use continuity of the wave function ψI(a) = ψII(a) and ψII(b) = ψIII(b). This
leads to four equations

A exp(ika)− B exp(−ika) = Cξ exp(iqa)−Dξ exp(−iqa)
A exp(ika) +B exp(−ika) = C exp(iqa) +D exp(−iqa)
E exp(ikb)− F exp(−ikb) = Cξ exp(iqb)−Dξ exp(−iqb)
E exp(ikb) + F exp(−ikb) = C exp(iqb) +D exp(−iqb) .

Multiplying the second equation by ξ and adding (subtracting) the first, then
adding (subtracting) the third equation to (from) the fourth gives

C =
1

2ξ
exp(−iqa){A(ξ + 1) exp(ika)− B(ξ − 1) exp(−ika)}

D =
1

2ξ
exp(iqa){A(ξ − 1) exp(ika) +B(ξ + 1) exp(−ika)}

2E exp(ikb) = C(1 + ξ) exp(iqb) +D(1− ξ) exp(−iqa)
2F exp(−ikb) = C(1− ξ) exp(iqb) +D(1 + ξ) exp(−iqa) .

Using the latter equations we can eliminate coefficients C, D and express E, F
only with A and B. This leads to the following structure of the transfer matrix

M =

(
M11σ0 M12σ3
−M12σ3 M⋆

11σ0

)

, (3.8)
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3. Transfer matrix approach

which has non-zero entries

M11 =
iE√

E2 −m2
sin (qd) + cos (qd) (3.9)

M12 = − im√
E2 −m2

sin (qd) (3.10)

with d = b−a. The matrix M contains all information an the scattering process at
the barrier. Due to the spinor structure of the Dirac equation the transfer matrix
is 4 × 4 instead of 2 × 2 in the Schrödinger case. It is worth mentioning for later
discussions that in the absence of the barrier (m = 0) the transfer matrix is diag-
onal with entries M11 = exp(ikx). Comparing equation (3.8) with equation (3.5)
we can directly obtain the transmission coefficient

|t|2 = 1

|M11|2
=

(
E2

E2 −m2
sin2 (qd) + cos2 (qd)

)−1

(3.11)

which is shown in figure 3.2 and 3.3. In region II the wave is decaying like ψ ≈
exp(−md). If the barrier width is small compared to its hight m, the fermion can
tunnel through the barrier. This can be seen by comparing to the red curve, where
|t|2 > 0 for energies smaller than the gap width. As the mass barrier gets wider
transmission is only possible for energies larger than the gap.
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Figure 3.2.: Transmission coefficient for a Dirac fermion scattering at a massive
barrier.

Now that we have derived a transfer matrix describing a single barrier we can
generalize easily to the case of N identical scatterers, which brings us to the next
section.
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3.1. Application to Dirac fermions in one dimension
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Figure 3.3.: Density plot of the transmission coefficient (3.11) for d = 4

3.1.2. Transmission through N identical barriers

We already mentioned one big benefit of the transfer matrix formalism: Once we
know the matrix for one barrier, we can simply multiply the matrices and thus
connect an arbitrary number of scatterers. If we link N identical barriers it turns
out that the only change is that the width of the barrier d is multiplied by N , as
we would expect. Therefore, we should investigate a more interesting case.

Let us assume the situation where we put a region of length l with m = 0
between each barrier of same width similar to the Kronig-Penny model. This can
be described by the matrix

M̃ =

(
exp(ikl)σ0 0

0 exp(−ikl)σ0

)(
M11σ0 M12σ3
−M12σ3 M⋆

11σ0

)

=

(
M̃11 σ0 M̃12 σ3
M̃⋆

12 σ3 M̃⋆
11 σ0

)

. (3.12)

Since we want to consider N barriers we have to evaluate

M̃N = U diag(λ1, λ2, λ3, λ4)
N U−1 (3.13)

with

U−1 M̃U = diag(λ1, λ2, λ3, λ4) . (3.14)

Thus we need to calculate the eigenvalues λi and the transformation matrices U .
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3. Transfer matrix approach

For this reason it is convenient to abbreviate the entries of M̃ as

M̃11 =A + iB

A = cos(qd) cos(kl)− E√
E2 −m2

sin(qd) sin(kl) (3.15)

B = cos(qd) sin(kl) +
E√

E2 −m2
sin(qd) cos(kl) (3.16)

and

M̃12 =W − iC

W =
m√

E2 −m2
sin(qd) sin(kl) (3.17)

C =
m√

E2 −m2
sin(qd) cos(kl) . (3.18)

The eigenvalues are then given by

λ = A±
√
C2 − B2 +W 2 = A± α (3.19)

and the corresponding transformation matrix

U =







B−iα
C−iW

0 B+iα
C−iW

0

0 − B−iα
C+iW

0 − B+iα
C+iW

1 0 1 0
0 1 0 1






. (3.20)

We can now work out expression (3.13) which gives

M̃N =







D −G 0 F 0
0 D −G 0 −F ⋆

−F ⋆ 0 D +G 0
0 F 0 D +G






, (3.21)

where we have used

D = cos(qdN) (3.22)

G =
B√

C2 −B2 +W 2
sin(qdN) (3.23)

F =
C + iW√

C2 −B2 +W 2
sin(qdN) . (3.24)

Finally, the transmission coefficient is given by

|t|2 = |D +G|−2 . (3.25)
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3.1. Application to Dirac fermions in one dimension

The resulting expression for the transmission coefficient is rather lengthy and there-
fore we will not reinsert the abbreviations but plot the result directly in figure 3.4.
Here we have chosen the width of each barrier and the distance between them
to be equal. The first property that can be seen is that a particle can pass the
barriers for energies about half of the gap. This is because each single barrier is
narrow compared to m, thus, the particle can tunnel through it. If we increase the
width of a barrier the situation gets different, shown in figure 3.5, where tunneling
for E < m is suppressed.
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Figure 3.4.: Transmission through identical barriers with equal distances l = 1
and widths d = 1.

3.1.3. Transmission through a scalar potential barrier

Let us now consider the case of a massless fermion in one dimension scattering at
a scalar potential of width d, which is described by

(−i~vF σ1 ∂x + (V0 −E) σ0)ψ(x) = 0 . (3.26)

Adapting the calculation of section 3.1 to the latter equation leads to the transfer
matrix

M =

(
M11σ0 0

0 M⋆
11σ0

)

(3.27)

with non-zero entry

M11 = exp [−id(V0 − E)] . (3.28)
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3. Transfer matrix approach
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Figure 3.5.: Transmission through identical barriers with equal distances l = 1
and widths d = 10 for m = 1.

Since the resulting transfer matrix contains only phase factors in the diagonal, it
is clear that the transmission coefficient, given by |t|2 = |M11|−2 is always one.
In other words, the fermion is not scattered at a scalar potential barrier. This
behavior is known as Klein tunneling named after Oskar Klein, who solved this
problem for electrons in 1928 [53]. On the first sight this result is strongly counter
intuitive, but the physical explanation does not seem so farfetched: When the
particle hits the barrier, for example as an electron, it turns into an positron inside
the potential barrier and finally leaves it again as an electron. This is possible since
the Dirac equation simultaneously describes a particle and its anti-particle.
It soon has been noticed that the so called Klein paradox could be tested ex-

perimentally using graphene samples [54]. In this work the transmission coeffi-
cient consequently is angle dependent since graphene is two dimensional, but can
be compared for particles hitting the barrier perpendicular. Indeed, particles in
monolayer graphene can pass a potential barrier when moving perpendicular to
the barrier [55, 56]. For more publications on Klein tunneling in graphene, we
refer to Ref. [57] for further reading.
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4. Lyapunov exponent and

localization length

This chapter is intended to provide the background and method needed for later
calculations and follows mainly Ref. [58]. We previously have introduced the trans-
mission coefficient as a quantity that can be calculated by means of a transfer
matrix. In this chapter we are going to introduce an additional quantity, namely
the Lyapunov characteristic exponent (LCE) or just Lyapunov exponent (LE).
They are a very useful tool for studying metal-insulator transitions and are mostly
encountered with random matrices. Since the main interest in this thesis is to
perform finite-size scaling for lattice fermions and to study their metal-insulator
transitions, Lyapunov exponents are a welcome candidate to deal with.

4.1. Definition and properties

Whenever random numbers are involved, limit theorems come into play. Just think
of the central limit theorem for independent and identically distributed random
variables, which tend to be normal distributed for large numbers. One question
arises: Is there also a limit theorem if we deal with random matrices? The answer
is: Yes.
An introduction to random matrix theory can be found in textbooks [58, 59].

The multiplicative ergodic theorem of Oseledec [60] is a limit theorem for a product
of random matrices. A more detailed discussion can be found in Ref. [61]. For a
sequence of matrices, where the logarithm of the norm is finite ( 〈ln ||T ||〉 <∞ ),
there exists a limiting matrix Γ

lim
L→∞

(M†
LML)

1/2L = Γ (4.1)

with

ML =

L∏

i=1

Ti , (4.2)

where Ti is the transfer matrix of one step.
The eigenvalues of Γ are usually written as exp(γi) defining γi, which are called

Lyapunov exponents and are real and positive. When the sequence of matrices is
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4. Lyapunov exponent and localization length

ergodic the Lyapunov spectrum is independent of the particular sequence, thus,
the Lyapunov exponents are global properties of the random matrix product. If
one knows the eigenvalues, one also knows that there is a set of orthonormal
eigenvectors called Lyapunov basis ~vi, which allows to write

γi = lim
n→∞

1

n
ln |Mn ~vi| . (4.3)

This implies the existence of subspaces where the growth rate might be slower. For
this reason it is not sufficient to calculate only the maximum Lyapunov exponent
in a system with dimensionality higher than one. It is important to keep in mind
that the eigenvectors are in general not the eigenvectors of Mn but of M†

nMn

because

|Mn ~z|2 = 〈~z|M†
nMn|~z〉 . (4.4)

Another important point is that the Lyapunov basis depends on the certain se-
quence of matrices and therefore is only a local property in contrast to the Lya-
punov spectrum.

4.1.1. Identical non-random matrices

Let us now define a new set of stability exponents (cf. Ref. [58]). Let βi be the
eigenvalues of Mn then

αi = lim
n→∞

1

n
ln〈βi〉 αi ∈ C . (4.5)

If we are able to write Mn in diagonal form, the Lyapunov exponents are the real
part of αi

ℜ(αi) = γi , (4.6)

which is in our case helpful to compare between clean and disordered case. In a
system where disorder is absent all transfer matrices are equal. This allows us to
write

M =

N∏

i=1

Ti = T × T × ...× T = TN . (4.7)

Next we can use

diag(T ) = Λ = U−1 T U ⇒ T = U ΛU−1, (4.8)

which leads to

TN = U ΛU−1 U ΛU−1... U ΛU−1 = ΛN . (4.9)
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4.2. Numerical algorithm

As a consequence only eigenvalues of a single transfer matrix have to be calculated.
If we denote the eigenvalues of the transfer matrix as τi, we get

αi = lim
N→∞

1

N
ln(βi) = lim

N→∞

1

N
ln(τNi ) = ln(τi) (4.10)

and finally
γi = ℜ(ln(τi)) , (4.11)

which is independent of the number of multiplications. If we recall the transfer
matrix for one dimensional Dirac fermions from the previous chapter, it is clear
that the wave number is given by

ki = ℑ(ln(τi)) . (4.12)

The condition for the existence of an extended state is γi = 0. With the latter
relations we are able to compare the numerical results with analytical results for
clean systems. In general there is no equivalent theorem for αi like the Oseledec
theorem. Furthermore, for a product of random matrices the real part of αi can
differ from the corresponding Lyapunov exponent.

4.2. Numerical algorithm

In principle we could write a code, which computes the product of an arbitrary
number of random matrices, multiplies the result by its adjoint and then calculates
the eigenvalues to obtain the Lyapunov exponents in the end. Since computer
power and memory is limited one can imagine that numbers will be soon out of
range. In practice, it is not possible to get even close to 103 multiplications. A
solution to this problem is an algorithm that Pichard [5] and MacKinnon et al. [9]
introduced to the field of metal-insulator transitions. There are also former works
using the same method [6] in a different context.
During the iterative procedure described in Ref. [9], the product of a couple of

matrices has to be orthonormalized using the Gram-Schmidt process. The best
result is obtained when the latter is performed after each step of multiplication.
The benefit of increasing the number of multiplications is only a speed up in
calculations. This method allows to calculate the whole Lyapunov spectrum. The
smallest Lyapunov exponent is identified with the inverse localization length [5, 7]
and we define

min{|γi|} = γmin = Λ−1 . (4.13)

For the infinite system the localization length is denoted by ξ and determines the
exponential decay of the wave functions envelope

|ψ(r)| ∝ exp

(

−|r|
ξ

)

. (4.14)
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4. Lyapunov exponent and localization length

Calculating the Lyapunov spectrum by means of the Gram-Schmidt process is
equivalent to an consecutive QR factorization, where Q is an orthogonal- and R an
upper triangular matrix. For our further calculations we choose QR factorization
instead of the Gram-Schmidt process. The reason is that we use a numerical
library, which provides a fast QR factorization.
The algorithm for the calculation of the Lyapunov exponents with QR factor-

izations works as follows: Start with the product TnTn−1 × ... × T2T1 of ran-
dom matrices. Set B1 = T1 and factorize B1 = Q1R1 using QR factoriza-
tion. Replace the latter in the product TnTn−1 × ... × (T2Q1)R1. Then store

γ
(1)
k = ln |R1(k, k)|, replace T2Q1 = B2 and factorize again B2 = Q2R2. The log-

arithm of all diagonal entries is stored iteratively γ
(2)
k = γ

(1)
k + ln |R2(k, k)|. By

setting Bi = Qi+1Ri+1 the procedure can be repeated (n − 1)-times, which gives
finally Qn(RnRn−1 × ...× R2R1) = QnR.
The diagonal entries of R converge to the eigenvalues of Γ and the Lyapunov

exponents are given by

γk =
1

n

n∑

i=1

ln |Ri(k, k)| . (4.15)

Factorization after each step of multiplication leads to the highest accuracy. We
have controlled the precision by calculating the sum of all Lyapunov exponents,
which should be zero and is ≈ 10−15 in our case. Increasing the multiplications
between each QR factorization increases also the sum of γk. The convergence of the
Lyapunov exponents has been controlled by storing the last ≈ 104 and calculating
mean and variance. After reaching the desired error limit the multiplication of
transfer matrices has been stopped.
For our calculations we have used random number generators provided by a

numerical library, and the corresponding probability density functions can be taken
from appendix A.
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5. Finite-size scaling

The algorithm provided in the previous sections allows to calculate Λ as a func-
tion of system size M , and of disorder W . Since computational performance and
computer memory are both limited, numerical simulations are restricted to finite
systems and results have to be extrapolated to infinite ones. This can be achieved
by studying the size dependence of the localization length and more precisely by
finite-size scaling. In the following we like to introduce a scaling theory for the
localization length, which allows to make statements on infinite systems. Usually
the localization length normalized by strip width [7, 8, 9, 10, 62]

Λ̃ =
Λ

M
(5.1)

or equivalently the normalized Lyapunov exponent [63]

z =
M

Λ
=M γmin. (5.2)

is discussed in this context. Assuming that the considered system is metallic, it
is clear that the localization length must grow faster than the strip width, thus
diverge. When the system is in the localized phase the normalized localization
length has to converge to zero consequently, when increasing the system width.
Especially in the two dimensional case it is sometimes favorable to consider Λ
unnormalized. According to [5] this allows us to distinguish between two different
kinds of divergences. If Λ increases with system size M , it may grow faster than
M , which corresponds to an extended state or it may grow linear withM . Usually
the linear growth is interpreted as critical behavior, but the localization length
may also grow slower than M in an intermediate regime [12]. At least there exists
no argument against it, for the best of our knowledge. In both cases Λ will diverge,
and diffusion in two dimensions can not be ruled out for states decaying with a
power law (cf. Appendix in Ref. [64]). States are only exponentially localized
if Λ converges towards a finite limit. This behavior of Λ for M → ∞ can be
summarized as

Λ(W ) ∝ Mα . (5.3)

States are extended for α > 1, decaying for 0 < α < 1, critical for α = 1.
Only if α = 0 states are exponentially localized. According to [7] the normalized
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5. Finite-size scaling

localization length Λ̃ obeys a scaling theory such that

d ln Λ̃

d lnM
= χ(ln Λ̃), (5.4)

where χ is an unknown function with solutions of the form

Λ̃(M,W ) = f(ξ(W )/M) . (5.5)

Here ξ is a characteristic length of the system. The scaling theory states that
Λ̃ is not depending on M and W separately. Any change of disorder can be
compensated by a change of the length scale, i.e. system size. The scaling theory
presented here is based on ideas of [4, 65, 66] and was applied to the localization
length in [5, 9]. Having calculated ξ, it should be possible to rescale all data onto
a single curve. Let us illustrate two methods to calculate ξ.
A scale invariant point, where Λ̃ is independent ofM , indicates a metal-insulator

transition. From its behavior in vicinity of such a point it is possible to calculate
the critical exponent ν of the correlation length [9]. The length ξ can then be
identified with the localization length of a infinite system. All critical quantities
can be obtained by Taylor expansion

ln Λ̃ = ln Λ̃c +
S∑

s=1

As

(
|W −Wc|M1/ν

)s
(5.6)

= ln Λ̃c +
S∑

s=1

As

(
ξ

M

)−s/ν

(5.7)

with ξ = |W − Wc|−ν. Comparing the latter with equation (5.5), the scaling
function ξ can be interpreted as the characteristic length scale. This means that
we have extrapolated the localization length of a infinite system by finite-size
scaling.
In addition, there might be results which do not exhibit a critical point. In that

case, there is a second method to perform finite-size scaling. After calculating the
localization lengths of different strip widths and for different disorder strengths,
we arrive at a set of curves. For each disorder strength there is a corresponding
curve. Furthermore, we consider the data on a logarithmic scale. In general there
are several combinations of strip width M and disorder W leading to the same
localization length. If the scaling argument holds, it should be possible to find
a function ξ(W ) which maps all data points onto a single curve [7, 9]. For this
reason we have to minimize the variance of lnM − ln ξ for each localization length

S =
∑

i







1

Ni

∑

j

[lnMij − ln ξ(Wj)]
2 −

[

1

Ni

∑

j

(lnMij − ln ξ(Wj))

]2





(5.8)
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to obtain the scaling function. Index j labels different disorder strengths and i
corresponds to the number of certain localization lengths which share the same
value and intersect with different curves of disorder. The total number of these
localization lengths is given by Ni. Equating the partial derivatives to zero

∂S

∂ξ(Wk)
= 0

=
∑

i

{

− 2

Ni

∑

j

[lnMij − ln ξ(Wj)] δjk +
2

N2
i

[
∑

j

(lnMij − ln ξ(Wj))

]}

=
∑

i,j

{

− 2

Ni
ln(Mij)δjk +

2

Ni
ln ξ(Wj)δjk +

2

N2
i

ln(Mij)−
2

N2
i

ln ξ(Wj)

}

leads to a set of equations

⇒
∑

i,j

(
1

N2
i

− δjk
Ni

)

ln(Mij) =
∑

i,j

(
1

N2
i

− δjk
Ni

)

ln ξ(Wj) (5.9)

that allow to compute ξ.
Solving the system of equations (5.9) is equivalent to calculate the average of

distances between curves of different disorder. The result gives the number which
is needed to shift the curves relatively to each other. Since the position of the
resulting curve is irrelevant, it is convenient to shift all curves onto the lowest
one, i.e. that for biggest disorder [9]. In order to get the needed values of lnMij

for a single Λ̃ with different disorders, it may be necessary to interpolate between
calculated values. This can be done by fitting a polynomial to ln[Λ(M)].
In order to illustrate that, in this case, one-parameter scaling results in shifting

curves by its distance, we solve equation (5.8) for three curves and four points as
an example. The latter expression gets

S =
1

2

(
(A− x2)

2 + (B − x1)
2 + (C − x3)

2 + (D − x2)
2
)

− 1

4
[(A− x2) + (B − x1)]

2 + [(C − x3) + (D − x2)]
2 ,

where we have used the abbreviations A = lnM12, B = lnM11, C = lnM23,
D = lnM22 and xj = ln ξ(Wj). The three equations we solve are given by

dS

dx1
⇒ x1 − x2 + A− B = 0 (5.10)

dS

dx2
⇒ x1 − 2x2 + x3 + A− B −D = 0 (5.11)

dS

dx3
⇒ x2 − x3 + C −D = 0 . (5.12)
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5. Finite-size scaling

If we assume leaving the curve for the biggest disorder unshifted, this leads to
x3 = 0. From equation (5.12) it follows that

x2 = D − C , (5.13)

which is exactly the distance between the third and second curve. Inserting this
result into (5.10), we get

x1 = B − A+ C −D . (5.14)

Now it is obvious, that one has only to calculate the average of distances between
all curves. This gives the correct value for the scaling parameter ln ξ(W ).
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6. Dirac equation on a lattice

We have seen in chapter 2, that electrons in graphene can be treated within the
tight-binding approximation. In the low-energy regime around one nodal point the
spectrum of such an electron is linear. It can be modeled using the two dimensional
Dirac equation, known from relativistic quantum mechanics.
In this chapter we like to give the basis to treat the problem of disordered Dirac

fermions numerically. For this reason we derive a discrete version of the Dirac
equation in one and two spatial dimensions and construct transfer matrices which
we subsequently use for calculations of the Lyapunov characteristic exponents.
Whenever possible we compare our numerical to analytical results or numerical
results from different methods.
We also recall briefly a second model for comparison, that describes Dirac

fermions on a lattice introduced in Ref. [67] and used for similar calculations.

6.1. Discretization in one dimension

In order to begin with the simplest possible model, we start with discretization
in one dimension. The time independent Dirac equation for a free particle can be
written as

Hψ(x) = Eψ(x) , (6.1)

where the wave functions ψ(x) are spinors and the Hamiltonian is given by

H = −(i~vF ) σ1 ∂x , (6.2)

with a characteristic velocity vF corresponding to the speed of light in the rel-
ativistic case. If we call ~vF = α and write the Dirac equation in momentum
space

α

(
0 kx
kx 0

)

ψ(x) = E ψ(x), (6.3)

we immediately obtain the energy dispersion

E(kx) = ±α kx , (6.4)

describing a free massless relativistic particle in one dimension. To ensure Hamil-
tonian (6.2) remains hermitian we have chosen a symmetric discretization of the
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6. Dirac equation on a lattice

differential operator

∂xψ(x) ≈
1

2∆
(ψx+∆ − ψx−∆) . (6.5)

Thus, the Dirac equation gets

⇒ − iα

2∆
σ1(ψx+∆ − ψx−∆) = E σ0ψ(x) . (6.6)

The energy dispersion for discretized Hamiltonian can be calculated using Fourier
transformation

∫

dk ψ̃(kx)

(
−E α

∆
sin(∆kx)

α
∆
sin(∆kx) −E

)

eikxx = 0 . (6.7)

Since the real space is now discrete we can think of ∆ as a lattice constant. In the
following we set ∆ and α to unity for simplicity. The energy dispersion for lattice
fermions in one dimension is then given by

E(kx) = ± sin(kx) . (6.8)

The dispersion has nodal points at in the center of the Brillouin zone (kx = 0) and
at the border (kx = ±π). The outer two only contribute with 1/2, which gives two
Dirac cones in total.
As a surprising result of discretization, a single fermion gets doubled. This is

called fermion doubling or species multiplication and was already observed in the
late 1970ies [68, 69]. Solutions to this problem were also given by the same authors.
Following Ref. [70] we introduce a lattice operator B̂1 and label the lattice points

with integer numbers l

B̂1ψl =
1

2
{ψl+1 + ψl−1} . (6.9)

The operator B̂1 breaks up the cones at the borders of the Brillouin zone. We
obtain the new Hamiltonian by transforming the old one as

H → H + δ(B̂1 − 1)σ3 , (6.10)

with the corresponding energy dispersion

E = ±
√

sin(kx)2 + (δ(cos(kx)− 1))2 . (6.11)

The lattice operator allows us to tune the gap of the outer nodal points via the
parameter δ, while m acts on both neutrality points. Opening a gap at one Dirac
point breaks the symmetry between the two cones or valleys, for this reason we
call the situation where δ 6= 0, broken valley symmetry. For δ = 2m the outer gap
closes again and massless fermions reappear at the border of the Brillouin zone.
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6.1. Discretization in one dimension

Different potentials can be included easily in (6.10) which have corresponding
energy dispersions

H → H +m(l)σ3 mass

E = ±
√

sin(kx)2 + (m+ δ(cos(kx)− 1))2 (6.12)

H → H + U(l)σ0 scalar potential

E = U ±
√

sin(kx)2 + (δ(cos(kx)− 1))2 (6.13)

H → H + V1(l)σ1 vector potential

E = ±
√

(sin(kx) + V1)2 + (δ(cos(kx)− 1))2 . (6.14)

6.1.1. Recurrence equation

Before we derive a transfer matrix for one dimensional lattice fermions, we like
to introduce recurrence equations to calculate Lyapunov exponents. This can be
done only in the one dimensional case without valley symmetry breaking (δ = 0).
The recurrence equation method can then serve as a testing ground and results
can be compared with those obtained from the transfer matrix method.

Random mass and scalar potential

For random mass and scalar potential the recurrence equations can be derived
simultaneously. We set the energy to zero and write for the Dirac equation

(
a −i∂x

−i∂x b

)(
u(x)
v(x)

)

= 0 . (6.15)

The coefficients a and b can be replaced by random mass or scalar potential in the
end. After discretization we get two equations which couple both spinor compo-
nents

al ul =
i

2
{vl+1 − vl−1} (6.16)

bl vl =
i

2
{ul+1 − ul−1} . (6.17)

One spinor component can be eliminated by shifting the index in the first equation

ul+1 =
i

2al+1
{vl+2 − vl} (6.18)

ul−1 =
i

2al−1
{vl − vl−2} (6.19)
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6. Dirac equation on a lattice

and we are left with one equation

vl =
i

2bl

{
i

2al+1
(vl+2 − vl)−

i

2al−1
(vl − vl−2)

}

. (6.20)

Rearranging leads to

vl+2

4blal+1

= − vl−2

4blal−1

+

{
1

4blal+1

+
1

4blal−1

− 1

}

vl (6.21)

vl+2

vl
= −vl−2

vl

al+1

al−1
+

{

1 +
al+1

al−1
− 4blal+1

}

. (6.22)

Now we define zl+2 = vl+2/vl and get finally

zl+2 = al+1

{
1

al+1

− 4bl +
1

al−1

(1− z−1
l )

}

(6.23)

for the recurrence equation. The al are random numbers and correspond to random
mass for bl = −al = ml and to random scalar potential for al = bl = Ul. According
to Ref. [71] the Lyapunov exponent can be defined as

γ = lim
n→∞

1

2n

n∑

l=1

〈ln |zl|〉 . (6.24)

In a clean system al and bl are non-random and the Lyapunov exponent can be
calculated solving a quadratic equation

z2 − (2− 4ab)z + 1 = 0 ⇒ z1,2 = 1− 2ab±
√

ab(ab− 1)

random mass : z1,2 = 1 + 2m2 ±
√
m2 +m (6.25)

scalar potential : z1,2 = 1− 2U2 ±
√
U2 − U . (6.26)

This yields

γ =
1

2
ln |z| , (6.27)

thus, in the clean limit, γ should acquire the values γ ≈ 0.4812 for random mass
and γ = 0 for scalar potential.
Using the recurrence equation (6.23) and the definition (6.24) we can directly

calculate the Lyapunov exponents for the introduced random potentials and several
probability distributions.
The random numbers have been generated by a distribution generator for gaussian-

and cauchy distributed random numbers. Then the Lyapunov exponent has been
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6.1. Discretization in one dimension

calculated for various widths of the corresponding distribution, which can be seen
as the disorder strength. Calculations have been performed with Mathematica for
chains of length n = 4000 and an average over 10 realizations. We denote the
expectation value of a random number x by 〈x〉 or x̄ equivalently.
Results for random mass are presented in figure 6.1. The plot shows the Lya-

punov exponent as a function of disorder strength, with m̄ being the expectation
value. Since the Lyapunov exponent is only zero for zero disorder and elsewhere
growing, we conclude that Dirac fermions are always localized by disorder. Only
for gaussian disorder and m̄ 6= 0 there is a small dip where the Lyapunov exponent
has a local minimum but γ = 0 is never reached.
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Figure 6.1.: Comparison of the Lyapunov exponent for different disorder types
with random mass in a one dimensional chain of Dirac fermions.

Random vector potential

For random vector potential the Dirac equation reads
(

0 −i∂x + V
−i∂x + V 0

)(
u(x)
v(x)

)

= 0 . (6.28)

Both equations do not couple and we write directly

zl+1 = −2iVl +
1

zl
(6.29)
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Figure 6.2.: Lyapunov exponents as function of disorder strength for different
disorder types of Dirac fermions in one dimensions. Left: Scalar
potential and right: Random vector potential.

for each spinor. The results are plotted in figure 6.2. As we could have expected
from the energy dispersion the Lyapunov exponent is zero in the clean limit.

For all three disorder types results show similar behavior: As disorder increases
Lyapunov exponents are always growing. Except for random mass with finite
mean, we see γ 6= 0 for vanishing disorder, arising from the gap in the spectrum.
In the next section we proceed and derive a transfer matrix for the introduced
discretization. By means of the transfer matrix method we should then be able to
reproduce the results from this section.

6.1.2. Constructing the transfer matrix

Whereas the recurrence equation could only be used to calculate Lyapunov expo-
nents of the one dimensional Dirac equation without valley symmetry breaking, it
is possible to derive a transfer matrix for a more general case.

We start with equation (6.10) including a random mass term and write the
discretized Dirac equation as

E σ0ψl =
1

2
(−σ1ψl+1 + σ1ψl−1) +

δ

2
(σ3ψl+1 + σ3ψl−1) + (δ −ml)σ3ψl .

Rearranging gives

⇒ ψl+l = 2S−1 [Eσ0 + (δ −ml)σ3]ψl − S−1 [iσ1 + δσ3]ψl−l (6.30)

with

S = δσ3 − iσ1 .
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6.1. Discretization in one dimension

From equation (6.30) we construct a matrix of the following form

(
ψl+1

ψl

)

= Tl

(
ψl

ψl−1

)

, (6.31)

which is explicitly written as

Tl =










2δ (E+δ−ml)
δ2−1

−2 i(E−δ+ml)
δ2−1

−δ2−1
δ2−1

− 2 iδ
δ2−1

−2 i(E+δ−ml)
δ2−1

− 2δ (E−δ+ml)
δ2−1

2 iδ
δ2−1

−δ2−1
δ2−1

1 0 0 0

0 1 0 0










. (6.32)

The eigenvalues are given by

τ1 = − 1

δ2 − 1

(

−δ2 + δml −
√

1 + f

−
√

−2δ3ml − 2δ2
√

1 + f +m2
l δ

2 − 2δml

√

1 + f + f + 2δ2
)

τ2 = − 1

δ2 − 1

(

−δ2 + δml −
√

1 + f

+

√

−2δ3ml + 2δ2
√

1 + f +m2
l δ

2 − 2δml

√

1 + f + f + 2δ2
)

τ3 = − 1

δ2 − 1

(

−δ2 + δml +
√

1 + f

−
√

−2δ3ml − 2δ2
√

1 + f +m2
l δ

2 + 2δml

√

1 + f + f + 2δ2
)

τ4 = − 1

δ2 − 1

(

−δ2 + δml +
√

1 + f

+

√

−2δ3ml − 2δ2
√

1 + f +m2
l δ

2 + 2δml

√

1 + f + f + 2δ2
)

(6.33)

with f = E2δ2 − E2 − 2δml +m2
l . To see whether states are either extended or

localized, we distinguish four cases: Gapped (m = 0.2), ungapped (m = 0.0) and
one (δ = 0.5) or two Dirac cones (δ = 0.0).
First we consider the clean case and calculate γi = ℜ(ln(τi)) as a function of

energy. Figure 6.3 (left panel) shows the results for two Dirac cones without a
gap. Up to energies of E ≈ 1 all four Lyapunov exponents are degenerate and
zero, which means that all states in this case are extended. In figure 6.3 (right
panel) the model has also extended states up to high energies. If we now look at
the gapped case we see in both cases, cf. left panel in figure 6.4 and right panel
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6. Dirac equation on a lattice

in figure 6.4, that for energies around the Dirac point (i.e. E = 0) all Lyapunov
exponents are non-zero, which means that the states are exponential decaying.
For energies bigger than the gap E > 0.2 at least two Lyapunov exponents go
to zero and extended states appear again. For the gapped and the ungapped
case the valley symmetry breaking results in a degeneracy lifting of the Lyapunov
exponents. Since Lyapunov exponents are in the clean case related to the wave
number (cf. equation (4.12)) the latter behavior is evident.
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Figure 6.3.: Lyapunov exponents for the gapless case in one dimension. Left
panel: m = 0 and δ = 0; Right panel: m = 0 and δ = 0.5.
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Figure 6.4.: Lyapunov exponents for the gapped case in one dimension. Left
panel: m = 0.2 and δ = 0; Right panel: m = 0.2 and δ = 0.5.

Random gap

We now proceed and include a random gap in equation (6.32) as a model for
disorder. At each lattice point we choose a random value for ml taken from a
uniform distribution of width W on the interval [m̄−W/2, m̄+W/2] and calculate
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6.1. Discretization in one dimension

the spectrum of Lyapunov exponents as described in section 4.2. This allows us
to compare results obtained from the recurrence equation with those from the
transfer matrix method. The results for preserved and broken valley symmetry
are presented in figure 6.5. The difference between both cases is that the two-fold
degeneracy of the Lyapunov exponents is lifted for δ 6= 0. Qualitatively we see
similar behavior as in section 6.1.1. As an representative example the result from
the recurrence equation for m̄ = 0.3 is included in the left panel of figure 6.5.
Both methods give the same result. For increasing disorder strength the smallest
Lyapunov exponent increases thus the localization length decreases respectively.
The lattice model we used so far is nothing else than scattering of a Dirac fermion

at N -barriers. We can identify each lattice point with a barrier of random height.
Thus, by adjusting the barrier width in the continuous version of the transfer
matrix (3.8) used in section 3.1.2 we should be able to calculate the same result
as in the discrete case. Figure 6.6 clearly shows that this is the case for random
gap with zero mean and uniform distribution.
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Figure 6.5.: Lyapunov spectrum for Dirac fermions in one dimension with ran-
dom gap over width of uniform distribution, in red numerical results
for the gapped and blue for the ungapped case. Left: Preserved val-
ley symmetry, the black line is the result of the recurrence equation.
Right: broken valley symmetry
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6. Dirac equation on a lattice
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Figure 6.6.: Comparison of the Lyapunov exponents obtained from the transfer
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The dotted line is a guide for the eye.
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6.2. Discretization in two dimensions

6.2. Discretization in two dimensions

Now that we have established a reliable method to calculate Lyapunov exponents
by means of transfer matrices, we proceed and derive a discrete version of the two
dimensional Dirac equation.

6.2.1. Symmetric discretization – model A

As we have already mentioned, it was soon recognized that a naive discretization
of the Dirac equation leads to additional fermions. In real space there are two
methods to circumvent this problem. The one that we will describe here goes back
to ideas of Susskind [68]. For the derivation we will only consider the random gap
problem and give the expressions for vector and scalar potential later.
The Dirac equation for a free particle reads in matrix notation

−i~
(

0 i∂x + ∂y
i∂x − ∂y 0

)(
ϕ1

ϕ2

)

= E

(
ϕ1

ϕ2

)

(6.34)

and accordingly, the Dirac Hamiltonian is given by

H = −i~(σ1∂x + σ2∂y) . (6.35)

We discretize the differential operator in a symmetric way

∂xf(x) ≈
1

2∆
(fl+∆ − fl−∆) , (6.36)

where ∆ is the lattice constant, which we set to unity in the following. The discrete
Dirac equation for free particles takes then the form

− i

2
σ1 {ψl+1,n − ψl−1,n} −

i

2
σ2 {ψl,n+1 − ψl,n−1} = Eσ0ψl,n .

A lattice point is given by the coordinates (l, n) with integer numbers l and n.
Because of translational invariance, diagonalization by Fourier transformation is
possible

E = ±
√

sin2(kx) + sin2(ky) . (6.37)

The latter spectrum has four nodal points in the Brillouin zone corresponding to
four Dirac fermions. Figure 6.7 shows a density plot of dispersion (6.37). The red
circles indicate the location of Dirac cones. Only the cone in the center lies fully
in the Brillouin zone. Cones at the border are counted as 1/2, cones at the corners
with 1/4.

41



6. Dirac equation on a lattice
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Figure 6.7.: Density plot of the energy dispersion (6.41) for the discretized Dirac
equation with δ = 0 and m = 0. Brillouin zone and points of high
symmetry are in red. The location of the Dirac cones is indicated
by red circles.

In order to lift the valley degeneracy and thus remove the fermion doubling, we
introduce a lattice operator [70] analogous to that in one dimension

σ3B̂ ψl,n =
1

2
σ3 {ψl+1,n + ψl−1,n + ψl,n+1 + ψl,n−1} . (6.38)

We transform Hamiltonian (6.35) by including the lattice operator B̂ and a random
gap term

H → H + δ(B̂ − 2)σ3 +ml,n σ3 . (6.39)

Our new Hamiltonian reads in Fourier representation

H̃ =

(
m+ δ(cos(kx) + cos(ky)− 2) sin(kx) + i sin(ky)

sin(kx)− i sin(ky) −m− δ(cos(kx) + cos(ky)− 2)

)

(6.40)

with energy dispersion

E = ±
√

sin2(kx) + sin2(ky) + (m+ δ cos(kx) + δ cos(ky)− 2δ)2 . (6.41)
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6.2. Discretization in two dimensions

The resulting band structure is shown in figure 6.8 for several parameter combina-
tions. In the simplest case (δ = 0, m = 0), we have four nodal points in total. One
node located at point Γ in the center, two atM and one in the corners at X . If we
set 0 < δ < 1 and leave m = 0 we open a gap atM and X retaining only one Dirac
Point at Γ in the Brillouin zone. If we increase the mass with m < δ, a gap opens
also at the Γ-point. When the mass reaches m = 2δ two Dirac fermions appear
again at M , for m = 4δ the nodes appear at X . Consequently, we can choose
the number of Dirac fermions by tuning the parameter δ with the prize that our
model is not symmetric when replacing m→ −m. The bandwidth depends on the
certain combination of parameters and is e.g. △E ≈ 2.23 for δ = 0 or △E = 4 for
δ = 0.5 in the gapless case and not symmetric in m.
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Figure 6.8.: Energy dispersion (6.41) of the discretized Dirac equation for various
combinations of δ and m connecting points of high symmetry. The
inset represents the Brillouin zone with symmetry points

Transfer matrix

Our goal is now to obtain a transfer matrix which connects column l + 1 with
column l of our lattice, cf. figure 6.9. To achieve this we rearrange the discrete
Dirac equation with lattice operator B̂ and random gap

ψl+1,n = 2 S−1 [Eσ0 + (2δ −m)σ3]ψl,n − S−1 [iσ1 + δσ3]ψl−1,n

+ S−1 [iσ2 − δσ3]ψl,n+1 − S−1 [iσ2 + δσ3]ψl,n−1 , (6.42)

with
S = [−iσ1 + δσ3] . (6.43)
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6. Dirac equation on a lattice
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Figure 6.9.: Illustration of theM×L lattice used for the transfer matrix method.

We absorb the transverse index n with the help of two matrices

ψl+1 = HY ψl +HD ψl−1 . (6.44)

with non-zero elements given by

HY
n,n = 2S−1 [E σ0 + (2δ −m)σ3] HY

n,n+1 = S−1 [iσ2 − δσ3]

HY
n,n−1 = −S−1 [iσ2 + δσ3] HD

n,n = −S−1 [iσ1 + δσ3]

Each spinor component is now a M-component vector, where M is the width of a
strip and thus n = 1, 2, ...,M . The matrix HY contains periodicity in y-direction
yielding

→ HY
M,1 = HY

1,M

This allows us to construct a transfer matrix similar to [9]

(
ψl+1

ψl

)

=

(
HY HD1 0

)(
ψl

ψl−1

)

= Tl

(
ψl

ψl−1

)

. (6.45)

It is convenient to have all entries in explicit matrix form for implementation in
a programming language. The diagonal term of HY reads

S−1 [E σ0 + (2δ −m)σ3] =
1

δ2 − 1

(
δ(E + 2δ −m) −i(E − 2δ +m)
−i(E + 2δ −m) −δ(E − 2δ +m)

)

(6.46)

its upper off-diagonal term is

S−1 [iσ2 − δσ3] =
1

δ2 − 1

(
−δ2 + i δ(1− i)
δ(1 + i) −δ2 − i

)

(6.47)
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6.2. Discretization in two dimensions

and the lower off-diagonal term of HY is given by

−S−1 [iσ2 + δσ3] =
1

δ2 − 1

(
−δ2 − i −δ(1 + i)
δ(−1 + i) −δ2 + i

)

(6.48)

The diagonal entries of HD read

−S−1 [iσ1 + δσ3] =
1

δ2 − 1

(
−δ2 − 1 −2iδ

2iδ −δ2 − 1

)

(6.49)

Since the prefactor of the latter matrices diverges for δ = 1 we are restricted to
values δ < 1, which is by no means problematic for later calculations. The intro-
duction of a different random potential, e.g. random scalar potential is discussed
below.

Random scalar potential

To include scalar disorder, in this problem we transform the Hamiltonian by

H → H + δ(B̂ − 2)σ3 + U(l, n) σ0 . (6.50)

Equation (6.42) becomes

ψl+1,n =2∆S−1 [Eσ0 + 2δσ3 − Uσ0]ψl,n − S−1 [iσ1 + δσ3]ψl−1,n

+ S−1 [iσ2 − δσ3]ψl,n+1 − S−1 [iσ2 + δσ3]ψl,n−1 (6.51)

and only the diagonal entry of HY changes

S−1 [E σ0 + 2δσ3 − Uσ0] =
1

δ2 − 1

(
δ(E + 2δ − U) −i(E − 2δ − U)
−i(E + 2δ − U) −δ(E − 2δ − U)

)

. (6.52)

Random vector potential

We introduce a vector potential in the following form

H → H + δ(B̂ − 2)σ3 + V1(l, n) σ1 + V2(l, n) σ0 . (6.53)

This implies for equation (6.42) ⇒
ψl+1,n =2∆S−1 [Eσ0 + 2δσ3 − V1σ1 − V2σ2]ψl,n

− S−1 [iσ1 + δσ3]ψl−1,n (6.54)

+ S−1 [iσ2 − δσ3]ψl,n+1 − S−1 [iσ2 + δσ3]ψl,n−1 . (6.55)

As in the two cases before, the random vector potential only affects the diagonal
term of HY

S−1 [E σ0 + 2δσ3 − V1σ1 − V2σ2] = (6.56)

1

δ2 − 1

(
δ(E + 2δ) + iV1 − V2 −i(E − 2δ)− δV1 + iδV2)

−i(E + 2δ) + δV1 + iδV2 −δ(E − 2δ) + iV1 + V2

)

(6.57)
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6. Dirac equation on a lattice

Symmetry properties of the transfer matrix

In the tight-binding model for on-site disorder, the transfer matrix is symplectic
[9, 63] (or J-orthogonal) which means that the relation

T † J T = J , (6.58)

with

J =

(
0 −11 0

)

(6.59)

is fulfilled. This property implies that eigenvalues of T appear in inverse pairs λi
and 1/λi. Every Lyapunov exponent γi has its negative counterpart, corresponding
to back and forth going states. Thus, in- and outgoing fluxes are equal, yielding
that the transfer matrix represents an area preserving map with det(T ) = 1, if so
the current is conserved.
To make sure that the transfer matrix for the discretized Dirac equation is

reasonable, we have to assure the current conservation. Recalling its structure

Tl =

(
HY HD1 0

)

and evaluation the condition for symplecticity gives

T †
l J Tl =

(
HY − (HY )† HD

−HD 0

)

= −J, (6.60)

which is valid for δ = 0. Apparently, the demanded result differs by a sign but this
has no effect on the determinant of the transfer matrix and it follows det(T ) = 1.
For the case of the broken valley symmetry (δ 6= 0) we prove current conservation
by calculating the determinant directly. The matrix T has a block structure and
consists of four blocks with dimension 2M × 2M . The block HY is invertible for
δ 6= 0 and the determinant can be written as

det(T ) = det(HY )det(−(HY )−1HD) = det(HY )det(−(HY )−1)
︸ ︷︷ ︸

=1

det(HD) . (6.61)

The matrix HD itself consists of M 2× 2 blocks cf. equation (6.49)

hD =
1

δ2 − 1

(
−δ2 − 1 −2iδ

2iδ −δ2 − 1

)

(6.62)

in the diagonal. Hence

det(HD) = [det(hD)]N =

[
1

(δ2 − 1)2
{(δ2 + 1)2 − 4δ2}

]N

= 1 (6.63)
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6.2. Discretization in two dimensions

and it follows that det(T ) = 1 as required for current conservation. Consequently,
all eigenvalues come in inverse pairs λi and 1/λi also for δ 6= 0.
Since the product of all eigenvalues equals unity, it follows

4M∑

i=1

γi = 0 . (6.64)

In numerical calculations this has been used to control the accuracy and also the
validity of the results. In our case the sum of all Lyapunov exponents was of the
numerically reasonable order ≈ 10−15. Increasing the number of multiplications
between each orthonormalization increases the sum of Lyapunov exponents.
The continuous version of the Hamiltonian for free Dirac particles fulfills the

following symmetry transformations

σ1H
⋆σ1 = −H particle− hole

σ2H
⋆σ2 = H spin rotation

σ3Hσ3 = −H chiral .
(6.65)

Including a scalar potential breaks the chiral symmetry. The mass term i.e. any-
thing that couples to σ3 breaks the chiral and the spin rotation symmetry. For the
transfer matrix the mentioned symmetries at the Dirac point (E = 0) translate to

σ1T
⋆σ1 = T

σ2T
⋆σ2 = T

σ3Tσ3 = T .
(6.66)

Table 6.1 summarizes all symmetry transformations. Additionally, we like to men-
tion that setting δ to a non-zero value has the same effect as a non-zero mass.

Random potential: Free Scalar Mass Vector

σ1T
⋆σ1 = T

√
x

√
x

σ2T
⋆σ2 = T

√ √
x x

σ3Tσ3 = T
√

x x
√

Table 6.1.: Symmetry transformations of the transfer matrix for different types
of disorder.
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6. Dirac equation on a lattice

6.2.2. Simplified model A and weak disorder expansion

Let us now develop a simplified model as a basis for the weak disorder expansion
which we introduce subsequently. As mentioned before, each transfer matrix has
a 2 × 2 block structure and each block is of size 2M × 2M . That means, that
we have to deal with relatively large matrices and since we need wide strips for
reliable results, calculations become quite time consuming.
This encourages us to deal with simplified models: Assume that we choose

random numbers only for each column of the lattice. Each strip has consequently
the same mass ml, and therefore, each transfer matrix is in this sense non-random.
This allows us to perform a Fourier transformation in the transverse direction n
and thus to diagonalize the block HY

δn,n+1 − δn,n−1 −→ 2i sin(ky)

δn,n+1 + δn,n−1 −→ 2 cos(ky) ,

with ky = 2πn/M being the transverse wave number. Hence, we get for

H̃Y = 2S−1{[Eσ0 + (2δ − δ cos(ky)−m)σ3] + sin(ky)σ2} . (6.67)

The block HD is already diagonal in n and we rewrite the transfer matrix

T̃l =

(−2S{Eσ0+f3(ky ,ml)σ3+f2(ky)σ2}
1−δ2

(δ2+1)σ0−2δσ2

1−δ2

σ0 0

)

, (6.68)

where we have used f2(ky) = sin(ky) and f3(ky, ml) = 2δ − δ cos(ky) − ml. Our
minimal model is now effectively one dimensional and we are free to choose the
transverse mode.
This model can be used as a testing ground for the developed fortran code, just

like the recurrence equations. As an example we show in figure 6.10 the results
for one Dirac cone with uniform gap without disorder. Here, we calculated the
Lyapunov exponents from the transfer matrix defined in equation (6.45) and from
the minimal model. The only propagating mode is that for n =M yielding ky = 0
which gives also the smallest Lyapunov exponent. As we would expect both models
give the same results.
For the special case of E = 0 and the transverse edge mode we can evaluate the

eigenvalues of (6.68) as

λ =
δ −m±

√
1− 2δm+m2

δ ± 1
(6.69)

and for δ = 0 we can expand the Lyapunov exponent in powers of m

λ = ±m±
√
1 +m2 → γmin = ℜ(ln(λmin)) = m+O(m3) . (6.70)
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Figure 6.10.: Lyapunov spectrum for M = 4 vs. energy for one cone δ = 0.5
and uniform gap m = 0.2. The blue data points depict the re-
sults obtained from the transfer matrix defined in (6.45), the red
points depict the smallest positive Lyapunov exponent calculated
from (6.68).

This means that the smallest positive Lyapunov exponent is approximately pro-
portional to the mass m and independent of the system width M . As a direct
consequence, the rescaled Lyapunov exponent grows linearly with system size, pic-
tured in figure 6.11. Owing to the fact that the normalized localization length is
the inverse of Mγmin, clean systems with finite mass show insulating behavior for
E = 0.

Let us now consider the disordered case. For this reason we choose ml to be
uniformly distributed in the interval [m̄ − W/2, m̄ + W/2]. Since the transfer
matrix is only of dimension 4× 4, calculations are fast and we are able to produce
a density plot 6.12, where we present the results for one and four Dirac cones.

For δ = 0, increasing W or m̄ always results in a growing Lyapunov exponent,
whereas for δ 6= 0 there is an intermediate regime at W ≈ 3.5 where it seems that
γmin goes to zero. Plotting a cross section (cf. 6.13) for fixed m̄ shows that this
is apparently not the case. Although γmin decays in the range of 2 < W < 3.5 it
never reaches zero. Comparing the latter to the results presented in the left panel
of figure 6.1, suggests that both methods are equivalent.

Concluding, we have shown that the minimal model is effectively one dimensional
and Dirac fermions are localized for non-zero disorder although there exists a
regime where the Lyapunov exponent reaches a local minimum for δ 6= 0. This
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Figure 6.11.: Smallest Lyapunov exponents at E = 0 for clean systems.

corresponds to results of section 6.1.
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Figure 6.12.: Smallest Lyapunov exponent as a function of m̄ and disorder
strength W for the minimal model. The left panel corresponds
to δ = 0 and the right panel to δ = 0.5.

Weak disorder expansion

Apart from the result for a tight-binding chain with Cauchy distributed disorder
discussed in Ref. [71] it is most likely hopeless to derive an analytical result for
γ, even for the minimal model. How could we check, if our results for disordered
systems are correct? One possibility would be a perturbation theory and indeed
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such a method was derived by Derrida et al. [72] and is called weak disorder
expansion (WDE).

In this section we like to apply this perturbation method to the simplified model
up to fourth order. Before giving the rather lengthy expression, we want to illus-
trate the derivation up to second order, following Ref. [72].

If disorder is small, we may decompose the transfer matrix

Tl = A+ µBl (6.71)

into a non-random part A, independent from l and into a random part Bl. The
random numbers should be independent and the parameter µ kept small. Further-
more, all eigenvalues of A have to be non-degenerate with different modulus

|λ1| > |λ2| > ... |λq| . (6.72)

If these conditions are satisfied, an expansion of the sum of Lyapunov exponents
in powers of µ is possible. For the minimal model this is the case for δ 6= 0 and
m̄ 6= 0.

Let us assume A to be already diagonal with all eigenvalues ordered by size. If
this is not the case, we can always change the basis using an appropriate transfor-
mation S

S−1 Tl S = A+ µ S−1Bl S . (6.73)

Furthermore, we assume the size of matrices to be N ×N . We choose p different
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6. Dirac equation on a lattice

arbitrary vectors Ui with length N and define

Wi =

(
N∏

l=1

Tl

)

Ui . (6.74)

The sum of the first p Lyapunov exponents is given by the exponential growth rate
of a p–dimensional volume spanned by p-vectors Ui. A possible measure for the
volume is

detp(U1, U2, ..., Up), (6.75)

where (U1, U2, ..., Up) is a p × p matrix containing the fist p entries of vectors Ui.
Consequently, the first p Lyapunov exponents can be obtained from

p∑

i=1

γi = lim
N→∞

1

N
log

[
detp(W1,W2, ...,Wp)

detp(U1, U2, ..., Up)

]

= lim
N→∞

1

N
log

(
N∏

l=1

Tl

)

= lim
N→∞

1

N
log(PN ) . (6.76)

We can now expand the product PN in µ and it turns out that it is sufficient to
expand only up to order µq/2, if one needs to compute γi up to the order µq. The
first order expansion of the product yields

PN = AN + µ
N∏

l=1

AN−lBlA
l−1

= AN

(1+ µ

N∏

l=1

A−lBlA
l−1

)

= AN (1+ µC) . (6.77)

In the next step we have to evaluate the logarithm of the product, where we can
use the the identity log(det(X)) = Tr(log(X)) with Tr( ) being the trace operator.
Thus

log (det(PN)) = log
(

det(ÃN)
)

+ log
(

det
(1̃+ µ C̃

))

= Tr
(

log(ÃN)
)

+ Tr
(

log(1̃+ µ C̃)
)

, (6.78)

where matrices with a tilde (̃ ) contain only first p columns and rows. The purpose
of writing the product expansion (6.76) ∝ µ(1 + x) is that we can now expand its
logarithm as

log (det(PN )) = Tr
(

log(ÃN )
)

+ µTr(C̃)− 1

2
µ2Tr(C̃2) +O(µ2) . (6.79)
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6.2. Discretization in two dimensions

If we assume 〈Bl〉 = 0 with 〈...〉 being the average over disorder and symmetric
probability distribution, we obtain

〈Bl〉 = 0 ⇒ lim
N→∞

1

N
Tr(C̃) = 0 . (6.80)

This also implies that all odd moments are zero and we have no terms of odd order
in µ. For the remaining terms we have

lim
N→∞

1

N
Tr(C̃2) =

p
∑

i=1

p
∑

j=1

〈BijBji〉
λi λj

(6.81)

and

lim
N→∞

1

N
Tr
(

log(ÃN)
)

= Tr
(

log(Ã)
)

=

p
∑

i=1

log(λi) . (6.82)

The evaluation of higher order terms is analogous. As a result the weak disorder
expansion up to fourth order in µ for the sum of the first p Lyapunov exponents
is given by [72]

p
∑

i=1

γi =

p
∑

j=1

log λj −
µ2

2

p
∑

i=1

p
∑

j=1

〈BjiBij〉
λiλj

− µ4

4

p∑

i=1

p∑

j=1

p∑

k=1

p∑

l=1

〈BijBjkBklBli〉
λiλjλkλl

− µ4

2

p
∑

i=1

p
∑

j=1

q
∑

r>p

q
∑

s>p

〈BirBjs〉〈BrjBsi〉
λiλj(λiλj − λrλs)

+ µ4

p
∑

i=1

p
∑

j=1

p
∑

k=1

q
∑

r>p

〈BirBkl〉〈BrjBjk〉
λiλjλk(λj − λr)

. (6.83)

Let us now apply the weak disorder expansion to the minimal model (6.68) for
the zero mode ky = 0 to check if our numerical results are consistent. We ensure
that conditions are fulfilled by setting δ 6= 0 and m̄ 6= 0. All four eigenvalues (6.69)
have then different moduli. Restricting our calculations to the Dirac point E = 0
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6. Dirac equation on a lattice

and setting ml = m+∆ml, the transfer matrix (6.68) can be decomposed as

Tl =
1

δ2 − 1







2δ(δ −m) 2i(δ −m) −1− δ2 −2iδ
−2i(δ −m) 2δ(δ −m) 2iδ −1 − δ2

1 0 0 0
0 1 0 0







+
∆ml

δ2 − 1







−2δ −2iδ 0 0
2iδ −2δ 0 0
0 0 0 0
0 0 0 0







= T0 + Tl . (6.84)

For the first example we set δ = 1/2 and m̄ = 1/5 and in the basis where T0 is
diagonal we get

A = diag(λ1, λ2, λ3, λ4)

=







1
5
(3 + 2

√
21) 0 0 0

0 1
5
(−3 + 2

√
21) 0 0

0 0 1
15
(3 + 2

√
21) 0

0 0 0 1
15
(−3 + 2

√
21)






,

Bl = ∆ml







2 +
√

3/7 −2 +
√

3/7 0 0

(14 +
√
21)/7 2−

√

3/7 0 0

0 0 −(14 +
√
21)/21 −(−14 +

√
21)/21

0 0 (14 +
√
21)/21 (−14 +

√
21)/21







As an example we calculate the disorder average of a single term

〈B11B11〉 = 〈∆m2〉(2 +
√

3/7)2 ≈ 7.047 σ2,

where ∆m is gaussian distributed with standard deviation σ. Finally, the evalua-
tion of the weak disorder expansion (6.83) applied to the minimal model yields

γ1 ≈ log(λ1)− α1σ
2 + α2σ

4

γ2 ≈ log(λ2) + α1σ
2 − α2σ

4

γ3 ≈ log(λ3)− α1σ
2 + α2σ

4

γ4 ≈ log(λ4) + α1σ
2 − α2σ

4 ,

with α1 = 25/42 and α2 = 625
(
43
√
21− 504

)
/148176.

The latter result can be directly compared to our numerical results. We calcu-
lated Lyapunov exponents for the transfer matrix (6.68) numerically with Gaus-
sian distributed random mass at the neutrality point. Figure 6.14 shows all four
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6.2. Discretization in two dimensions

Lyapunov exponents compared to the weak disorder expansion exhibiting a good
agreement up to σ ≈ 0.3. Additional results are presented in figure 6.15, where we
compare the numerical results of the smallest Lyapunov exponent with second and
fourth order expansion. As one can see, the fourth order expansion is significantly
better and nearly identical with the numerical data up to σ ≈ 0.3 .
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Figure 6.14.: Lyapunov exponents for Gaussian random mass compared to the
weak disorder expansion in σ

In section 6.2 we have shown that the energy dispersion of model A is not
symmetric inm. In order to study the influence of this asymmetry in the disordered
case, we calculate γmin for the minimal model and (ky = 0) as a function of m̄
and disorder strength. The result is shown as a density plot in figure 6.16 which
points out that due to the asymmetry in m the minimum of γmin is shifted to
negative values of m̄. Without disorder σ = 0 we see the expected minimum at
m̄ = 2δ which is also shifted for bigger disorder. Expressions for γi(m, σ) in the
weak disorder expansion are given by

γ1 ≈ log(λ1)− σ2 1

2u2
+ σ4 9− 24 (u−m2 +m(1− 2u))

16(2m− 1)u5
(6.85)

γ2 ≈ log(λ2) + σ2 1

2u2
+ σ4 9− 24 (u−m2 +m(1 − 2u))

16(2m− 1)u5
(6.86)

γ3 ≈ log(λ3)− σ2 1

2u2
− σ4 9− 24 (u−m2 +m(1− 2u))

16(2m− 1)u5
(6.87)
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Figure 6.15.: Smallest positive Lyapunov exponent compared to weak disorder
expansion in second and fourth order. Red crosses are calculated
with the transfer matrix method.

γ4 ≈ log(λ4) + σ2 1

2u2
− σ4 9− 24 (u−m2 +m(1− 2u))

16(2m− 1)u5
(6.88)

with

u2 = 1 + (m− 1)m.

Figure 6.17 shows the numerical results for fixed σ as a function of m̄ compared
to the weak disorder expansion. Again, for stronger disorder the second order
expansion deviates and fourth order is needed. Nevertheless, the shifted minimum
of γmin can be seen in both orders of the perturbation theory. Additionally, we
have compared the weak disorder expansion for negative m̄ as function of disorder
to ensure validity (cf. figure 6.18). Because the results from the weak disorder
expansion suggests that the Lyapunov exponent acquires zero, we checked if the
minimum of γmin converges to zero at σ = 0.3 by increasing the accuracy and the
number of data points in vicinity of this point. According to the results, we have
to conclude that γmin acquires a finite value and thus Dirac fermions are localized
for this model. Notice that we can not extrapolate to the two dimensional case.
The smallest Lyapunov exponent in this model is independent of system size but
we expect that if randomness is in each lattice point this assumption is no longer
valid. Consequently, we can not perform finite size scaling.
Before we go on with model A in two dimensions we like to introduce a further

discretization method of the Dirac equation.
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Figure 6.16.: Smallest Lyapunov exponent as a function of m̄ and σ.

6.2.3. Non-symmetric discretization – model B

In this section we comment on the discretization of the Dirac equation introduced
in Ref. [67], which we refer to as model B. Their approach follows the method of
Stacey [69] to avoid fermion doubling, but is extended to a scalar potential and
random mass [39] in two spatial dimensions. In what follows we like to outline the
main idea in one dimension and then present results for the transfer matrix in two
dimensions and refer to Refs. [39, 67] for more details.
The non-symmetric discretization of the differential operator is given by

∂x ≈ 1

∆
(ψl+∆ − ψl) (6.89)

and obviously, the resulting Hamiltonian matrix is not hermitian. Recognizing
that the latter discretization defines the derivative at the point l+∆/2 the Dirac
equation for this discretization has to be changed

−i(ψl+1 − ψl)σ1 = Eψl+1 (6.90)

since ψ and ∂xψ have to be defined in the same point. Now the lattice has either
to be shifted or equivalently the wave function itself has to be averaged

ψl+∆/2 =
1

2
{ψl+∆ + ψl} . (6.91)

We set ∆ = 1 and acquire for the Dirac equation in one spatial dimension

−{ψl+∆ − ψl}σ1 = E
1

2
{ψl+∆ + ψl} . (6.92)
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Figure 6.17.: Smallest Lyapunov exponent as a function of m̄. The minimum is
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The resulting Hamiltonian matrix is hermitian. Fourier transformation in one
dimension leads to the energy dispersion

E ∝ ±| tan(kx)| .

In two dimensions with uniform gap the latter is given by

E = ±
√

tan(kx/2)2 + tan(ky/2)2 + (m/2)2, (6.93)

exhibiting only one Dirac cone in the center of the Brillouin zone. Thus, by
recognizing that the chosen discretization is defined between lattice points and then
shifting the lattice, both problems (i.e. non-hermiticity and fermion doubling) are
cured at the same time. Notice that in contrast to model A where the bandwidth
is finite the bandwidth of model B diverges at the borders of the Brillouin zone.
The idea of Stacey can now be adapted to derive the a transfer matrix.

Transfer matrix

Recalling Ref. [67] we start from the two dimensional Dirac equation (6.35). We
include a scalar potential U which couples to σ0, isolate the derivative with respect
to x, multiply from left with σ1 and obtain

σ0∂xψ = (−iσ3∂y − iσ1V )ψ , (6.94)
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where V = U − E. At this point we use the discretization introduced above and
write the Dirac equation as

1

2∆
σ0J (ψl+1 − ψl) =

(

− 1

2∆
σ3K − i

4
σ1V(l)

)

(ψl + ψl+1) (6.95)

with the help of matrices J , K, V which have only non-zereo elements for

Jn,n = 1, Jn,n+1 = Jn,n−1 =
1

2
, (6.96)

Kn,n+1 =
1

2
, Kn,n−1 = −1

2
, (6.97)

Vn,n−1 =
1

2
Vl,n−1, Vn,n+1 =

1

2
Vl,n, Vn,n =

1

2
(Vl,n + Vl,n−1) , (6.98)

where l = 1, 2, .., L for the x-direction and n = 1, 2, ...M for the y-direction with
L being the number of multiplications and M the strip width. The boundary
conditions are chosen to be periodic in y-direction. The transfer matrix is then
obtained from

ψl+1 = Tl ψl (6.99)

and reads

Tl =

(

J + iσ3K +
i∆

2
σ1V(l)

)−1(

J − iσ3K − i∆

2
σ1V(l)

)

. (6.100)
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6. Dirac equation on a lattice

In particular, this choice of the transfer matrix restrictsM to odd numbers because
otherwise J is not invertible. By replacing i∆σ1V(l)/2 with v2σ2M(l)/2 one obtains
the corresponding transfer matrix for random mass [39].

6.2.4. Comparison of model A and B without disorder

The introduced models share the same property, namely that the momentum de-
pendence of the dispersion is linear for low energies. Thus both models are sup-
posed to describe the behavior of Dirac fermions. At the same time they exhibit
essential differences already at the level of zero disorder, which we like to point
out here.

Let us first compare the energy dispersions for uniform gap, repeated here

E2 = k2x + k2y +m2 continous
E2 = sin(kx)

2 + sin(ky)
2 + (m+ δ(cos(kx) + cos(ky)))

2 model A
E2 = tan(kx/2)

2 + tan(ky/2)
2 + (m/2)2 model B .

To provide an easy understanding we present the energy dispersions again in a
single figure 6.19. Every plot is labeled either with A or B according to the
respective model. Fermion degeneracy is removed from the outset in model B
but singularities are present at the edge of the Brillouin zone, whereas in model
A the fermion degeneracy can be tuned via the parameter δ. This opens a gap
only at the outer nodal points and the overall gap can be tuned by m separately.
If m = 2δ (m = 4δ) then the outer gaps close at symmetry point M (X) and
massless fermions reappear.
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Figure 6.19.: Comparison of the two energy dispersions arising from different
methods of discretization. Left: Energy dispersion (6.41) for δ = 0
(blue line), δ = 0.5 (red line). Right: Energy dispersion (6.93)
without gap (blue line) and m = 0.2 (black dashed line).
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6.2. Discretization in two dimensions

For a clean system, wave functions are plain waves and therefore ψ ∝ exp(ikxx+
ikyy). If we assume a rectangular sample periodic in y- and extended in x-direction,
kx is determined by the dispersion and ℑ(kx) can be identified with the Lyapunov
exponent (cf. equation (4.12)). We resolve the energy dispersions for kx at E = 0
and obtain for the continuous model

kx = i
√

k2y +m2 , (6.101)

for model A

kx =± arccos

[
1

2δ2 − 2

(
2δ2[2− cos(ky)]− 2δm

±
{
6 + 12δ2 − 16δm+ 4m2 − 8δ cos(ky) [m− 2δ] (6.102)

+2 cos(2ky)
[
2δ2 − 1

]}1/2
)]

. (6.103)

and for model B

kx = 2 arctan

(

i
√

tan(ky/2)2 + (m/2)2
)

, (6.104)

Extended states only exist if ℑ(kx) = 0. For finite m in the continuous case it
follows ℑ(kx) 6= 0 as expected and states with energies lying in the gap are not
extended. Figure 6.20 shows equation (6.103) for δ = 0.5 in the left panel and
equation (6.104) in the right panel. In the right panel it can be seen that ℑ(kx)
acquires zero for ky = π. In fact, taking the limit in equation (6.104) we obtain
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Figure 6.20.: Lyapunov exponents for clean systems with uniform gap m = 0.2.
Plot of Eq. (6.103) for one Dirac cone (δ = 0.5), left panel and Eq.
(6.104) in the right panel.
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lim
ky→π

{

2i artanh

(√

tan(ky/2)2 + (m/2)2
)}

= π ,

yielding ℑ(kx) = 0 for model B corresponding to an extended state at the Brillouin
zone border. On the one hand, from the physical point of view this is not a
problem at all, since the model is only valid for small energies and thus for small
wave vectors. On the other hand, from the numerical point of view we are not
able to distinguish ky = 0 from ky = π because the transfer matrix method gives
all Lyapunov exponents in an ordered sequence from which we choose the smallest
one. Additionally, we saw that for δ = 0.5 and m = 2δ or m = 4δ massless
fermions appear again. Thus, the Lyapunov exponent as a function of m has a
additional roots.
For comparison with numerical results, we calculate kx for finite strip widths M

and take ky = 2πn/M . Subsequently we sort kx from (6.104) and (6.103) in as-
cending order and plot them together with the Lyapunov spectrum calculated from
the transfer matrix. Note, that in this case we do not need to use the orthonormal-
ization procedure, it is sufficient to calculate the logarithm of eigenvalues. Figure
6.21 demonstrates the results and it can be seen that numerically and analytically
calculated Lyapunov exponents are identical. We have, of course, verified that the
Lyapunov spectrum obtained by both methods is identical.
Comparing left and right panel in figure 6.21 clearly displays the problem of the

root for ky = π. The expected gap in spectrum (6.93) is virtually not visible. In
fact, γmin is not exactly zero because the definition of (6.100) restricts the strip
width to odd numbers. For this reason γmin = 0 appears only in the limitM → ∞.
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Figure 6.21.: Comparison of Lyapunov exponents for clean systems with uni-
form gap (m̄ = 0.2). Left: LCE from transfer matrix (6.45) and
Eq. (6.103) for one Dirac cone (δ = 0.5) and M = 200. Right:
LCE from transfer matrix (6.100) and Eq. (6.104) for M = 201.

To stress this point we calculated the smallest positive Lyapunov exponent and
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6.2. Discretization in two dimensions

the normalized localization length as a function of strip width for a finite gap.
From section 6.2.2 on the minimal model we know that γmin is non-zero and also
independent of M , thus the system is insulating.
Figure 6.22 shows the comparison of the normalized localization lengths and

the minimum Lyapunov exponent between models A and B. It can be seen that
the smallest Lyapunov exponent scales to zero ∝ 1/M for model A, whereas it is
constant for model B. As expected, for energies lying in the gap, model A shows
insulating behavior: The normalized localization length goes to zero with increas-
ing system size. However, the findings for model B contradict this expectation:
The normalized localization length is independent of the system size for model
B. This is equivalent to a minimal Lyapunov exponent going to zero ∝ 1/M ,
indicating critical behavior.
Summarizing, we have shown that Dirac fermions without disorder can show

either localizing or critical behavior depending on the used model.
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Figure 6.22.: Comparison of the two models for a clean system with uniform gap
m̄ = 0.2. Blue points show results for model A, red points show
results for model B. Left: Smallest Lyapunov exponent, right:
Normalized localization length.
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6. Dirac equation on a lattice
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7. Lattice fermions with random

gap: Influence of valley

symmetry breaking

Now that we have introduced model A and validated its reasonability with several
tests we continue by considering two dimensions and random gap. Using the
algorithm described in section 4.2, we calculate localization lengths Λ by means of
transfer matrix (6.45) for several parameter combinations.

7.1. Model A: Preserved valley symmetry

First, we consider zero average gap (m̄ = 0) and preserved valley symmetry (δ = 0).
In this case we have a four-fold degeneracy of the node structure. If not mentioned
explicitly we use box distributed random numbers taken from an interval [m̄ −
W/2, m̄+W/2] where the corresponding variance is given byW 2/12. Furthermore
we restrict our calculations to the Dirac point (i.e. E = 0).
The left panel in figure 7.1 shows the raw data of the localization lengths. As

disorder increases the localization length decreases and the slope decreases with
the system size. The exponent in Λ ∝Mα is 0 < α < 1 for all data and thus states
are not exponentially localized. If we normalize the raw data by strip width and
perform finite-size scaling described before, almost all data points collapse to a
single curve cf. right panel in figure 7.1. We had to neglect results belowW ≤ 1.6,
suggesting that one-parameter scaling does not hold in this regime. Since α > 0
this leads to a divergence of Λ for infinite systems and diffusion can not be ruled
out (cf. Ref. [64]).
The behavior of Λ for a mass with finite mean (m̄ = 0.2) is more complex as can

be seen in the left panel of figure 7.2. For small disorder the localization length
converges to a constant value for increasing M indicating α = 0. As disorder
increases, Λ increases too, but remains constant for large M . Then there is a
transition at W ≈ 2.1 where Λ is growing again with system size but the slope
decreases with increasing disorder. To emphasize this point we also present Λ as a
function of disorder for a single strip widthM = 80 in the right panel of figure 7.2.
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7. Lattice fermions with random gap: Influence of valley symmetry breaking
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Figure 7.1.: Localization length for δ = 0.0 and m̄ = 0.0 as a function of strip
width (left) and the same data after rescaling the length scale with ξ
(right). Left: Localization length calculated from Eq. (6.45). Right:
Rescaled data without W = 0.6; 1.1; 1.6.

This behavior of Λ as a function of disorder does not allow to perform single-
parameter scaling in the common way. A close look at the data in figure 7.2 (left)
shows that neither there is a critical point nor one-parameter scaling seems possible
by shifting the curves. Comparing to figure 7.2 (right) two regimes, separated at
W ≈ 2.1, can be distinguished. In both regimes we performed finite-size scaling
separately which gives two scaling functions for the infinite system. Rescaling the
raw data with the corresponding ξ gives two branches as can be seen in figure 7.3
(left). Additionally, it is very important to recognize that Λ̃ is always decaying
with system size. Usually this is interpreted as localization. At first sight this
behavior seems rather unexpected. On the one hand the raw data shows two
regimes. On the other hand the normalized localization length is always decaying
with increasing systems.
Our analysis shows a rather unusual behavior, namely that the localization

length diverges only when approaching the critical point from W < Wc. In order
to extract critical quantities on the left from the transition point we fitted our
data to

ξ(W ) ∝ |W −Wc|−νL for 0 < W < Wc . (7.1)

The results are gathered in table 7.1 and equation (7.1) is plotted in the right
panel of figure 7.3. If we compare the variance g of the critical disorder strength

gc =
W 2

c

12
≈ 0.387

to the gap width 2m̄ = 0.4 we see a good agreement. A possible explanation for
this might be that if fluctuations of the random gap are larger then the gap width
states can evade exponential localization and diffusive transport is possible. From
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7.2. Model A: Broken valley symmetry
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Figure 7.2.: Localization length for a gapped system with preserved valley sym-
metry (δ = 0.0, m̄ = 0.2) as a function of strip width (left) and as a
function of disorder for M = 80 (right).

this point of view we can also calculate Wc from the average gap width yielding
W̃c =

√
2m̄× 12 ≈ 2.191. Fitting the data to equation (7.1) with fixed critical

disorder results in a slightly different exponent but is also in very good agreement
with the numerical scaling function cf. table 7.1. The behavior of Λ ∝ Mα for
δ = 0 can be summarized as







0 < α < 1 for m̄ = 0

α = 0 for m̄ 6= 0, W < Wc

0 < α < 1 for m̄ 6= 0, W > Wc

. (7.2)

critical exponents

ν ≈ 0.289± 0.013 (Wc ≈ 2.156± 0.009)
ν ≈ 0.332± 0.004 (Wc ≈ 2.191)

Table 7.1.: Critical values for m̄ = 0.2 and δ = 0 obtained by fitting ξ with
equation (7.1).

7.2. Model A: Broken valley symmetry

We lift the valley degeneracy by setting δ = 0.5, thus retaining only one Dirac
cone in the center of the Brillouin zone at point Γ.
Contrary to the case of δ = 0, the localization length is not growing with sys-

tem size if m̄ = 0. Let us first discuss the unnormalized data. Figure 7.4 (left)
shows that for small disorders Λ is constant with increasing M but decreases with
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7. Lattice fermions with random gap: Influence of valley symmetry breaking
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Figure 7.3.: One-parameter scaling for δ = 0 and m̄ = 0.2 (left) and the resulting
scaling function ξ(W ) (right).

increasing disorder W . Then for W ≥ 4.1, the localization length Λ is increasing
with system size cf. right panel in figure 7.4.
The normalized data is shown in figure 7.5. To keep the plot illustrative, only

a choice of the whole data is shown. What can be seen from the left panel of
figure 7.5 is that for small disorder W < 3.6 the normalized localization length
scales to zero with M . For disorder W > 3.6 the normalized localization length Λ̃
is growing with system size.
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Figure 7.4.: Localization length for systems with zero average gap m̄ = 0 and
broken valley symmetry δ = 0.5. Left and right panels represent
different disorder ranges.

If we consider Λ̃ as a function of disorder (cf. right panel of figure 7.5) we
see that there are three regions. Up to W ≈ 3: Λ̃ is decaying, in the region for
3 < W < 5: Λ̃ is increasing and then decreasing again. The growing localization
length may be explained as follows. If fluctuations of the random gap are of the
order of 2δ corresponding to W =

√
24δ ≈ 3.46, a massless fermion appears. This
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7.2. Model A: Broken valley symmetry

means that disorder effectively closes the gap at the border of the Brillouin zone.
Consequently, the model shows metallic behavior.
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Figure 7.5.: Reduced localization length for random gap with zero mean and
broken valley symmetry (δ = 0.5 and m̄ = 0) as a function of system
size (left) and disorder (right).

For weak (i.e. W / 4) and strong disorder (i.e. W ' 7.5) the behavior is in that
sense the same, that the normalized localization length Λ̃ is decaying with growing
system sizes. Plotting Λ̃ over W reveals directly two scale invariant points where
different Λ̃ are intersecting. These points indicate a metal-insulator transition.

7.2.1. Critical exponents for the metal-insulator transition

In order to extract the critical exponent we fitted expression (5.7) with s = 5
to our data. The used data and the resulting curves are plotted in figure 7.6
and the critical parameters can be taken from table 7.2. Changing the variables
of Λ̃(M,W ) from M to ξ/M shifts the raw data onto a single curve shown in
figure 7.7. Both plots contain data points for a wider range of W than have been
used for the fitting procedure. It is clear that the power-law dependence of the
scaling function is only valid in the vicinity of the transition point. This is the
reason for the small deviations of some data points with bigger |W −Wc|.
An appropriate method to find the scaling function away from the critical points

is to minimize the variance of lnM − ln ξ, as already mentioned. This works well
for 0 < W < 3 and we use ξ to rescale the data. Figure 7.8 (left); shows that all
points collapse onto a single curve. Fitting the scaling function as ξ = cW−β we
get c ≈ 9.1± 0.3 and β ≈ 2.37± 0.02.

The case of a non-zero average mass needs only a brief discussion since the
results and its analysis are qualitatively the same as for m̄ = 0. The reason for
this rather unexpected behavior will be explained later.
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7. Lattice fermions with random gap: Influence of valley symmetry breaking

Critical point I II

Exponent ν 1.297± 0.031 1.299± 0.066
Wc 3.975± 0.002 7.668± 0.008
Λc 0.574± 0.009 0.447± 0.005
Disorder range 3.87 ≤ W ≤ 4.17 7.35 ≤W ≤ 7.8
System sizes 20 ≤M ≤ 80 30 ≤M ≤ 80

Table 7.2.: Critical values for m̄ = 0 and δ = 0.5 obtained from fitting the data
to equation (5.7).
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Figure 7.6.: Fits to equation (5.7) for m̄ = 0 and δ = 0.5 around the critical
point I (left) and around the critical point II (right).

We have calculated Λ for variousM andW , and present the raw data for m̄ = 0.2
in the left panel of figure 7.8. The data in the vicinity of the critical points and
the resulting fitting curves are shown in figure 7.9. The validity of one-parameter
scaling is demonstrated by changing the scale to ξ/M cf. figure 7.10. Increasing
the mean of the random mass results mainly in increasing the critical exponent
at the second transition point. The other critical quantities remain more or less
untouched as can be seen in table 7.3. In addition, we have performed the latter
finite-size scaling also for m̄ = 0.8, but instead of showing the data which looks
exactly like for m̄ = 0.2 we only present the results of the scaling analysis in
table 7.4.

Intermediate conclusion

So far we have found two critical points where a disorder driven metal-insulator
transition occurs. For finite mean of the random gap critical point I can be
related to analytical results [37, 38], whereas the transition at point II is most
likely due to the finite band width. For zero mean the situation is different: From
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7.2. Model A: Broken valley symmetry
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Figure 7.7.: Rescaled NLL for m̄ = 0 and δ = 0.5 around the critical point I
(left) and around the critical point II (right). Plots contain more
data points than used for the fitting procedure to show the validity
of one parameter scaling.

Critical point I II

Exponent ν 1.297± 0.045 1.397± 0.069
Wc 3.792± 0.002 7.629± 0.015
Λc 0.591± 0.007 0.517± 0.009
Disorder range 3.72 ≤W ≤ 3.88 7.1 ≤W ≤ 8.0
System sizes 20 ≤M ≤ 80 20 ≤M ≤ 80

Table 7.3.: Critical values for m̄ = 0.2 and δ = 0.5 obtained from fitting the data
to equation (5.7).

analytical [37, 38] or numerical [39, 73, 74] calculations one would expect that
if m̄ = 0 there exists a phase boundary where the system is critical. Instead of
extended states for zero mean of the random mass our calculations show almost
the same behavior as for finite mean. This suggests the absence of such a phase
boundary.
To clarify the discrepancy we have to recall the discussion on the energy dis-

persion of model A and the results for one dimension. We have shown that the
model is not symmetric when replacing m → −m and we also have shown that
the minimum of the Lyapunov exponent is shifted to negative m̄. Moreover, we
have confirmed this shift by means of a perturbation theory in section 6.2.2 but it
is also possible to set up an effective model showing the same: A Taylor expansion
of the energy spectrum (6.41) at k = (0, 0) for δ > 0 and 0 < m < δ gives

E = ±
√

m2 + (k2x + k2y)(1−mδ) . (7.3)

Like in model A the latter is not symmetric in m → −m and gives rise to define
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Figure 7.9.: Fits to equation (5.7) for m̄ = 0.2 and δ = 0.5 indicating phase
transitions.

an effective low-energy Hamiltonian

H =
√
1−mδ kxσ1 +

√
1−mδ kyσ2 +mσ3. (7.4)

As a direct consequence, we see from the low-energy model that considering m as
a random variable in the original lattice leads to randomness coupled to all three
Pauli matrices. To check whether this model is able to describe the shifted mini-
mum of the Lyapunov exponent, we derive a recurrence equation in one dimension
(ky = 0) analogous to section 6.1.1

zl+2 =Ml+1

(
1

Ml+1
+ 4Ml +

1

Ml−1
(1− z−1

l )

)

(7.5)
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7.2. Model A: Broken valley symmetry
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Figure 7.10.: Rescaled NLL for m̄ = 0.2 and δ = 0.5 in the vicinity of critical
point I (left) and in the vicinity of critical point II (right).

Critical point I II

Exponent ν 1.217± 0.017 1.451± 0.024
Wc 3.047± 0.004 7.727± 0.01
Λc 0.893± 0.013 0.479± 0.007
Disorder range 2.7 ≤W ≤ 3.33 6.6 ≤W ≤ 8.4
System sizes 20 ≤M ≤ 80 20 ≤M ≤ 80

Table 7.4.: Critical values for m̄ = 0.8 and δ = 0.5 obtained from fitting the data
to equation (5.7).

with zl+2 = vl+2/vl, Ml = ml/
√
1−mlδ and calculate the Lyapunov exponent

depending on the mean m̄. The comparison between δ = 0 and δ 6= 0 is shown in
figure 7.11. The minimum of γmin is shifted to negative m̄.
For this reasons we expect the phase boundary to be curved to negative m̄ and

dependent on the disorder strength. In order to confirm this assumption and to
gain a sharper picture of the phase diagram we calculate γmin for a small system
as function of disorder W and average gap m̄.
Figure 7.12 shows the result for a strip of width M = 10 as a color map. The

black areas correspond to the minimum of the Lyapunov exponent where we expect
the metallic behavior. Whether or not there is a transition, can only be decided
from finite-size scaling analysis. In order to investigate the insulator-insulator
transition we need to know how the minimum of γmin depends on disorder W .
Therefore we have extracted the minimum for a strip of width M = 10 of several
W and have fitted this to

m0 = aW b, (7.6)

which gives a = 0.038 and b = 2.006± 0.002, and allows us to estimate the critical
value of m.
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Figure 7.11.: Lyapunov exponent for fixed disorder W = 1 as a function of m̄.
Red data points are for δ = 0 and blue points are for δ = 0.5. The
black dots are the corresponding minima obtained from fitting.

7.2.2. Critical exponent for the insulator-insulator transition

Now that we have an estimation ofmc where the system is expected to be critical we
calculate γmin for fixed W and various system sizes as a function of m̄. Figure 7.14
shows the results in the vicinity of m̄ ≈ 0 and figure 7.15 shows the results in the
vicinity of m̄ ≈ 2δ. It turns out that the minimum of γmin is indeed a critical
point, thus independent of M . We have obtained critical exponents ν and mc by
fitting the data to

z =Mγmin ∝ |m̄−mc|M1/ν . (7.7)

The critical quantities are gathered in table 7.5 and the critical exponent in vicinity
of the three considered points is approximately ν ≈ 1.

7.2.3. Phase diagram

Let us conclude this section by combining the latter results: We have studied the
influence of valley symmetry breaking on lattice fermions with random gap and
we have shown that there is a metal-insulator transition for which have calculated
the critical exponents using finite-size scaling. Surprisingly, the expected phase
boundary separating two insulating regimes depends on the disorder strength.
This is owed to the fact that the model is asymmetric in m. The explanation for
this behavior is that due to the symmetry breaking parameter δ the random mass
term also couples to the wave vector. We have confirmed that the minimum of
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7.2. Model A: Broken valley symmetry
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Figure 7.12.: Normalized smallest Lyapunov exponent for M = 10 and δ = 0.5.
The red points are the critical points obtained from the finite-size
scaling.

γmin is shifted by means of the weak disorder expansion in section 6.2.2 and using
an effective low-energy Hamiltonian exhibiting the same behavior. Moreover, we
have shown that model A behaves critical at the phase boundary and calculated
the critical exponent for the insulator-insulator transition at three different points.

The growth of the localization length can again be summarized by discussing
the exponent α in

Λ ∝Mα with







α = 0 for m̄ 6= mc, W < Wc1

α > 1 for m̄ 6= mc, Wc1 < W < Wc2

0 < α < 1 for m̄ 6= mc, W > Wc2

α = 1 for m̄ = mc or W =Wc1,c2

. (7.8)

Finally, our extensive study of the introduced model leads to the phase diagram
by combining figure 7.12 and the locations of the critical points extracted so far
(cf. figure 7.16). Since the model is symmetric around m̄ = 1 critical points for
m̄ < 1 can be mirrored to m̄ > 1 (m̄ = 0.8 is equivalent to m̄ = 1.2).
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fit to equation (7.6)

m̄ = 0:

W = 1 mc = −0.037 ν = 1.019± 0.001
W = 1.6 mc = −0.095 ν = 1.033± 0.002

m̄ = 2δ:

W = 1 mc = 1.00 ν = 1.006± 0.005

Table 7.5.: Critical quantities at the insulator-insulator transition.

7.3. Model B

In this section we want to investigate the influence of the random mass on model
B and compare results to model A.

7.3.1. Critical exponent for the insulator-insulator transition

Since our intention is not to reproduce results of Ref. [39] but rather to complement
their findings, let us take a closer look at a comparable result. According to the
phase diagram proposed in [39, 73, 74], there is an insulator-insulator transition
when m̄ crosses zero. For disorder strengths smaller then the critical value Wc the
system is in the insulating phase and for m̄ = 0 critical behavior is expected. Thus

76



7.3. Model B

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

-0.08 -0.06 -0.04 -0.02  0  0.02

M
 γ

m
in

<m>

M=10
M=20
M=30

M=40
M=50
M=60

M=70
M=80

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

-0.16 -0.14 -0.12 -0.1 -0.08 -0.06 -0.04

M
 γ

m
in

<m>

M=10
M=20
M=30

M=40
M=50
M=60

M=70
M=80

Figure 7.14.: Smallest Lyapunov exponent as a function of m̄ in vicinity of the
first phase boundary m = 0. Left panel shows the results for
W = 1, the right panel for W = 1.6.

by fixing W < Wc and calculating Λ for various m̄ and system sizes, we should be
able to extract the critical exponent ν by fitting

z =
M

Λ
≈ zc + c (m̄−mc)M

1/ν (7.9)

to our data. We have done this for two disorder strengths W = 1.25 and W = 2,
and obtained the exponent ν ≈ 1.03 which is very close to ν = 1.05 found in
Ref. [39], results can be taken from table 7.6.
The data we have used for the fitting procedure is shown in figure 7.17, where

we have plotted the data for W = 1.25 in gray. As expected, the critical exponent
should be the same for all disorder strengths in the insulating regime. Additionally,
we neglected the values of z for the smallest two m̄. The reason is that we can not
see that z goes to zero linearly as m̄ approaches zero from our numerical results.
Instead we see that for m̄ = 0 the rescaled Lyapunov exponent acquires a finite
value independent of system size which is interpreted as critical behavior.

critical exponents

W = 2 ν = 1.032± 0.006
W = 1.25 ν = 1.030± 0.006

Table 7.6.: Critical exponents for the insulator-insulator transition in model B.
The used system sizes are: M = 17, 25, 33, 41, 49, 59, 77, mc ≈ 1 ×
10−4.

Now that we have shown that we reproduce results obtained in Ref. [39] correctly,
let us compare both models. Since model B describes a single Dirac fermion we
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Figure 7.15.: Smallest Lyapunov exponent as a function of m̄ in vicinity of the
second phase boundary m = 2δ for W = 1.

can only compare with results of model A with broken valley symmetry (δ = 0.5).
We have calculated the localization length for m̄ = 0.0, m̄ = 0.06 and strip widths
M = 11 to M = 81 in steps of 10 using transfer matrix (6.100). Surprisingly,
the results shown in figure 7.18 reveal major differences. It turns out that for all
disorder strengths considered here, the localization length grows with increasing
system size. Only if the mean of the gap is nonzero (m̄ = 0.06) then Λ is almost
constant for small disorder but increases again for large system sizes. This means
that increasing the system size suppresses exponential localization. A possible
reason for this behavior can be found by comparing to the clean case discussed in
section 6.2.4. Therefore, it is likely that the smallest Lyapunov exponent becomes
that for large wave numbers.

7.4. Summary

We have introduced a model for lattice fermions which allows for numerical cal-
culations of the localization length for disordered systems within the framework
of the transfer matrix formalism. Using this model it is possible to break the val-
ley symmetry and to compare between one and four nodal points in the Brillouin
zone. We have calculated localization lengths for various system sizes and disorder
strengths of the random gap.

If the valley symmetry is preserved, the localization length grows with system
size but with an exponent smaller than unity (cf. (7.2)). This means that in the
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Figure 7.16.: Schematic phase diagram for model A with broken valley symme-
try. Red points are the critical points obtained from the finite-size
scaling.

limit of M → ∞ the localization length diverges. For systems where the mean of
the random gap is nonzero we have found that there is a critical disorder strength
Wc. Below this value states are exponentially localized and the correlation length
diverges with power-law when the critical point is reached from W < Wc. Using
finite-size scaling, we have shown that the rescaled localization length has two
branches.
If the valley symmetry is broken, we have found scale invariant points where

a metal-insulator transition occurs. For this case we have calculated the scaling
function in the vicinity of the critical points, extracted critical exponents and
rescaled the data onto a single curve. In addition, we have found that the phase
boundary, separating two insulating phases, is curved to negative m̄ and have
shown that states are critical along this line by calculating the critical exponent
at the insulator-insulator transition.
Furthermore, we have compared our results to a different model describing lattice

fermions and have shown that there are substantiate differences, although both
models show a linear energy spectrum for small wave numbers.
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Figure 7.17.: Normalized Lyapunov exponents calculated for the model B. Data
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8. Lattice fermions and the

Chalker-Coddington model

In this chapter we like to recall the network model of Chalker and Coddington [18],
which is assumed to describe plateau to plateau transitions of the integer quantum
Hall effect. We summarize the main ideas of the model and implement its transfer
matrix to calculate localization lengths and the critical exponent. A review of the
quantum Hall transition can be found in Ref. [17]. Since the network model can
be mapped onto the Dirac equation under certain conditions [21, 75] we compare
numerical results of the network model with those of model A.

8.1. Chalker-Coddington network model

Let us briefly review the situation of a quantum Hall experiment [16, 76]. A sam-
ple, where a two dimensional electron gas is realized (e.g. AlGaAs), is connected
to leads and placed perpendicular into a strong magnetic field. During the experi-
ment, a current is driven along the sample and the Hall voltage across the sample
is measured. From this, one can calculate the Hall resistance or the carrier density.
In the classical experiment for high temperatures and low magnetic fields, the

Hall resistance grows linearly with magnetic field. For quantum conditions, i.e. low
temperatures (a few Kelvin) and high magnetic fields (≈ 20 T) the Hall resistance
exhibits plateaux.
The energy dispersion of a particle moving in a magnetic field is quantized and

the energy levels are called Landau levels. In real samples the density of states in
each Landau level is broadened due to disorder and has the shape of a Lorentzian,
where states are localized in the center and extended at the edges. When the mag-
netic field increases the number of states, that fit into one Landau level, increases.
The ”room” for states grows, so to say, until all states are in a single Landau level.
At a plateau, the Hall resistance remains constant with increasing magnetic field
as long as states occupy the localized region in one Landau level. When states
begin to populate the next Landau level they are extended in the beginning, the
Hall resistance increases. When the Hall resistance reaches the next plateau states
are again localized. Nowadays, the effect is used to define the electrical resistance
standard since the Hall conductance is a multiple of e2/h.
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Figure 8.1.: Network of the Chalker-Coddington model for M = 4, L = 6 and
strip boundary conditions. Arrows indicate the current flow, ampli-
tudes on the links 1, ..., 4 are connected to 1′, ..., 4′ by a product of
transfer matrices composed of sub–matrices A, B, C, D which are
contained between the broken lines.

This transition between plateaux is the starting point for the network model of
Chalker and Coddington [18]: Non-interacting electrons in a quantum Hall system
move in a varying potential. If the length scale of the varying potential is small
compared to the magnetic length lc then the electron movement can be separated
in two components: Rapid cyclotron orbiting at frequency ωc and a slow drift of
the orbiting center following equipotentials. The network can be described by a
lattice composed of nodes, connected each with four links, cf. figure 8.1. The
links correspond to equipotentials on which electrons acquire a phase φi according
to the arclength. The phases are chosen to be random from the interval [0, 2π].
The nodes correspond to saddle points of the potential, where electrons can either
scatter or tunnel.

It is illustrative to think of a landscape made up of lakes and mountains where
the waterline corresponding to the energy is either increasing or decreasing. If
the energy is low, electrons are trapped in a lake, for increasing energy it is more
likely that more and more lakes join until the water is extended over the whole
area. This corresponds to the critical point where electrons are delocalized. For
the introduced lattice of nodes and links one can construct a transfer matrix by
cutting it into slices. To simplify notation each slice is again split into four pieces.
Referring to figure 8.1 this corresponds to the areas between broken lines. The
transfer matrix for one slice gets

Tα = AαBCαD , (8.1)

where the entries of the sub-matrices can be taken from appendix B.
We have implemented the transfer matrix (8.1) in the present code and have

calculated two data sets. One set, shown in figure 8.2 on the left panel, mimics
the results of Ref. [18] as a test of the present code. We have performed single

82



8.1. Chalker-Coddington network model

parameter scaling for this data and have plotted the rescaled data in the right
panel. All points collapse nicely onto a single curve.
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Figure 8.2.: Right: Raw data for the CC model, the system is critical at the
band center of a Landau level at θc ≈ 0.88. Left: Rescaled data for
the Chalker-Coddington model corresponding to the left panel.

The second set of data, presented in figure 8.3, was calculated in the vicinity of
the critical point θc ≈ 0.88 and is plotted as the normalized Lyapunov exponent z.
To be precise, the data shows no truly metallic behavior as the localization length
never grows faster then the system width, instead the system is critical only in
one point θ = θc. For the calculation of the critical exponent we used the second
set of data and followed Ref. [77]: As z is an even function around θc the scaling
function can be assumed to be of the form

z = F (M2µx2) , (8.2)

with x = θ − θc and the critical exponent is defined through µ = 1/ν. Comparing
to the scaling function, the curvature at x = 0 is proportional to

d2z

dx2

∣
∣
∣
∣
x=0

∝M2µ . (8.3)

The latter can be used to calculate the critical exponent. By fitting the data for
fixed M to

z = z0 +
6∑

n=1

An(θ − θc)
n (8.4)

the curvature for a certain M can be obtained. Finally, this leads to the critical
exponent

ν = 2.517± 0.1 (8.5)
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Figure 8.3.: Normalized Lyapunov exponent, dashed lines are fits to equa-
tion (8.4).

which is slightly smaller but comparable to Refs. [77, 78]. For our calculations we
have used smaller systems M = 4, 8, ..., 128 and less data points which might be
one explanation for the relatively large error. Most groups find critical exponents
ranging between 2.3 < ν < 2.6 (cf. Ref. [77] for a review of recent exponents).
But it is still unclear whether or not the metal-insulator transition between Landau
levels is a universal phenomenon or sample dependent.

In addition, we like to point out that computing critical exponents from finite
systems using Lyapunov exponents is always an approximation and a delicate
issue. Results depend strongly on the method and the range of data that is used.
Using the method Chalker and Coddington suggested [18] we obtain a critical
exponent which is close to ν = 2. Moreover, we did not consider irrelevant scaling
parameters, which take deviations of zc into account [79] and are supposed to
improve the accuracy of critical exponents. In this section we only have intended
to use the Chalker-Coddington transfer matrix as another benchmark for our code
in order to demonstrate a further method of estimating the critical exponent. As
for this transition the localization length is an even function in θ at the critical
point, we may adapt this procedure to similar cases.

Turning now to the next section, we will discuss a special case of model A where
we find a transition similar to the latter.
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8.2. Model A: Broken valley symmetry and scalar disorder

8.2. Model A: Broken valley symmetry and scalar

disorder

In contrast to the Chalker-Coddington model where the disorder strength is fixed,
it is a tunable parameter in calculations for lattice fermions. From the outset it is
not clear whether and under which conditions the mapping between both models
proposed in Ref. [21] can be confirmed. Therefore, we have tried to find the
disorder strength at which a comparable transition occurs. Subsequently, we fix
disorder strength and investigate the scaling behavior when changing the energy.

8.2.1. Finite-size scaling for the disorder dependence

So far we treated only lattice fermions with random gap, i.e. disorder coupled to
the third Pauli matrix. It is natural, also to consider scalar disorder, since it only
requires minor changes in the present code.
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Figure 8.4.: Normalized localization length (left) and the normalized Lyapunov
exponent (right) as a function of disorder for δ = 0.5 and scalar
disorder with Ū = 0.

The transfer matrix has been derived in section 6.2 from Hamiltonian (6.50)

H = σ1px + σ2py + δ(B̂ − 2)σ3 + U(l, n) σ0 ,

with pi = −i~∂i. The random numbers U are uniformly distributed and taken
from the interval [Ū −W/2; Ū +W/2]. We denote the mean value as Ū and the
disorder strength as W .
Let us consider the case of broken valley symmetry δ = 0.5 and scalar disorder

with zero mean (Ū = 0). We calculate localization lengths for various system sizes
and present them as a function of disorder in figure 8.4. For distribution widths
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8. Lattice fermions and the Chalker-Coddington model

larger then W ≈ 2.5, the localization length is growing with disorder and decaying
system size, reaching a scale invariant point at W ≈ 4.7. For stronger disorder the
localization length is decreasing, both with system size and disorder strength. This
behavior, namely that the system is critical in a single point, appears in model
A only for scalar disorder with broken valley symmetry and is reminiscent of the
network model.
Plotting the data around the critical point as z = M/Λ, cf. right panel in

figure 8.4 shows similar behavior like in the Chalker-Coddington model (figure 8.3),
although the variable is disorder instead of energy. We apply the same method as
used for the network model to calculate the critical exponent. This gives

ν = 2.486± 0.108 (8.6)

which is remarkable close to the result for the Hall transition.
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Figure 8.5.: Raw (left) and rescaled (right) data for scalar disorder with Ū = 0
and broken valley symmetry δ = 0.5.

This might be just a coincidence, but a mapping from the network model to Dirac
fermions in two dimensions [21] is known to exist and may justify the comparison.
Without going into detail, the mapping results in a Dirac Hamiltonian

H = (px − Ax)σ1 + (py − Ay)σ2 +mσ3 + Uσ0 ,

where the randomness in the link phases of the network model translates into ran-
domness in the vector potential, scalar potential and mass. From this point of view
model A should give the behavior of the Chalker-Coddington model with disorder
in all three potentials. In contrast to this, our results indicate that a critical point
of this type only occurs with scalar disorder and broken valley symmetry.
In order to demonstrate validity of single parameter scaling we use the data

right of the critical point (W > 4.7) for a finite-size scaling analysis. The raw data
used for scaling is shown in the left panel of figure 8.5. After rescaling all points
collapse onto one single curve cf. right panel in the same figure.
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8.2. Model A: Broken valley symmetry and scalar disorder

8.2.2. Finite-size scaling for the energy dependence

Since we have found a critical point where a disorder driven metal-insulator tran-
sition, similar to the Chalker-Coddington model, occurs the next step is obviously
to study the energy dependence at this transition. For this reason we have fixed
the distribution width to W = 4.7 and calculated the Lyapunov exponents as a
function of energy. The left panel of figure 8.6 shows the raw data and the result
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Figure 8.6.: Left: Raw data of the rescaled Lyapunov exponent and fitted curves.
Right: rescaled data for scalar disorder with Ū = 0 and broken valley
symmetry δ = 0.5. The distribution width is fixed to W = 4.7

of fitting our data to equation (5.7) up to sixth order. From the fitting procedure
we have been able to extract the critical quantities at the transition point

zc = 0.792± 0.001 ν = 5.45± 0.07 . (8.7)

Assuming a quadratic energy dependence of the scaling function like in equa-
tion (8.2) did not lead to a result with satisfying accuracy. If we use a scaling
function of the form

z = F (M4µE4) (8.8)

instead, we obtain a comparable result for the critical exponent of ν = 5.40± 0.07
using the same method described in section 8.1. This form of the scaling function
is due to the fact that the leading contribution of the fit is from the fourth order
and the latter exponent can be calculated from fitting each data set for fixed M
to ∝ E4. No smaller or higher order is needed. The resulting power-law behavior
of the localization length

ξ(E) ≈ |E|−1/ν (8.9)

allows to rescale the raw data onto a single curve, cf. right panel in figure 8.5.
Although, the critical exponent is notable high, we conclude its correctness from
the latter scaling analysis, as we have calculated the critical exponent using two
different methods.
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8.3. Summary

Concluding this chapter, we have recalled the network model supposed to describe
the plateau to plateau transition in quantum Hall systems. Typical for such sys-
tems is the existence of only one critical point meaning that there is no truly
metallic phase since the localization length never grows faster then the system
size. We have extracted the critical exponent for the network model and found
agreement with present works.
Moreover, we have tried to validate the mapping from the network model to a

two dimensional Dirac Hamiltonian by means of lattice fermions. When the tran-
sition is disorder driven, we have found an exponent comparable to the Chalker-
Coddington model. When driven by energy, the critical exponent is roughly two
times larger. In both cases the critical point is a minimum of the Lyapunov expo-
nent and an even function in disorder and in energy.
We have also checked our model for further transitions or metallic phases but

only found the described critical point. Unfortunately, our results do not agree
with analytical mappings [21, 75], even though we see a similar metal-insulator
transition for scalar disorder with broken valley symmetry. The reasons for the
discrepancies are not completely clear, but we think, they are a consequence of
discretization and its accompanying problems, like fermion doubling. A further
explanation might be that there are several approximations made for the mapping
from the network model to the Dirac Hamiltonian. Our latter results suggest that
both models are different and lattice fermions described by model A do not share
the same transition as the Chalker-Coddington model.
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9. Tight-binding models for lattice

fermions with random mass

We have seen in the introduction on graphene that due to the special geometry of
the honeycomb lattice the low-energy behavior can be described using the Dirac
equation. In this sense graphene (i.e. the honeycomb lattice) serves as a lattice
model for Dirac fermions. As a direct consequence of the bisected lattice the
energy dispersion has two bands. This observation is crucial for further lattice
models since they must be bipartite to exhibit a pseudo spinor structure in the
Hamiltonian. In the following we like to introduce two tight-binding models which
we then use to calculate localization lengths for finite-size scaling.

9.1. Brickwork lattice

The brickwork lattice has already been studied for on-site disorder in Refs. [10, 62]
by means of the transfer matrix method. It is topologically equivalent to the
honeycomb lattice and can be obtained by removing every second bond in one
direction of a simple square lattice. As a consequence, the new lattice is bipartite.
We use the brickwork lattice for our calculations as shown in figure 9.1. This

orientation corresponds to a graphene nanoribbon with zigzag edges which is sup-
posed to be metallic. Nanoribbons with armchair edges are either metallic or
semiconducting depending on their width. This is due to different boundary con-
ditions. Since we are not interested in transport properties of nanoribbons but to
perform a finite-size scaling to make statements on infinite systems, we refer to
Refs. [41, 43] as an introduction for further reading.
Figure 9.1 suggests that two different transfer matrices are needed, since only

every second column is identical, and periodic boundary conditions are only con-
tained in every second transfer matrix.
In order to derive the transfer matrix for the brickwork lattice let us start with

a simple square lattice. The tight-binding Hamiltonian for a square lattice with
nearest neighbor hopping reads

H = −t
∑

l,n

(

c†l,n+acl,n + c†l+a,ncl,n +H.c.
)

+
∑

l,n

ǫl,n c
†
l,ncl,n , (9.1)
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A

BB

B

l-1 l l+1

Figure 9.1.: Brickwork lattice consisting of two sublattices A and B as it has
been used for numerical calculations.

where t is the hopping parameter, a the lattice constant and ǫl,n the potential at

each lattice site, c†l,n (cl,n) are the creation (annihilation) operators. The index l
labels the x-direction and accordingly n the y-direction. Furthermore, we set t = 1
and a = 1. From the latter we can construct a transfer matrix in the standard
way [2, 7, 9, 10] by separating perpendicular and longitudinal part. The connection
between wave function amplitudes is then given by

(
Al+1

Al

)

=

(1E −Hl −11 0

)(
Al

Al−1

)

= Tl

(
Al

Al−1

)

(9.2)

with

Hl =

M∑

n=1

(ǫl,n δn,n + δn,n+1 + δn+1,n) , (9.3)

being the Hamiltonian of a perpendicular chain. We have chosen periodic boundary
conditions in y-direction.

For the brickwork lattice we have to remove every second bond in Hl. This gives
two transfer matrices T odd

l and T even
l containing the corresponding Hamiltonians
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9.1. Brickwork lattice

for perpendicular chains. Both matrices have the following structure [10]

Hodd
l =













ǫl,1 1
ǫl,2 1
1 ǫl,3

ǫl,4 1
1 ǫl,5

.
1 ǫl,M













(9.4)

Heven
l+1 =













ǫl+1,1 1
1 ǫl+1,2

ǫl+1,3 1
1 ǫl+1,4

ǫl+1,5

.
1 ǫl+1,M













(9.5)

and have to be multiplied alternately. In this case periodic boundary conditions
are only imposed in T odd

l .

9.1.1. Scaling behavior with staggered potential

Just like the honeycomb lattice, the brickwork lattice consists of two equivalent
sublattices labeled as A and B (cf. figure 9.1). We can break the sublattice sym-
metry by choosing the opposite sign for the on-site potential on each sublattice
(ǫA = −ǫB). This is in analogy with introducing a mass term to the Dirac Hamil-
tonian (cf. section 2.1.1) and we denote the mass asm = |ǫA|. Thus, by generating
random numbers for one strip of our lattice and changing the sign according to
the sublattice we can model lattice fermions with random gap. Comparing to the
model A where four nodal points are present, the brickwork lattice exhibits only
two nodes within the Brillouin zone. Since the number of valleys is even and time
reversal symmetry is preserved, we expect similar results as for the case δ = 0 and
m̄ 6= 0 in section 7.1.
We have calculated the Lyapunov spectrum by means of the transfer matrix

approach for uniform distributed random numbers and system sizes up toM = 200.
Because we have to deal only with real numbers and no spinor structure, we are able
to consider larger systems. The raw data for the localization length is presented
in figure 9.2. Indeed, calculations show that results from the discretized Dirac
equation and from the brickwork lattice are qualitatively the same. Again, there
are two regions where the localization length behaves qualitatively different. Up to
disorder strengths of W ≈ 2 the localization length Λ is more or less independent
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9. Tight-binding models for lattice fermions with random mass

of system size. For stronger disorder the localization length is increasing. We
have performed finite-size scaling in the two regions independently and have fitted
the resulting scaling function to equation (7.1). From this we have obtained the
critical quantities which are collected in table 9.1. The critical exponent is not
identical but close to the exponent for the discrete Dirac equation with δ = 0 and
m̄ = 0.2. This suggests, that both transitions are of the same type and may be
observed in real graphene samples.
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Figure 9.2.: Raw data of the localization length for the brickwork lattice with
random staggered potential m̄ = 0.06.

0 < W < Wc

Wc 2.123± 0.009
Exponent ν 0.250± 0.007

Table 9.1.: Critical values for electrons on a brickwork lattice with random stag-
gered potential.

9.2. Scaling behavior for the π-flux lattice

It is always preferable to have a another model describing the same physical situa-
tion. Is there another model where the latter transition can be found? Indeed, the
square lattice tight-binding Hamiltonian (9.1) is the basis for a second bipartite
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Figure 9.3.: Rescaled data (left) and scaling function with fit (right) for elec-
trons on a brickwork lattice. Symbols are identical to those used in
figure 9.2.

lattice, the π-flux lattice [80]. If we introduce two different hopping parameters

tx = t (9.6)

ty = eiπn t = (−1)nt, (9.7)

we get

H = −t
∑

l,n

(

(−1)n c†l,n+acl,n + c†l+a,ncl,n +H.c.
)

+
∑

l,n

ǫl,n c
†
l,ncl,n . (9.8)

By this choice of the hopping parameters the flux through each plaquette is half a
flux quantum h/2e and the lattice consists of two sublattices. The free Hamiltonian
reads in momentum space [81]

H̃ = −t
∑

kx,kx

ψ†
k

(
cos(ky) cos(kx)
cos(kx) − cos(ky)

)

ψk (9.9)

with ψk = (ck c̃k) where ck (c̃k) is the Fourier transform of the creation operator
on lattice sites with odd (even) index l. The resulting energy dispersion reads

E = ±
√

cos2(kx) + cos2(ky) (9.10)

and has four Dirac cones in the Brillouin zone. Just like the brickwork lattice the π-
flux lattice describes lattice fermions. We derive a transfer matrix in the standard
way and perform the same procedure as described for the brickwork lattice. By
introducing a staggered potential we are able to consider the case of random gap.
Since we got similar results as for the brickwork lattice, we show only the rescaled

data and the scaling function in figure 9.4. Once more we have computed the
critical quantities and gathered them in table 9.2. It turns out that critical disorder
and critical exponent are slightly larger than for the brickwork lattice.
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9. Tight-binding models for lattice fermions with random mass

0 < W < Wc

Wc 3.236± 0.037
Exponent ν 0.330± 0.022

Table 9.2.: Critical values for electrons on a π-flux lattice with random staggered
potential.
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Figure 9.4.: Rescaled data (left) and scaling function with fit (right) for electrons
on a π-flux lattice.

9.3. Summary

We have applied two well known tight-binding models describing lattice fermions
for transfer matrix calculations. By choosing the opposite sign for the random
on-site potential on each sublattice we have broken the sublattice symmetry. This
is equivalent to the random gap problem. Since the valley symmetry is preserved
and thus the node degeneracy is not lifted we have expected that the results should
be comparable to the discrete Dirac equation with δ = 0. By means of finite-size
scaling of the localization length we have shown that this is indeed the case. For
finite mean of the random gap there is a transition from exponentially localized
states to probably power-law localized states. The behavior of the localization
length for the brickwork and the π-flux lattice can be discussed by considering
Λ ∝Mα with {

α = 0 for m̄ 6= 0, W < Wc

0 < α < 1 for m̄ 6= 0, W > Wc .
(9.11)
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10. Conclusion

Motivated by recent progress in condensed matter physics, in particular the dis-
covery of graphene, we have studied various aspects of disordered lattice fermions
in two dimensions.
In the beginning of this thesis we have discussed the emergence of Dirac fermions

in graphene and have briefly mentioned other fields where they are present. We
have introduced the concept of transfer matrices and applied it to the Dirac equa-
tion in one dimension as an elementary but illustrative example. For this purpose
we have investigated the transmission through different types of barriers.
Afterwards, we have presented a method to calculate Lyapunov exponents and

localization lengths which allows to perform finite size scaling in order to study
metal-insulator transitions.
We have discretized the Dirac equation in chapter 6 in one and two spatial

dimensions. In one dimension we have derived recurrence equations for the cal-
culation of Lyapunov exponents complementary to the transfer matrix approach.
This has allowed us to show that two independent methods give the same re-
sult, yielding that disordered Dirac fermions in one dimension are localized for all
three considered potentials. Furthermore, we have related certain results obtained
by means of transfer matrices for continuous Dirac fermions to those for lattice
fermions.
In two spatial dimensions we have introduced a simplified model and confirmed

the results for a special case by means of a perturbation theory. This expansion
has also enabled us to verify the observed shift for the minimum of the smallest
Lyapunov exponent.
For the two dimensional case we have shown that model A with random gap

exhibits a rich phase diagram. By means of finite-size scaling we have identi-
fied metal-insulator transitions and phase boundaries between different insulating
phases exhibiting insulator-insulator transitions. Subsequently, we have calculated
critical quantities like the critical exponents of the localization length. We have
also considered a second method for discretization proposed by a different group.
Already in the clean case our comparison of both models has shown substantial
differences.
Since model A allows to control the node degeneracy, we have been able to

compare with appropriate tight-binding models. Both models considered in this
thesis, the brickwork and the π-flux lattice, exhibit more than one Dirac cone and,
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10. Conclusion

thus, inter-valley scattering is present. For random gap with finite mean we have
found a transition from exponentially localized states to decaying states where
diffusion in two dimensions can not be ruled out. At this transition we have found
a critical exponent of the localization length ≈ 0.3.
In addition to the random gap problem, we have considered random scalar poten-

tial for lattice fermions. Motivated by the mapping from the Chalker-Coddington
model to a Dirac Hamiltonian, we have tried to confirm this mapping numeri-
cally. We have found another metal-insulator transition for model A with broken
valley symmetry and scalar disorder. We have discussed the scaling behavior for
disorder and energy dependence of the localization length and have calculated crit-
ical exponents. Although the transition seems to be very similar to the quantum
Hall transition, differences are substantial. Consequently, we cannot confirm the
mapping and attribute this to the approximations made and to the discretization
procedure.
The main findings in this thesis, in particular the phase transitions for lattice

fermions with random gap and random scalar potential described by model A,
suggest that critical exponents are rather model dependent than universal.
What is next? And what else can be done? Calculations for the discretized Dirac

equation with random vector potential would be the next step continuing this work.
It would be interesting to include appropriate next nearest neighbor terms in the
brickwork lattice in order to break the valley symmetry and, thus, to lift the node
degeneracy. Comparing to the discrete Dirac equation, we expect an Anderson
transition, too. Another possibility would be to go beyond single layers. Implying
to consider stacked lattices that are weakly coupled, for example two or three
brickwork lattices, corresponding to bi- and trilayer graphene, or stacked discrete
Dirac equations. Technically, this would mean to construct new transfer matrices
which, of course, would be larger and, thus, computation time would increase. A
further direction one could go, is to apply the transfer matrix to calculations of
the conductance. Pendry et al. [82] have introduced an algorithm which allows to
calculate the transmission coefficient and consequently the conductance by means
of the Landauer formula.
Finally, there are still questions left and continuing this work is an exciting task

that may lead to interesting results.
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A. Probability densities

For numerical calculations we have used random number generators for continuous
distributions provided by the Intel Math Kernel Library.
The probability density function for uniform distributed random numbers is

given by

fa,b(x) =

{
1

b−a
for a < x < b

0 otherwise.
(A.1)

We define a = x̄ − W/2 and b = x̄ + W/2, thus the mean is given by x̄ and
W = b− a is the width of the distribution. Accordingly, the standard deviation is
given by

W√
12
. (A.2)

For normally distributed random numbers the probability density function reads

fx̄,σ(x) =
1

σ
√
2π

exp

(

−(x− x̄)2

2σ2

)

, (A.3)

where x̄ is the mean value and σ the standard deviation.
When Cauchy distributed random numbers are used, its probability density is

given by

fx̄,W (x) =
1

π

W

W 2 + (x− x̄)2
. (A.4)

Strictly speaking the Cauchy distribution has no mean and higher moments. Here,
x̄ is the center of the distribution and W is the scale factor which denotes the half-
width at half maximum.

97



A. Probability densities

98



B. Transfer matrix for the

Chalker-Coddington model

The transfer matrix is split into four sub-matrices according to figure 8.1

Tα = AαBCαD .

The sub-matrices A and C are diagonal

[Aα]ii = exp(iφi(α)) [Cα]ii = exp(iφi(α)) (B.1)

and the matrices B and D are composed of 2× 2 blocks with non-zero entries

Bii = cosh(θ′) i = 1, 2, ...,M (B.2)

B2i,2i−1 = B2i−1,2i = sinh(θ′) i = 1, ...,M/2 (B.3)

Dii = cosh(θ) i = 2, 3, ...,M − 1 (B.4)

D2i,2i+1 = D2i+1,2i = sinh(θ) i = 1, ...,M/2− 1 . (B.5)

For cylindrical geometry (periodic boundary conditions)

D11 = DMM = cosh(θ) (B.6)

D1M = DM1 = sinh(θ) (B.7)

and for strip geometry
D11 = DMM = 1 . (B.8)

The values of θ and θ′ correspond to the energy and are related by

θ′ = arcosh (coth(θ)) . (B.9)

The latter has for θ = θ′ the solution θc = ln(1 +
√
2).

99



B. Transfer matrix for the Chalker-Coddington model

100



Bibliography

[1] P. W. Anderson, Physical Review 109, 1492 (1958).

[2] B. Kramer and A. MacKinnon, Reports on Progress in Physics 56, 1469
(1993).

[3] P. A. Lee, Reviews of Modern Physics 57, 287 (1985).

[4] E. Abrahams and P. W. Anderson, Physical Review 42, 637 (1979).

[5] J. L. Pichard and G. Sarma, Journal of Physics C: Solid State Physics
14, L127 (1981).

[6] G. Benettin, L. Galgani, A. Giorgilli, and J. M. Strelcyn, Mecca-
nica , 21 (1980).

[7] A. MacKinnon and B. Kramer, Physical Review Letters 47, 1546 (1981).

[8] B. Kramer, K. Broderix, and A. MacKinnon, Physica A: Statistical
and 167, 163 (1990).

[9] A. MacKinnon and B. Kramer, Zeitschrift für Physik B Condensed Matter
53, 1 (1983).

[10] M. Schreiber and M. Ottomeier, Journal of Physics: Condensed 4, 1959
(1992).

[11] M. Kaveh, Philosophical Magazine B 52, 521 (1985).

[12] I. M. Suslov, Journal of Experimental and Theoretical Physics 101, 661
(2005).

[13] J. L. Pichard and G. Sarma, Journal of Physics C: Solid State Physics
14, L617 (2000).

[14] N. Tit and M. Schreiber, Journal of Physics: Condensed Matter 7, 5549
(1995).

[15] F. Evers and A. D. Mirlin, Reviews of Modern Physics 80, 1355 (2008).

101



Bibliography

[16] K. von Klitzing, G. Dorda, and M. Pepper, Physical Review Letters
45, 494 (1980).

[17] B. Huckestein, Reviews of Modern Physics 67, 357 (1995).

[18] J. T. Chalker and P. D. Coddington, Journal of Physics C: Solid State
Physics 21, 2665 (1988).

[19] F. D. M. Haldane, Physical Review Letters 61, 2015 (1988).

[20] A. W. W. Ludwig, M. Fisher, R. Shankar, and G. Grinstein, Physical
Review B 50, 7526 (1994).

[21] C. Ho and J. T. Chalker, Physical Review B 54, 8708 (1996).

[22] P. A. M. Dirac, Proceedings of the Royal Society A: Mathematical, Physical
and Engineering Sciences 117, 610 (1928).

[23] P. R. Wallace, Physical Review 71, 622 (1947).

[24] K. S. Novoselov, A. K. Geim, and S. V. Morozov, Science 306, 666
(2004).

[25] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201
(2005).

[26] K. Ziegler, Physical Review Letters 97, 266802 (2006).

[27] K. Ziegler, Physical Review B 75, 233407 (2007).

[28] M. I. Katsnelson, The European Physical Journal B 51, 157 (2006).

[29] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Kat-

snelson, I. V. Grigorieva, S. V. Dubonos, and a a Firsov, Nature
438, 197 (2005).

[30] V. P. Gusynin and S. Sharapov, Physical Review Letters 95, 146801
(2005).

[31] R. F. Curl and R. E. Smalley, Science (New York, NY) 242, 1017 (1988).

[32] H. Kroto, Science (New York, NY) 242, 1139 (1988).

[33] J. Moore and L. Balents, Physical Review B 75, 121306(R) (2007).

[34] C. L. Kane and E. J. Mele, Physical Review Letters 95, 146802 (2005).

102



Bibliography

[35] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z.

Hasan, Nature 452, 970 (2008).

[36] D. Hsieh, Y. Xia, L. Wray, D. Qian, a Pal, J. H. Dil, J. Oster-

walder, F. Meier, G. Bihlmayer, C. L. Kane, Y. S. Hor, R. J.

Cava, and M. Z. Hasan, Science (New York, N.Y.) 323, 919 (2009).

[37] K. Ziegler, Physical Review B 79, 195424 (2009).

[38] K. Ziegler and A. Sinner, Physical Review B 81, 241404(R) (2010).

[39] M. Medvedyeva, J. Tworzyd lo, and C. W. J. Beenakker, Physical
Review B 81, 214203 (2010).

[40] G. Semenoff, Physical Review Letters 53, 2449 (1984).

[41] A. H. Castro Neto, F. Guinea, and N. M. R. Peres, Reviews of Modern
Physics 81, 109 (2009).

[42] D. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, and
T. Chakraborty, Advances in Physics 59, 261 (2010).

[43] S. Das Sarma, S. Adam, E. Hwang, and E. Rossi, Reviews of Modern
Physics 83, 407 (2011).

[44] K. S. Novoselov, Z. Jiang, and Y. Zhang, Science 315, 1379 (2007).

[45] N. W. Ashcroft and N. D. Mermin, Solid State Physics, Saunders
College, 1976.

[46] S. Datta, Electronic transport in mesoscopic systems, Cambridge University
Press, 1995.

[47] F. Schwierz, Nature nanotechnology 5, 487 (2010).

[48] T. Ohta, A. Bostwick, and T. Seyller, Science 313, 951 (2006).
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In erster Linie möchte ich mich bei Herrn Prof. Dr. Klaus Ziegler dafür be-
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und dafür, dass ich am Symposium QDNS’12 mitwirken durfte. Das gab mir die
Gelegenheit hinter die Kulissen einer Tagung zu sehen und interessante Persönlichkeiten
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